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Abstract
To implement various artificial intelligence and automation applications in smart factories, edge computing and industrial 
Internet of Things (IIoT) devices must be widely deployed, so as to increase the demand of coping with huge-scale and high-
diversity data. Through deployment of fifth-generation (5G) networks (providing wide broadband, low latency, and massive 
machine type communications), industrial wireless networks, cloud, and fixed/mobile end devices in smart factories are 
interoperated in a harmony. However, with the huge-scale deployment of 5G networks and the IIoT in smart factories, threats 
and attacks against various vulnerabilities increase enormously, and cause considerable security and privacy challenges. 
Consequently, this article investigates crucial security and privacy issues for 5G-IIoT smart factories in three entities (i.e., 
physical layer, data layer and application layer), and further surveys recent approaches based on deep learning, reinforcement 
learning, and blockchain. In addition, this article provides future perspectives and challenges along this line of research.

Keywords 5G · Security · Privacy · Smart factory · Deep learning · Smart manufacturing · Industrial Internet of things · 
Blockchain · Edge computing · Cloud computing

1 Introduction

Recently, 5G networks have acted as catalysts to accelerate 
the progress in Industry 4.0. As the main application ser-
vices of 5G networks targeting at enhanced mobile broad-
band (eMBB), massive machine-type communications 
(mMTC), and ultra-reliable low-latency communications 
(URLLC) [1], the wireless service requirements in smart 
factories (including low-latency wireless communications, 
reliable real-time data collection, and strong data security) 
are projected to be fulfilled with the facilitation of 5G net-
works, as illustrated in Fig. 1.

Although 5G networks bring great benefits to smart fac-
tories, a lot of obstacles still need to be overcome, and two 
of the most critical issues lie in security and privacy. Secu-
rity and privacy have been regarded as the most challenging 
issues in smart manufacturing since data from/to factories 
is extremely confidential and has a high commercial value. 
In addition, cyber-attacks in factories may also cause physi-
cal damages and even threaten human lives (e.g., the TRI-
TON malware attacked the safety instrumented system, and 
the Mirai malware launched distributed denial-of-service, 
DDoS, attacks against IIoT devices).
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Complexity of the IIoT network and the large number 
of devices in factories increase security threats and vul-
nerabilities. Hence, a lot of attention needs to be paid to 
cybersecurity. Sisinni et al. [2] discussed the difference 
between IoT and IIoT, provided an IIoT architecture, and 
reviewed the state-of-the-art research efforts as well as 
potential research directions to solve IIoT challenges. 
Gebremichael et al. [3] introduced the current standards 
for IIoT, and provided an overview of the solutions to 
cybersecurity issues. Vitturi et al. [4] discussed the stand-
ards, new technologies, and application fields for industrial 
communication systems. Tange et al. [5] analyzed security 
and privacy issues and solutions of the 5G and IoT.

Most previous works discussed the security issues of 
5G and IIoT separately. Most of them focused on the secu-
rity issues of network layer and data layer, and seldom 
talked about the security issues of physical layer. In addi-
tion, to the best of our understanding, no previous survey 
articles considered the security approaches of smart fac-
tories based on 5G and IIoT. However, 5G and IIoT are the 
key technologies to build a smart factory. As a result, this 
article focuses on the state-of-the-art solutions to security 
and privacy issues in 5G-IIoT smart factories including 
physical layer, network layer, and data layer, and discusses 
their challenges as well as future research perspectives.

The rest of this article is structured as follows. Sec-
tion 2 introduces related works on the concerned topic. 
The architecture of the 5G smart factory is presented, 
and key technologies of the architecture are discussed in 
Section 3. The security and privacy issues of each layer 
in 5G-IIoT smart factory are discussed in Section 4. The 
recent approaches for the above security and privacy issues 
are presented in Section 5. The future research perspec-
tives on 5G-IIoT smart factory are given in Section 6, fol-
lowed by conclusions in Section 7.

2  Related works

This section first reviews the related works on IoT and IIoT 
security, and then reviews and compares the recent works on 
5G, IoT, IIoT, and smart factories.

2.1  IoT snd IIoT security

The IoT is more vulnerable to suffer cyber threat than con-
ventional networks, and the infection of threat is more seri-
ous than before. The main reasons are as follows: Complex 
IoT environments leads to a wider attack surface [6]. Large-
scale connected devices and considerable users increase the 
amount of cybersecurity vulnerabilities and attack targets 
[7]. The leak of uniformity in standards of connectivity 
protocols, platform, and hardware may cause cybersecurity 
vulnerabilities [3]. The connection of virtual and physical 
environments allows cyberthreats to translate into physical 
consequences, thereby generating a greater impact [8].

Smart factory is one of the IoT application scenarios. The 
main difference between IIoT and IoT is that the IIoT con-
nects the operation technology and information technology 
to build a cyber-physical system (CPS) [9]. The IIoT focuses 
on machine-to-machine communications, in which the reli-
ability and latency of networks are more important. The IIoT 
network needs to meet specific communication protocols, 
and the devices must be applicable to particular industrial 
environment. Therefore, the requirements of security in the 
IIoT are different.

From the literature, most discussion on the IoT security 
includes authentication [10], authorization [11], access 
control [12], cyberattack [13], privacy [14], and CIA Triad, 
confidentiality [15], integrity [16], and availability [17]. 
According to the survey of Tange et al. [5], most security 
issues in the IoT and IIoT are overlapping, but the safety 
and security requirements for the IIoT are generally stricter 
than those found in a typical IoT scenario. However, there 
are still other issues needed to be noticed in the IIoT, e.g., 
network resilience. Network resilience refers to the capabil-
ity of remaining operations when suffering attack. Although 
the security issues between the IoT and the IIoT are similar, 
the security issues and priorities concerned by the IIoT and 
the IoT are different.

2.2  5G, IoT, and smart factory

The 5G increases transmission speed and capacity, supports 
simultaneous connections of more devices, and provides 
reliable and low latency transmission. Hence, 5G is the 
accelerator for widespread applications of the IoT [18, 19]. 
The combination of 5G and IoT is applicable to many fields 

Massive Machine Type 
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(URLLC)
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Fig. 1  The applications based on three 5G technologies in smart fac-
tories
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[20], e.g., smart city [21], smart agriculture [22], smart 
health [23], and smart factory [24]. Smart factories have 
a lot of application scenarios of 5G. For instance, 5G with 
drones supports the function of monitoring and collecting 
the environmental data [25], and 5G with AGVs and AMRs 
is applied to automatic material handling systems (AMHSs) 
[26]. In addition, customized private 5G networks are a new 
option for companies to develop their vertical applications 
[27].

The security and privacy issues of 5G networks are chal-
lenging. Especially, adopting novel technologies may cause 
new security issues. Khan et al. [28] proposed a 5G evolved 
security model which includes confidentiality, integrity, 
availability, visibility, and centralized policy. They also dis-
cussed new cyberthreats after adopting 5G key technolo-
gies, e.g., software-defined network (SDN), network func-
tions virtualization (NFV), and network slices. Ahmad et al. 
[29] proposed the approaches based on above technologies 
to solve cybersecurity issues.

Recent works on various integrated approaches of IoT, 
IIoT, 5G, cybersecurity, and smart factory are compared in 
Table 1. Surveys on security and privacy of IoT, IIoT and 5G 
have been hot topics, and recent interests have focused on 
blockchain [13], fog computing [5], and machine learning 
(ML) [14]. With the widespread applications of 5G and IoT, 
more and more surveys on security and privacy have consid-
ered the issues of security and privacy for 5G and IoT [20, 
30]. However, to the best of our understanding, there was no 
survey on network communication systems in smart facto-
ries based on 5G and IIoT. Therefore, this article focuses on 
the issues of security and privacy in 5G-IIoT smart factories, 
and summarized their recent approaches.

3  Architecture of the 5G‑IIoT smart factory

From the literature, considerable interests have been put 
on the architecture of the 5G-IIoT smart factories, which 
are generally composed of physical layer, network layer, 
and application layer [9], as illustrated in Fig. 2.

3.1  Physical layer

The physical layer includes all fundamental physical 
resources in 5G-IIoT smart factories, e.g., manufactur-
ing equipment, communication devices, and computing 
devices. In smart factories, since all the physical resources 
need to keep up with novel technologies, the physical layer 
includes the following devices:

1) Modular production unit: To quickly respond to the 
rapidly changeable market demand, the production sys-
tem in smart factories tends to be modular and recon-
figurable. Modular production line can be efficiently 
and easily reconfigured into a variety of production 
arrangements and production processes. Each modu-
lar production unit not only meets the manufacturing 
requirements of products, but also improves the factory 
efficiency in a self-reconfigured way. Through modular 
design, factories can quickly assemble different parts, 
establish and adjust arrangements, replace parts or the 
whole module, and easily maintain the unit.

2) Devices for machine-to-machine (M2M) communica-
tions: With the increasing amount of wireless commu-
nication devices, the production line can be equipped 
with equipment with high mobility and flexibility (e.g., 
AMRs and AGVs). All machines, equipment, and 
related sensors are equipped with 5G wireless communi-
cation devices, so that each equipment has the ability to 
connect to the network and send back real-time informa-
tion. With development of 5G and low-power wide-area 
network technologies [31, 32], the M2M communica-
tions play an important role. Communication devices in 
a factory with a large-scale IIoT should include the fol-
lowing features: low setup cost, small size, low energy 
consumption, long buttery lifetime, and wireless connec-
tivity that can adapt to dynamic and harsh environments. 
In general, ordinary components of M2M systems in 
factories includes RFID and Wi-Fi.

3) Edge computing devices: Edge computing is a distrib-
uted computing paradigm which brings computation of 
applications, data, and services closer to the location 
where the data is stored and processed immediately, to 
improve response time, save bandwidth, and shorten 
latency. Edge computing devices also improve security 

Table 1  Comparison of recent works on integrated approaches of IoT, 
IIoT, 5G, cybersecurity, and smart factory

Approach IoT IIoT 5G Cybersecurity Smart factory

[5] ✓ ✓
[6] ✓
[7] ✓ ✓
[8] ✓ ✓
[9] ✓ ✓
[10] ✓ ✓
[13] ✓ ✓
[14] ✓ ✓
[18] ✓
[20] ✓ ✓
[26] ✓ ✓
[28] ✓ ✓
[29] ✓ ✓
[30] ✓ ✓ ✓
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and privacy of data because it is not necessary to trans-
mit the whole data to the cloud.

3.2  Network layer

To integrate 5G with the IIoT, networks need to support 
novel protocols (e.g., [33]) and novel data types with higher 
flexibility and scalability. For this purpose, SDN and NFV 
are two enabling technologies for 5G networks. In addition, 
to meet various applications in factories, the 5G network 
can create multiple slices according to practical demands of 
different services (i.e., eMBB, mMTC, and URLLC).

1) SDN and NFV: SDN enables networks to be controlled 
intelligently and centrally using application software. 
By separating the control layer from the data layer, 
SDN enables that the network control becomes directly 
programmable, and the underlying infrastructure is vir-
tual with applications and network services. NFV is a 
technology to virtualize network services, e.g., firewalls 
and routers that conventionally run on specific hardware. 
Through NFV, these services become software-definable 
with network functions. By abstracting these services 
from dedicated hardware, the services can run network 
functions on standard hardware. That is, less physical 
hardware is needed, and allows resource consolidation 
that reduces physical space, power, and overall cost.

2) Network slicing: The physical network is sliced into 
multiple virtual networks based on requirements of 5G 
applications in factories. For example, the eMBB net-
work meets the need of large-scale data and high-defini-
tion image transmissions, e.g., precision manufacturing 
requires higher-definition image transmissions to iden-
tify defects. The mMTC network supports deployment 
of large-scale network, which can monitor thousands of 
equipment and inspect various and complex materials. 
The URLLC network is suitable for industrial control 
systems which cannot tolerate time errors, e.g., indus-
trial automatic control and remote-controlled equipment. 
Note that each network slice is independent and isolated, 
and hence an attacked network will be separated from 
the others when a cyberattack occurs.

3.3  Data layer

In a 5G-IIoT smart factory, the amount of data collected 
from the IIoT can be enormous with large dimensions. With 
facilitation of cloud technologies, data from the physical 
layer and network layer can be logically stored in a cen-
tralized manner (although the physical deployment of cloud 
servers may be distributive) [34]. In this case, data can be 
further processed using ML, deep learning (DL), and AI 
technologies to establish predictive models and further make 
decisions.
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Fig. 2  Architecture of the 5G-IIoT smart factory
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1) Cyber physical system (CPS): In the CPS, computa-
tional and physical resources are strictly interconnected 
by advanced communication technologies to achieve 
seamless integration between physical and cyber worlds. 
Connection between physical equipment and cyber data 
in factories can be achieved by 5G networks. Through 
characteristics of high bandwidth and low latency, 5G 
networks can be used to transfer all the data from the 
bottom cognitive layer (i.e., machines) to computing 
devices. These data can be utilized to analyze and make 
decisions in real time, so that equipment and systems in 
the smart factory accomplish real-time cognition and 
dynamic control.

2) Big data analysis and AI: AI acts as a brain in the smart 
factory, and 5G networks transmit the big data from the 
whole factory to the brain that analyzes and makes deci-
sions. The applications of AI appear everywhere in the 
smart factory. On security, AI and 5G can enhance the 
monitoring system with real-time image recognition. In 
the manufacturing process, through 5G networks, all 
the real-time data is transmitted to computing devices, 
in which conditions of machines are analyzes by AI to 
decide whether to conduct preventative maintenance. On 
material handling, after introducing 5G, manual material 
handling tasks can be replaced by AGVs and AMRs. 
Furthermore, integrated with computer vision, sensors, 
and optimization algorithms, the optimal route schedul-
ing and the assignment of handling vehicles can be well 
arranged [35].

4  Security issues in 5G‑IIoT smart factories

The 5G system relies increasingly on software and cloud 
technologies than previous wireless communication net-
works. Hence, security issues have received increasing 
attention. This section discusses secuirty and privacy issues 
in 5G-IIoT smart factories. Classification of these issues is 
given Fig. 3, and thes issues in the factory are illustrated in 
Fig. 4.

4.1  Security in the physical layer

Novel 5G technologies in the physical layer include full-
duplex (FD) communication, massive multiple-input-multi-
ple-output (mMIMO) [36], ultra-dense network (UDN), and 
millimeter wave (mmWave). Different from conventional 
security approaches that focused on the core network and the 
logical (i.e., not physical) layer, the 5G security issues tend 
to expand from the central network to the network edge, and 
from the logical layer to the physical layer. Major security 
issues in the physical layer of a smart factory are as follows:

1) Authentication for devices: Since considerable IIoT 
devices are deployed in the factory, any device may 
be security vulnerability. For mass deployment of IIoT 
devices, affordable IIoT devices with simple functions 
are adopted, and hence conventional security approaches 
are not applicable to these devices. Generally, secure 
hardware is the best way for device attestation, but is 
too complicated and expensive to be installed on each 

Security Issues
in 5G-IIoT 

smart factories

Physical Layer

Authentication for devices
Safety of production lines

Security of the IIoT

Stability of large-scale network devices

Maintaining network stability
Cyber threats
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Network Layer

User authentication and access control
Privacy protection
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Fig. 3  Classification of security issues faced by the 5G-IIoT smart 
factory
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IIoT device. Therefore, it would be more feasible to use 
software-based device authentication methods. How-
ever, these approaches often require to compliance with 
lots of assumptions, which may not easily be achieved 
in practice.

2) Safety of production lines: Maintaining safety of pro-
duction lines would be one of the most fundamental 
issues in factories. Related challenges include machine 
fault detection, product quality monitoring, production 
line health monitoring, remote factory diagnosis, and 
real-time production system control. As production 
lines tend to be virtualized and decentralized, it is also 
crucial to investigate how to collect, analyze, monitor, 
manage, and control real-time data of equipment, pro-
cesses, workpieces, finished products, and environment 
in factories. In addition, it is crucial to avoid complete 
shutdown of the production system. A robust production 
system requires keeping operations of production lines 
and repairing faulty equipment when an attack or sudden 
failure occurs. Furthermore, it must also be considered 
how to better use features of 5G in smart factories.

3) Security of the IIoT: Through deployment of fog and 
edge computing devices, the data storage and comput-
ing functions move from cloud to edge, and it makes 
security of the IIoT more important. However, most sen-
sors in industrial wireless sensor networks (IWSN) and 
actuators lack computing resources, and hence they are 
often in an unsafe condition. Therefore, it is crucial to 
find end-to-end security solutions, such as detection of 
malicious attacks against sensors, control system, and 
edge devices.

4) Stability of large-scale network devices: Mobile edge 
computing (MEC) devices have only limited battery 
capacity. Hence, it is crucial to extend the battery life in 
each device, and improve the energy efficiency. In addi-
tion, it is challenging to optimize resource allocation in 
large-scale networking equipment to meet the offloading 
probability of quality of service (QoS) [37]. It requires 
innovative solutions to collect, process, and analyze a 
large amount of data in 5G networks.

4.2  Security in the network layer

In 5G-IIoT factories, threats against security, reliability, and 
privacy in the network layer are much diversified. In the 
past, security issues could be addressed through physical 
protection systems. However, 5G systems extensively use the 
SDN and NFV technologies, so that it is difficult to protect 
systems against cyberattacks. Major security issues in the 
network layer are as follows:

1) Maintaining network stability: The network slicing 
technology separates 5G wireless networks based on 

the defined three main application areas (i.e., eMBB, 
mMTC, and uRLLC). Under this technology, it is chal-
lenging to maintain a stable and trustworthy network, 
including maintaining stable network traffic, estab-
lishing reliable communication quality, constructing a 
large-scale wireless sensor network, improving network 
reliability, and reducing network latency [38]. It is also 
challenging to establish a network security mechanism 
to address problems such as network delays and block-
ing, and to maintain the QoS.

2) Cyber threats: In an edge computing system with IIoT 
devices, distributed and peer-to-peer network systems 
must be built based on 5G networks. Under the wireless 
network architecture, external attacks have become a 
serious problem to the factory. Various malicious attacks 
include worms, Trojans, viruses, and runtime attacks. In 
addition, new cyber threats are often unpredictable.

3) Protocol vulnerability: Some organizations such as the 
Global Association for Mobile Communications Sys-
tems (GSMA) have been committed to improving 5G 
protocols. However, network vendors that provide pri-
vate 5G factory networks may not completely follow 
the best standards. Hence, it has been hard to defend 
attacks through protocol vulnerabilities, e.g., man-in at 
the-middle-attacks, DDoS attacks, eavesdropping, and 
intrusion attacks.

4.3  Security in the data layer

Various real-time data from (virtual) simulation models to 
(real-world) job shop production conditions is important in 
making manufacturing decisions, and hence it is very attrac-
tive to competitors or hackers. Major security issues in the 
data layer are as follows:

1) User authentication and access control: Since 5G het-
erogeneous networks include diversified and complex 
applications, they require frequent identity verification 
and collect more sensitive data. With a lot of participants 
(including end users, service providers, and infrastruc-
ture providers), services (including virtual machines 
and cloud services), and infrastructures (including user 
devices and edge data centers) in this network, there 
are increasing security vulnerabilities, causing external 
threats and internal malicious behavior.

2) Privacy protection: The 5G-IIoT factory includes an 
edge computing framework, which is managed by the 
cloud center. Hence, the edge/cloud center faces various 
threats. Furthermore, attackers may adopt to program 
vulnerabilities to conduct privilege escalation to perform 
unauthorized actions. In addition, it is difficult to set up 
private 5G networks in the factory to prevent data leak-
age, because it involves a lot of participants, including 
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cloud operators, mobile network operators, and network 
equipment providers.

3) Encryption algorithms: In 5G networks, the confiden-
tiality, integrity, and authentication are accomplished 
through encryption. According to Kerckhoffs’ principle, 
encryption algorithms are public. The public encryp-
tion algorithms with password length limitations could 
be broken with brute-force search. Aside from the data 
from sensors, the data in smart factories includes the 
communication data between various users and IIoT 
devices, some of which are sensitive data. It is chal-
lenging to effectively delete the encrypted data, because 
it is hard to guarantee revocation of sensitive data, and 
whether there are no ways to get the deleted data back.

5  Recent approaches for security 
and privacy issues in 5G‑IIoT smart 
factories

We conducted a survey on recent approaches based on the 
keywords of the article title (i.e., ‘5G’, ‘IIoT’, ‘smart fac-
tory’, ‘security’, and ‘privacy’) and the issues mentioned in 
Section 4 with the restriction of the publication year dur-
ing 2018–2021. The online libraries considered in this sur-
vey include the IEEE Xplore, Elsevier/ScienceDirect, and 

Google Scholar. The recent approaches based on DL, ML, 
reinforcement learning (RL), blockchain, and other novel 
techniques for security and privacy issues of the physical 
layer, network layer, and data layer in 5G-IIoT factories are 
given in Tables 2, 3, and 4, respectively.

5.1  Solutions for security in the physical layer

1) Authentication for devices

Since considerable IIoT devices are deployed in the fac-
tory, high-quality authentication for these devices needs to 
be conducted frequently. The major goals of the solutions are 
to improve the efficiency and reduce the cost of authentica-
tion, and hence it shows a trend of lightweight authentication 
scheme. Because of the higher computational cost and com-
plexity of the cryptography-based solutions, recent works 
have shown much interest to investigate the physical layer 
authentication, especially the physically unclonable func-
tion (PUF). PUF is currently one of the best ways to build 
a private key for identifying each device. The PUF circuit 
cannot be determined or controlled in advance, and is not 
an additional encryption authentication algorithm. Hence, it 
provides a low-cost authentication scheme.

Gope et al. [39] proposed a two-factor authentication 
protocol based on password and PUF for IoT devices, and 

Table 2  Recent approaches of the physical layer in 5G-IIoT factories

Issue Technique Approach

Authentication for devices Blockchain for authentication Password and PUF two-factor authentication scheme [39]
Lightweight and physically secure anonymous mutual authentication protocol 

[40]
Active physical layer authentication mechanism [41]

Blockchain for authentication Lightweight blockchain-enabled RFID-based authentication protocols [42]
Identity-based cryptograph and blockchain [43]

ML for authentication ML-based threshold-free physical layer authentication [44]
CSI-based physical layer authentication and SVM [45]

Stability of production lines Condition monitoring, diagnosis, 
prediction, and health manage-
ment

ST-CNN [46]
Integrated multi-objective optimization with DL [47]
Dynamic EDBN fault classification modeling [48]
Deep transfer learning [49]

Security for IIoT Edge computing security FLANN、E-TLBO [50]
Distributed DL system [51]
Evidence reasoning network [52]

Connecting devices security Random finite set theory and Bayesian filter [53]
EPCA-HG-CNN [54]
Permutation entropy [55]

Large-scale network devices Fog computing Online learning and iterative algorithm [56]
Stackelberg game model [57]

Edge computing Lyapunov and convex optimization [58]
Greedy and threshold strategies based two-phase scheduling [59]
RL [60]

Energy management Lyapunov optimization and ADMM [61]
Distributed Q-learning algorithm [62]
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using the concept of reverse fuzzy extractor to solve the nose 
noise issue in the PUF operation. Gope et al. [40] used PUF 
and the lightweight cryptographic primitives in lightweight 
and physically secure anonymous mutual authentication 
protocol for IWSNs. Towards non-coherent massive single-
input multiple-output (SIMO) IIoT communication systems, 
Gu et al. [41] adopted an active physical layer authentica-
tion mechanism. In their mechanism, transmitters send the 
messages embedded with additional information (normally 

referred to as tag) to perform authentication. This mecha-
nism minimizes the message and the tag symbol error rate 
while fulfilling the requirements of power constraint and 
message accuracy to improve the reliability of authentica-
tion system.

Blockchain technology makes the access control of data 
more widely without damaging the data integrity. Therefore, 
blockchain has been applied in the field of device authenti-
cation frequency. Jangirala et al. [42] proposed lightweight 

Table 3  Recent approaches of the network layer in 5G-IIoT factories

Issue Technique Approach

Maintaining network stability Resource scheduling Route-aware data flow dynamic reconstruction algorithm [63]
Polynomial time approximation algorithm [64]
CGA-CC [65]
Q-learning, RL [66]

Network slicing online Gaussian mixture model clustering algorithm [67]
DRL [68]

Flow control Redistribution of hop delay bounds based heuristic algorithm [69]
Incremental learning-based network elephants learner and analyzer [70]

Cyber threat DDos attack
detection

Learning-driven semi-supervised learning model [71]
Blockchain and AI [72]

network flow anomaly detection Random subspace-based random tree [73]
Long short-term memory [74]
Deep Learning [75]

Other attack detection SHMM-Siamese Network [76]
Online- learning-base Kalman filter [77]

Protocol vulnerabilities DCNN framework [78]
Distributed attack detection system of DL [79]
Combining AI and blockchain [80]
Deep auto-encoded dense neural network [81]

Table 4  Recent approaches of the data layer in 5G-IIoT factories

Issue Technique Approach

User authentication 
and access control

Data access control Hybrid cloud infrastructure, tag-aided encryption [82]
CP-ABE with AAM [83]

Blockchain for access control Blockchain system with credit-based consensus mechanism [84]
Blockchain system with trust evaluation-based voting mechanism [85]

User authentication and identification Facial dynamics-based identification [86]
Biometric verification and user’s smart card, two-factors authentication [87]

Privacy protection Privacy protection architecture Blockchain-based IIoT framework, Bell-La Padula model, and Bbia model [88]
Distributed and anonymous data collection framework based on multilevel 

edge computing [89]
Data sharing privacy Blockchain and federated learning-based sharing architecture [90]

Privilege-based multilevel organizational data-sharing scheme [91]
Blockchain-based compressed and private data sharing framework [92]

Data Integrity stochastic blockchain-based data checking scheme [16]
Data sharing privacy The search of encrypted data File-centric multi-key aggregate keyword searchable encryption system [93]

Secure k-nearest neighbor scheme, order-preserving encryption, R tree [94]
Paring-free certificate-based searchable encryption [95]
Blockchain-aided searchable attribute-based encryption [96]

The deletion of encrypted data outsourced policy-based puncturable encryption [97]
A key-policy attribute-based encryption scheme [98]
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blockchain-enabled RFID-based authentication protocols 
for supply chains in the 5G MEC environment. RFID can 
assist automatic identification and data capture in materials 
and supply chain management. Through characteristics of 
blockchain and combination with the 5G MEC technique, 
a secure distributed information architecture can be built.

Through smart contracts of blockchain, the authentication 
for the departments of supply chain can perform efficiently. 
Shen et al. [43] used blockchain to improve the efficiency 
and reliability of authentication. Their proposed blockchain-
based security authentication mechanism used the public 
secret key anonymously to authenticate devices from cross-
domain IIoT. It avoids the security issues of leaking identity 
and addresses the constraint of cross-domain device authen-
tication in identity-based cryptograph.

Except for blockchain, ML also plays a role in the authen-
tication field. Pan et al. [44] proposed an ML-based thresh-
old-free physical layer authentication for industrial wireless 
CPSs. By using ML to learn the channel state information 
(CSI), received messages are classified into legitimate or 
illegitimate messages according to the CSI. Chen et al. [45] 
applied ML to physical layer authentication and detection 
of clone attacks as well as sybil attacks for industrial wire-
less edge networks. Their method adopted the data from 
CSI-based physical layer authentication as offline training 
sample sets and support vector machine (SVM) as the train-
ing model to detect attacks.

2) Safety of production lines

The classic fault diagnosis model includes two key points: 
feature extraction and fault classification. A lot of recent 
works have investigated condition monitoring, diagnosis, 
prediction and health management, i.e., distinguishing 
abnormal and normal conditions and identifying abnormal 
types.

Han et al. [46] adopted the spatiotemporal pattern net-
work (STPN) for spatiotemporal feature learning, and 
adopted convolutional neural networks (CNNs) for condi-
tion classification. Multivariate time series data of complex 
mechanical systems for troubleshooting is applied to estab-
lish a self-adaptive classifier suitable for various working 
conditions and different fault severity. Ma et al. [47] pro-
posed an integrated multi-objective optimization DL-based 
fault diagnosis method, which weights and integrates the 
convolution residual network (CRN), the deep belief net-
work (DBN), and the deep auto-encoder (DAE), and showed 
that the fitness of the results is better than other single DL 
models.

In a smart factory environment, it is difficult to ensure 
that operators can always find abnormal conditions and fix 
them correctly and immediately. Hence, Wang et al. [48] 
developed an extended deep belief network (EDBN) to 

mitigate this problem, and established a dynamic EDBN 
fault classification modeling framework. Digital twin is an 
important way to achieve smart manufacturing. Xu et al. [49] 
presented a two-phase digital-twin-assisted fault diagnosis 
method using deep transfer learning, which provides new 
possibilities for fault diagnosis.

3) Security for The IIoT

The physical layer includes edge computing devices and 
considerable sensors as well as actuators. The following 
discussion is separated into edge computing security and 
connecting devices security.

As for edge computing security, the fundamental issue 
is concerned about how to detect the intrusion attack. Naik 
et al. [50] proposed an intrusion detection model for IoT 
edge computing devices using the functional link artificial 
neural network (FLANN) as detection model and the elitist 
teaching-learning based optimization (E-TLBO) metaheuris-
tic to adjust parameters. Tian et al. [51] developed a distrib-
uted DL system for web attack detection on edge devices. 
Their method used uniform resource locator addresses 
(URLs) in three DL models to improve the system stabil-
ity, in which anomalous requests and normal ones can be 
distinguished through automatically learning features. Tian 
et al. [52] proposed a real-time lateral movement detection 
scheme based on evidence reasoning networks for the edge 
computing environment. With vulnerability correlation, their 
scheme can track suspicious events, and provide strong guar-
antee for rapid and effective evidence investigation to make 
sure the accuracy of detection.

On the other hand, as for the security of connecting 
devices in factories (including sensors, actuators, and indus-
trial control systems), all of these devices could suffer from 
cyber-attacks, and types of those attacks would be diversi-
fied. Yang et al. [53] developed a model to detect multiple 
attacks in the CPS using the random finite set theory and 
the Bayesian filter with the sequential Monte Carlo method 
to reduce computational complexity. Krithivasan et al. [54] 
detected cyber-attacks in industrial control systems through 
using the enhanced principal component analysis (EPCA) to 
reduce the dimensionality and using the hypergraph-based 
convolution neural network (HG-CNN) to detect anomality, 
in which the hypergraph can assist in identifying relevant 
information, removing redundant features, and reducing the 
training cost and time.

For detecting stealthy attacks in industrial control sys-
tems, Hu et al. [55] presented a permutation entropy-based 
method. They showed that there is significant difference 
between the residuals generated during a stealthy attack and 
original random series; and hence, the permutation entropy 
can characterize the non-randomness contained in the resid-
uals so as to distinguish the attack.
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4) Stability of large-scale network devices

As for resource allocation and task scheduling in the fog 
computing architecture, Wang et al. [56] proposed a fog 
computing architecture based on non-orthogonal multiple 
access (NOMA), which uses online learning and iterative 
algorithm to conduct task scheduling and subcarrier allo-
cation with an objective to minimize the time delay and 
energy consumption. Jie et al. [57] used the Stackelberg 
model to build a two-phase game model that contains 
cloud centers, fog service providers, and data users, in 
which the competitive goal is to achieve the Nash equilib-
rium and Stackelberg equilibrium as the final allocation 
result of fog computing resource.

As for resource allocation in the edge computing archi-
tecture, Wu et al. [58] transformed the data collection and 
delay problem in the MEC-based IIoT into a stochastic 
optimization problem for queuing stability, in which Lya-
punov functions and convex optimization are leveraged 
to allocate data transmission and system utility balancing 
throughput as well as fairness. Li et al. [59] proposed a 
four-level computing system architecture for smart man-
ufacturing and AI applications, and they designed two-
phase edge computing resource allocation based on greedy 
and threshold strategies with latency constraints. The first 
phase is to choose the edge computing server for tasks, and 
the second phase is to conduct cooperative scheduling of 
multiple edge computing servers. Deng et al. [60] consid-
ered the service-level agreement (SLA) as the trustworthi-
ness indicator for the IoT system and used RL to generate 
a dynamic resource allocation scheme for edge computing 
of CPU and memory resource.

Because the IIoT includes a considerable number of 
connected devices, the efficiency of power consumption 
and energy management become an important issue. For 
the problem of energy management in a multiuser MEC 
system with energy harvesting devices, Zhang et al. [61] 
formulated the power consumption minimization problem 
with the battery queue stability and QoS constraints as a 
stochastic optimization programming model, and adopted 
the Lyapunov optimization approach to design an online 
algorithm for central energy management. They also used 
an alternating direction method of multipliers (ADMM) 
based distributed algorithm to compute the power manage-
ment of each user. Wang et al. [62] developed a distributed 
Q-learning aided power allocation algorithm for two-layer 
heterogeneous IIoT networks which includes macro base 
stations and femto micro base stations. The Q-learning 
method combines three multi-agent collaboration modes 
(i.e., independent learning, docitive learning, and coopera-
tive learning) to accelerate convergence speed and improve 
training performance.

5.2  Solutions for security in the network layer

1) Maintaining network stability

Through the technologies of SDN, NFV, and network 
slicing, it is flexible to dynamically allocate resources and 
to connect the network slices based on different QoS and 
network requirements in the 5G-IIoT smart factories so as 
to realize different smart manufacturing applications. The 
following discussion on maintaining network stability is 
separated into resource scheduling, network slicing, and 
flow control.

For resource scheduling, Wan et  al. [63] proposed a 
mechanism of cross-network fusion and scheduling, which 
is analyzed from the perspective of high dynamic charac-
teristics and different delay requirements of data flows, 
and proposed a route-aware data flow dynamic reconstruc-
tion algorithm to improve the efficiency of manufacturing 
data cross-network fusion, especially for multi-variety and 
small-batch smart manufacturing systems. Wang et al. [64] 
adopted the SDN to extract the network control logic from 
the cyber and physical network of CPS. They redesigned 
the communication rules and combined the two networks 
to solve the problem of task scheduling and the network 
path assignment simultaneously through a polynomial time 
approximation algorithm.

To solve the controller placement problem (CPP) and the 
controller scheduling problem (CSP) in SDN, Huang et al. 
[65] developed a gradient-descent-based scheduling algo-
rithm to optimize the probabilistic distribution of requests 
among all controllers and to balance the workload and mini-
mum of response time. For the CPP, they adopted the clus-
tering algorithm to split the network into non-overlapping 
sub-networks, and then applied the genetic algorithm to 
solve the CPP in each sub-network.

For virtual network function (VNF) resource allocation, 
Li et al. [66] reformulated the VNF scheduling problem with 
the consideration of latency requirement for different ser-
vices as a Markov decision process problem, and used RL 
to learn the best scheduling policy.

The network can be sliced according to QoS require-
ments or application scenarios. However, from the lit-
erature, there have been no consensus on which method 
is best suitable for network slicing. Messaoud et al. [67] 
proposed a resource allocation scheme for network slices, 
which ensures the requirements of bandwidth, delay, and 
reliability for different QoS requirement applications in 
Industry 4.0. First, their scheme uses the online Gauss-
ian mixture model clustering algorithm to assign IoT 
devices to slices and estimate the average throughout 
of the slices. Then, it uses mini-batch gradient descent 
to reserve the radio resource and channel based on the 
throughout. Finally, it allocates the intra-slices based on 
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the max-utility algorithm. Xiang et al. [63] developed a 
method for fog and radio access network slicing. They 
used deep reinforcement learning (DRL) to tackle con-
tent caching and mode selection for cloud servers with 
the constraint of the fronthaul capacity and the fog access 
points capability; and uses the Perron-Frobenius theo-
rem and proximal theory to solve a sub-problem on the 
power allocation considering the inter-slice and intra-slice 
interference.

Control and scheduling of network flow have been receiv-
ing much attention. It has been challenging to meet the QoS 
requirements when the flow in 5G network slices changes 
over time. Qu et al. [69] investigated the dynamic flow 
migration problem for embedded services in SDN/NFV-ena-
bled 5G core networks, and used a heuristic algorithm based 
on redistribution of hop delay bounds to address the tradeoff 
between load balancing and reconfiguration overhead and 
to meet end-to-end delay requirements with time-varying 
traffic. Estrada-Solano et al. [70] proposed an incremental 
learning-based method (i.e., network elephant learner and 
analyzer) to detect flow at the server side of the SDN-based 
data center. It can timely identify elephant flow and mice 
flow while generating low control overhead.

2) Cyber threats

The attacks from the network are the major threat to 
network systems in smart factories. Hence, the first line of 
defense for protecting network security is to detect malicious 
attack. DDoS attack is one of the common attack types. For 
DDoS attack detection, Ravi and Shalinie [71] proposed 
a security scheme which leverages the SDN paradigm to 
mitigate the DDoS attack on IoT servers, and uses semi-
supervised ML algorithm to detect attacks. Fang et al. [72] 
developed a smart contract and AI-based security counter-
measure, which hides the protected servers in blockchain 
networks and restricts the scale of DDoS flexibly through 
transaction fees.

Changes in network flow are usually the direct evidence 
of suffering from cyberattacks. Therefore, a lot of detec-
tion methods based on network traffic analysis have been 
proposed. Hassan et al. [73] adopted an ensemble-learning 
model using network traffic of supervisory control and data 
acquisition (SCADA)-based IIoT platform to detect cyber-
attack. Their model combines random subspace learning 
method with random trees to solve the sensitivity of irrel-
evant features and to reduce the overfitting problem, while 
it is applicable to deployment on different IoT platforms. 
Saharkhizan et  al. [74] implemented a long short-term 
memory model using network traffic to detect IoT cyber-
attack. Maimó et al. [75] proposed a MEC of 5G mobile 
network solution using DL techniques to analyze net-
work traffic and detect network anomalies, which showed 

exceptional abnormal symptom detection (ASD) perfor-
mance experimentally.

For detection of other cyberattacks, Wang et al. [76] pro-
posed a channel virtual representation-based pilot contami-
nation attack detection model for 5G-IoT networks. They 
distinguished the sensitive message senders by physical 
characteristics of the 5G mmWave channel, and used the 
single hidden and multiple measurements Siamese network 
(SHMM-Siamese Network) as detect model, which can be 
deployed on communication devices without change and 
extra computing.

Against false data injection attacks, Chattopadhyay and 
Mitra [77] developed a detection model using online-learn-
ing Kalman filter to filter out malicious sensor observations 
while retaining other sensor measurements. To minimize 
the estimation error of data sets from various sensor subsets, 
the filter gain matrix is updated iteratively over time through 
simultaneous perturbation stochastic approximation (SPSA).

3) Protocol vulnerabilities

Introducing CPSs to smart factories remarkably increases 
information transmissions, and further magnifies protocol 
vulnerabilities. Hussain et al. [78] integrated the deep CNN 
and real network data to provide early detection of malicious 
operations of CPSs. Increasing vulnerabilities in various 
IIoT protocols increase the number of zero-day attacks, and 
most of these attacks are slight variants of previously known 
attacks. Hence, instead of using conventional centralized 
systems, Diro et al. [79] proposed a distributed attack detec-
tion system and used DL to discovery the hidden patterns.

Blockchain can establish a secure environment that pro-
vides resource sharing in a decentralized way. Dai et al. 
[80] integrated AI and blockchain with wireless networks to 
build a flexible, safe, and smart cache environment, and used 
advanced DRL to maximize cache resource utilization. In 
addition, Rezvy et al. [81] implemented a deep auto-encoded 
dense neural network algorithm to defense against exter-
nal attacks on protocol vulnerabilities, and used it to detect 
5G and IoT network intrusions or attacks. It also used the 
benchmark Aegean Wi-Fi as the evaluation dataset of the 
algorithm, showing excellent performance. In addition to 
DL, blockchain technology is also suitable for use in 5G 
networks on security issues.

5.3  Solutions for security in the data layer security

1) User authentication and access control

It has been common to use cryptography-based schemes 
to encrypt data and restrict user access. Especially, cipher-
text policy attribute-based encryption (CP-ABE) is often 
adopted to enforce fine-grained access control. Qi et al. 



1054 Mobile Networks and Applications (2023) 28:1043–1058

1 3

[82] designed a hybrid cloud infrastructure which includes 
private cloud and public cloud. To maintain efficiency 
and privacy, the public cloud storages the encrypted IIoT 
data, and the CP-ABE tasks are assigned to the distributed 
private clouds. Xiong et al. [83] proposed a secure and 
efficient multiauthority access control for IoT cloud stor-
age (SEM-ACSIT) scheme. It not only uses CP-ABE, but 
also introduces an attribute authority management (AAM) 
module as an authentication agent to reduce the storage 
cost of public secret key and to make sure the forward and 
backward secrecy when authenticating.

Blockchain enjoys the characteristics of decentraliza-
tion, anonymity, immutability, and security. Hence, block-
chain-based access control schemes have received a lot of 
attention. Huang et al. [84] provided a blockchain system 
with credit-based consensus mechanism towards secure 
IIoT. Their system adopts directed acyclic graph-struc-
tured blockchain, and leverages the asynchronous consen-
sus model to improve the system throughput. Because of 
the transparency of blockchain, symmetric key flexibility 
is easily updated by each node without any central server 
while reducing computing consumption.

Wu and Ansari [85] translated IIoT devices into a num-
ber of groups of blockchain architecture. The IIoT devices 
within one group can share information and deter mali-
cious users from accessing the network by modifying the 
access control list (ACL). Each block records all results 
of IIoT sensors accessing requests and all the changes of 
ACL. They designed a new voting mechanism with trust 
evaluation to make decision of access request.

Except for the above solutions to access control and 
authentication, combing personal identification with 
devices authentication can improve the system security. 
Castiglione et al. [86] used facial dynamics in identity 
authentication. Their method exploits the dynamic appear-
ance and the local features characterizing the face of an 
individual during speech to identify. The above informa-
tion is captured by the edge IoT device and is transmitted 
to the cloud data center to train the identification model 
by a deep feedforward network. Das et al. [87] provided 
a biometric-based privacy preserving user authentication 
using biometric verification and user’s smart card as two 
factors to authenticate the user.

2) Privacy protection

The data transmission range of 5G-IIoT in smart factories 
is from the physical devices in factories to network service 
providers as well as cloud data centers. To realize smart 
manufacturing applications, the data needs to be shared from 
local equipment to cloud servers. However, privacy protec-
tion is challenging during transferring data while making 
sure to meet the CIA Triad.

For the privacy protection overall architecture, Wan 
et al. [88] proposed a blockchain-based IIoT architecture to 
enhance security and privacy in smart factories. The storage 
layer of the architecture plays the role of a data center which 
keeps the encrypted tamper-resistant data and blockchain 
records. They designed a private unique block structure with 
block header and block body. The block header stores the 
structured data; and the block body stores the access record 
of each node. Through the above design, each operation will 
be strictly supervised through blocks, while maintaining 
the advantages of conventional databases. Usman et al. [89] 
designed a distributed and anonymous data collection frame-
work based on the multilevel edge computing architecture to 
improve the QoS and minimize packet drop and end-to-end 
delay. Mobile sinks must be registered as a level-two edge 
device before collecting data from level-one edge devices to 
protect the network, and the privacy of mobile sinks is pre-
served through group-based signed data collection requests.

For the privacy of data sharing between the IIoT and the 
cloud, Lu et al. [90] provided a privacy-preserved data shar-
ing architecture based on blockchain and federated learning. 
The blockchain is only utilized for retrieving data and man-
aging the sharing transactions while the real data is stored 
in local edge devices. They transformed the data sharing 
problem into an ML problem using federated learning to 
build data models and sharing the models instead of raw 
data directly. Zaghloul et al. [91] proposed a privilege-based 
multilevel organizational data-sharing scheme for big data 
sharing in could. Their scheme combined the privilege-
based access structure into attribute-based encryption to 
manage and share the big data. Qi et al. [92] designed a 
compressed and private data sharing framework by using 
blockchain to efficiently provide product traceability and to 
record the product status during production process. They 
adopted an off-chain procedure to compress product data 
before being submitted to the system, and the access control 
mechanism dedicates an access control manager to specify 
access policies for encryptions and to distribute the key to 
authorized users.

To keep data integrity, Chen et al. [16] proposed a sto-
chastic blockchain-based data checking scheme to protect 
data integrity in the IoT. The stochastic blockchain combines 
the chain structure with the consensus mechanism to restrict 
the number of cooperative nodes and to distribute the load 
to edge nodes. The data is broadcasted by randomly selected 
nodes, thereby confusing the attackers to improve the system 
security.

3) Encryption algorithms

For the search of encrypted data, Zhou et al. [93] devel-
oped a file-centric multi-key aggregate keyword searchable 
encryption system, which is applicable to share data and 
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authorize the search of data for IIoT data management. They 
also presented two security models: the security models for 
the indistinguishable selective-file chosen keyword attack 
and the indistinguishable selective-file keyword guessing 
attack, to protect trapdoor and ciphertext privacy. Xu et al. 
[94] proposed an efficient and geometric range query scheme 
to search and access control of encrypted spatial data. Their 
scheme is based on secure k-nearest neighbor scheme and 
uses order-preserving encryption to achieve comparative 
operations among encrypted spatial data. Then, the R-tree is 
used to classify spatial data according to the criteria of dis-
tance relationships among points in space to reduce search 
space and comparison time.

To handle the cloud ciphertext retrieval, Lu et al. [95] pre-
sented a paring-free certificate-based searchable encryption 
method. Through their method, all desired ciphertexts can be 
obtained without decrypting the ciphertexts and leaking the 
search keywords. Their method is built over the prime-order 
elliptic curve group; and the keyword ciphertexts and trap-
door are embedded with a secret that is only shared between 
the data owner and the recipient to defend against keyword 
guessing attacks. Liu et al. [96] proposed a blockchain-aided 
searchable attribute-based encryption method with the func-
tion of revocation and decryption for fine-grained IoT data 
sharing and searching. The conventional central server is 
replaced by a coalition blockchain with a set of trusted con-
sensus nodes to manage user keys and system parameters. 
The users’ search requests and partial token are submitted 
to the blockchain, and consensus nodes generate the com-
plete token with the user’s attribute keys so as to realize the 
searchable attribute-based encryption.

For the deletion of encrypted data in cloud, Hao et al. [16] 
provided a self-controlled outsourced data deletion scheme 
based on outsourced policy-based puncturable encryption 
which can convert the puncture policies-based puncture 
process into the update process of access policies. There-
fore, the data owners can control the decryption capability 
through key puncturing without distributing key materials 
to the cloud and IoT devices to realize the reliable data dele-
tion. Xue et al. [98] proposed a key-policy attribute-based 
encryption scheme for assured deletion, in which the attrib-
ute revocation cryptographic primitive and the Merkle hash 
tree are used to implement a fine-grained access control and 
a verifiable data deletion method, so that the large amount 
of data in smart manufacturing is more secure.

6  Future research perspectives

This section provides future research perspectives for DL 
technologies for security and privacy in 5G-IIoT smart fac-
tories (Fig. 5).

6.1  Future trend for security of devices 
in the physical layer and stability maintenance

Establishing a private 5G network in a factory implies that a 
large number of small cells need to be erected. The interfer-
ence of neighboring small cells may increase remarkably, 
and hence it may cause severe adverse effects on perfor-
mance of 5G networks. ML and DL can be used for inter-
ference alignment, jamming resistance, modulation clas-
sification, and physical coding. When the communication 
spectrum signal is abnormal, ML and DL can also be used 
to detect the abnormal behavior, so as to maintain the safety 
and stability of communication devices. In addition, the 
choice of deploying devices is also a key point to ensure 
the network stability. Hence, it would be of future interest 
to apply ML and DL to determine the location of edge and 
IIoT devices in 5G networks in the factory.

6.2  Future trend for maintaining security 
in the network layer

AI has been used in maintaining network stability, e.g., 
network traffic analysis and routing selection. In the IIoT 
environment using SDN, the convergence of different-scale 
networks increases the complexity of network resource allo-
cation and control. Therefore, the network stability problems 
in the SDN-IIoT-based architecture will receive increasing 
attention. Network slicing is another core technology of 5G. 
It would be of interest to investigate how to use AI to ana-
lyze network resource requirements for dynamic slicing to 
ensure QoS and network stability. For identifying the types 
of cyber-attacks, ML has been shown to have good perfor-
mance. However, because the transmitted data in the IIoT is 
more heterogeneous, the attack channels are more diversi-
fied. Hence, it is much difficult to label all the data from 
various sources, so that the labelled data is not enough to 
train a DL model. Therefore, it would be another line of 
future research to investigate how to integrate ML and trans-
fer learning to address the cyberattack problems in 5G-IIoT 
factories.

FUTURE
PERSPECTIVES

Security in the network layer
SDN-IoT

Dynamic network slicing

Security in the physical layer
Interference problems

Network devices placement

DL + DRL
DL for prediction

DRL for decision-making

Security in the data layer
Using blockchain

Traceability system

Data security and privacy

Fig. 5  Future research perspectives of DL technologies for security 
and privacy in smart factories
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6.3  Future trend for security in the data layer

With the blockchain technology in smart factories, the man-
ufacturing data becomes traceable, and it is easy to control 
the production process of each product. By analyzing the 
data through DL and AI, when some problem on the pro-
duction line occurs, the operators or managers can base the 
analysis results to find the crux to solve the problem, thereby 
ensuring the safety and stability of the production line. For 
data privacy, the blockchain technology can disperse com-
puting and storage requirements in various devices, which 
not only significantly reduces maintenance costs of data 
centers, but also effectively prevents the risk of any single 
node being maliciously manipulated.

6.4  DL and DRL for smart manufacturing 
applications

DL is mostly used for prediction and classification, and has 
no specific “action response”. DRL uses a Markov decision 
model to decide the choice of different “actions” based on 
the state transition model. Therefore, integration of DL and 
DRL will be adopted in more smart manufacturing applica-
tions. For example, DL is used to analyze network traffic, 
and DRL is used to make decisions on network resource 
allocation. Another example is that DL is used to detect the 
type of network attack, and DRL is used to choose the pre-
ventive measure for this attack. Aside from security issues, 
DL and DRL can also be applied in the problems of pro-
duction lines. DL can predict when a machine will break 
down and when the machine should be stopped to replace 
components. DRL can decide a new production scheduling 
based on states of the production line.

7  Conclusion

This article has provided the architecture of a 5G-IIoT smart 
factory in three layers, and then discussed the security and pri-
vacy issues in the smart factories. Then, recent works for each 
layer of the 5G-IIoT smart factory were reviewed. Part of the 
works focused on solutions based on DL which has the power-
ful self-learning characteristic, and cooperates it with advanced 
big data analysis techniques to optimize and solve various secu-
rity issues in 5G-IIoT factories. In addition to DL, this article 
has also discussed other solutions to 5G-IIoT security issues. 
Finally, this article provided some future research perspectives 
for security and privacy issues in 5G-IIoT factories.
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