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Abstract
Malware refers to malicious software developed to penetrate or damage a computer system without any owner’s informed
consent. It uses target system susceptibilities, like bugs in legitimate software that can be harmed. For dealing with the
new malware, new approaches have been developed to identify and prevent any damage caused. The recent advances in
Deep Learning (DL) models are useful for malware detection because they are trained via feature learning instead of task-
specific approaches. This paper presents an Optimal Encoder-Decoder Driven LSTM Networks for Malware Detection
and Classification (OELSTM-MDC) technique. The presented OELSTM-MDC technique involves the identification and
classification of malware. To accomplish this, the OELSTM-MDC model applies pre-processing in the initial stage for
data normalization. In addition, Quantum Mayfly Optimization-based Feature Selection (QMFO-FS) approach is derived
from choosing an optimal subset of features. Finally, the Butterfly Optimization Algorithm (BOA) is employed for optimal
hyperparameter tuning of the ELSTM model. A wide range of empirical analysis is investigated on benchmark datasets to
assess the better malware classification performance of the OELSTM-MDC model. It is also compared with the conventional
machine learning models such as Random Forest, XGBoost, support vector machine, etc. According to the comparison
studies, the OELSTM-MDC model outperformed conventional techniques by detecting the malware class and benign class
with accuracy of 97.14% and 98.33% based on the training and testing datasets.
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1 Introduction

The Cloud Computing (CC) [1] features and advantages
attracted the user gradually. The server stores massive
amounts of sensitive user information, which are securely
shared [2] and accessed by many users. However, the
remote accessing and fast sharing of data increases malware
attacks and threats in data at cloud servers [3–5]. Parallelly,
it also attracted malware developers and cyber attackers.
Malware is an intrusive software, including spyware,
trojan horse, worm, adware, ransomware, virus, etc., that
primarily aim to disturb the system. It is categorized
into two classes - first-generation malware and second-
generation malware. The first-generation malware handles
the concept in which malware structure remains unchanged.
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The second-generation malware changes randomly after
each infection and it is very much different from each
other. Each malware transactions generate a novel structure
in terms of results [6, 7]. The dynamic characteristics of
the malware make it hard to quarantine and detect [8, 9].
The key technology for detecting malware is heuristic-
based, signature-based, Machine Learning (ML), Deep
Learning (DL) Multi-attribute decision-making [10, 11],
and normalization [12].
The Intrusion detection approach is one of the most
promising technology used to detect malware in the cloud
network. It is not only applied in the cloud network
but also used in the spatially distributed sensors, and
many other fields, which is an important research area
investigated in [13–19]. Security analysts and researchers
must continually enhance the malware detection system in
which endpoint detection and protection are top priorities
[20, 21]. Endpoint protection offers a set of security
programs involving sandboxing firewalls, anti-spam, URL
filtering, and email protection. Especially anti-malware
software offers the final layer of defence. There are two
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kinds of analysis available, namely static and dynamic. The
static analysis comprises inspecting an executable without
implementation [22]. These two kinds of analysis have
limitations and advantages and complement one another.
Conventional malware analysis and detection cannot keep
pace with variants and new attacks. Organizations are
experiencing the serious problem of handling millions
of attacks. Additionally, the organization faces a lack of
cybersecurity talent and skills [23]. The recognized issue
presents a great opportunity for ML to change and impact
the cybersecurity landscape considerably. It is because of its
capability to deal with the massive number of information
[24, 25].

This paper presents an Optimal Encoder-Decoder Driven
LSTM Networks for Malware Detection and Classifica-
tion (OELSTM-MDC) technique. The presented OELSTM-
MDC technique applies to pre-processing in the initial stage
for data normalization. The Quantum Mayfly Optimization-
based Feature Selection (QMFO-FS) technique is derived
from selecting an optimal subset of features. Furthermore,
the ELSTM classification model is applied to identify and
classify malware. Lastly, the Butterfly Optimization Algo-
rithm (BOA) enhances malware detection and classification
performance. Moreover, Table 1 represents the acronyms
used in the proposed malware detection and classification
model.

1.1 Motivation

Most of the research works have employed various ML
and DL models for efficient and secure malware detection
and classification. However, as per the literature [26–
29] associated with the malware detection approaches,

Table 1 List of acronyms

Acronym Definition

DL Deep learning

LSTM Long short-term memory

OELSTM-MDC Optimal Encoder-Decoder Driven LSTM
Networks for Malware Detection and
Classification

QMFO-FS Quantum Mayfly Optimization-
based Feature

Selection

BOA Butterfly optimization algorithm

CC Cloud computing

ML Machine learning

CNN Convolutional Neural Network

ML Machine learning

MFs Mayflies

QC Quantum computing

RNN Recurrent Neural Network

the researchers/authors have not tackled the security and
privacy issues that can arise while performing malware
detection. Due to this, any malicious attacker can forge
a system. Thus, there is a need to design a secure and
efficient malware detection and classification model with
higher accuracy. To resolve the challenges mentioned
earlier, we have proposed a quantum mayfly optimization
with encoder-decoder-driven LSTM networks for malware
detection and classification with higher efficiency and
accuracy than the conventional approaches.

1.2 Contributions

The research contributions are summarized as follows:

• We propose a quantum mayfly optimization with
encoder-decoder-driven LSTM networks for malware
detection and classification. It mainly consists of the
QMFO-FS technique for the initial selection of features
that can be used for classifying and identifying using
the ELSTM technique.

• Furthermore, the BOA algorithm is applied to
strengthen the performance of malware detection and
classification based on the malware and benign class.

• Finally, the performance of the proposed system has
been simulated with the applied OELSTM-DC model.
The results yield an accuracy of 97.14% and 98.33%
based on the malware and benign class in the training
and testing dataset.

2 Related work

Most of the cybersecurity and malware detection solu-
tions say AI-powered antimalware tools efficiently detect
modern malware attacks. Research has projected different
techniques and learning (ML and DL) technologies [30,
31] for malware detection. The ML technique can derive
a classification from limited training instances. Thus, this
technique prevents the need to determine signatures explic-
itly in emerging malware detectors. In previous years, the
ML method has triggered a radical shift in several fields,
including cyber-security. Over the decade, anti-malware
communities and researchers have reported many ML and
DL-based models to develop malware detection and analy-
sis schemes.

Fournier et al. [32] implemented and designed an
architecture for detecting malware on Android devices to
protect financial and private data for the mobile application
of the ATISCOM project. Then, they gradually enhanced
the presented method for the recently installed application
on an Android device. The researchers in [33] presented
AdMat - an efficient architecture for characterizing Android
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applications by processing them as images. The innovation
of the study lies in constructing an adjacent matrix for
all the applications. This matrix acts as an “input image”
to the CNN, allowing them to learn to differentiate
between benign and malicious applications and malware
families. Damaševičius et al. [34] presented an ensemble
classification-based method for detecting malware. A
CNN and stacked ensemble of dense can implement the
classification.

In [35], a DL-based method is proposed to categorize
malware variants according to a hybrid mechanism. The major
objective is to present a hybrid structure that incorporates two
extensive pre-trained network systems in an enhanced way.
This structure comprises four major phases: training the
proposed deep neural network architecture, data acquisition,
evaluation of the trained deep neural network, and designing
deep neural network architecture. The researchers in
[36] proposed a malware detection technique based on
a supervised ML algorithm. They performed a static
analysis of the data extracted from the Drebin dataset.
They provided a brief review of other studies in the field.
Next, estimate six common classification methods under
distinct configurations in terms of i) feature selection and ii)
capacity to detect Android malware.

Marin et al. [37] examine the DL techniques on certain
problems of classification and detection of malware. They
considered raw measurement directly coming from the
stream of monitored bytes as input to the presented
method. A DL technique, DeepMAL can capture the
fundamental statistics of malicious traffic without expert
hand-crafted features. It estimates distinct raw-traffic
feature representations, including flow-level and packet
ones.

Later, Agarkar et al. [26] discussed a malware detec-
tion and classification model using machine learning to
address the behaviour-based detection methods for malware
detection. Then, Eboya et al. [27] investigated a malware
detection framework for the IoT ecosystem. However, the
authors in [27] did not consider the performance issues of
detection. The researchers in [28] introduced a malware
classification approach based on the VGG19 network. The
authors in [29] discussed a client-server malware detection
model utilizing machine learning for android applications.
To improve the accuracy of the malware detection system in
[38], the authors proposed a flood attacks-based protection
model for complex networks.

Manickam et al. [39] presented DDoS attacks-based
dataset based on Internet Control Message Protocol with
higher detection accuracy and precision. The authors in
[40] discussed an efficient method for fine-grained tasks
in edge computing along with optimized energy usage.

However, as mentioned earlier, the researchers need to
focus on the security and privacy issues in the malware
detection and classification approaches. Additionally, some
of the research works did not consider the accuracy and
precision parameters that decide the performance of a
malware detection system. Therefore, to meet the mentioned
challenges, we have proposed a preserved quantum mayfly
optimization with encoder-decoder networks for malware
detection and classification with higher accuracy and
efficiency. Table 2 presents the comparative analysis of
various state-of-the-art malware detection and classification
approaches with the proposed system.

3 Proposedmodel

In this paper, a new OELSTM-MDC algorithm is introduced
for the identification and classification of malware. The
presented OELSTM-MDC technique undergoes a series
of sub-processes: pre-processing, QMFO-based feature
subset selection, ELSTM classification, and BOA-based
hyperparameter optimization. The utilization of BOA helps
to significantly enhance the overall malware detection
performance of the ELSTM model. The entire block
diagram of the OELSTM-MDC approach is shown in Fig. 1

A dataset has been developed that further utilises a
feature selection using the QMFO technique. Initially, the
data is being collected considering the training and testing
dataset, including malware and benign class. Furthermore,
the training dataset is pre-processed to remove the missing
and null values. Then, OELSTM-DC is applied to classify
the training dataset based on the malware and benign
class for malware detection. Further, parameter tuning is
performed using BOA to enhance the performance of
malware detection in terms of efficiency and accuracy.

3.1 Pre-processing

Androguard was a complete package tool infrastructure to
interrelate with Android files and has restricted only to
the python environment. It could be employed as a tool
for reversing engineering single Android applications. Such
classification could be vital to select features which require
the class a new record is going to. The permission and
API calls are removed from all Android applications and
integrated as a limited feature in the data set. Thus, a data
frame contains a feature (column) and application (row).
Every column indicates the specific permission or API call
with a binary value. However, rows validate the group of
malware and benign APK files. Table 3 shows the used
parameters and symbols in the proposed system.
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Table 2 Comparative analysis of state-of-the-art malware detection and classification approaches with the proposed system

Author Year Objective Pros Cons

Agarkar et al. [26] 2020 Proposed a behaviour-based mal-
ware detection and classification
using machine learning

Improved accuracy Need to implement in a dynamic
environment

Eboya et al. [27] 2020 Discussed a Malware detection
framework for the IoT ecosystem

Improved anomaly detection and
accuracy

Less effort to tackle security and
privacy issues

Awan et al. [28] 2021 Investigated a malware classifi-
cation approach based on the
VGG19 network

High performance Security issues against malicious
attack

Fournier et al. [29] 2021 Presented a client-server mal-
ware detection framework using
machine learning for android
applications

Enhanced correlation coefficient
and minimum computation time

Security challenges against
DDoS, man-in-the-middle
attacks

Vu et al. [41] 2021 Discussed a CNN-based android
malware detection framework

Covered dynamic malware fami-
lies

No discussion on malicious
attacks

Khalaf et al. [38] 2021 Designed a flooding attacks-
based protection model for com-
plex networks

Improved accuracy and precision,
secure against DDoS attacks

Need to implement in real-time

Manickam et al. [39] 2022 Proposed a DDoS attacks dataset
based on Internet Control Mes-
sage Protocol

High detection accuracy Need to consider a single point
of failure and man-in-the-middle
attacks

Lakhan et al. [40] 2022 Discussed an energy-efficient
method for fine-grained tasks in
edge computing

Optimized energy usage Less effort on accuracy and effi-
ciency

The proposed system 2022 Quantum mayfly optimization
with encoder-decoder driven
LSTM networks for malware
detection and classification
model

High accuracy, efficiency, and
security

3.2 Process involved in QMFO-FS technique

The MO technique is presented by Zervoudakis and
Tsafarakis [42]. They simulate the mating procedure
demonstrated by mayflies (MFs) in nature. In MO technique
work primarily by creating two arbitrary population sets
demonstrating the female and male sets correspondingly.
All the MFs placed from the problem space implies
the potential solution to a problem. The place has been
demonstrated as ddimensionalvector = (x1, x2, ..., xn),
and f (x) is the main function to evaluate the performance

of all MFs. The MFs place alters their velocity v =
(v1, v2, ..., vn). However, the flying direction of all MFs
is defined as the optimum individual flying experiences
of all the MFs (pbest) and optimum swarm social flying
experiences (gbest). As the male moved in a swarm and
danced on some water meters, it could not move at
maximum speed. Therefore, the velocity of male MF has
been calculated with the help of Eq. 1.

vt+1
ij = vt

ij +a2e
−βr2

p (pbestij −xt
ij )+a1e

−βr2
g (gbestij −xt

ij )

(1)

Fig. 1 Block diagram of
OELSTM-MDC technique
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Table 3 Proposed system parameters

Constants/Parameters Definition Constants/Parameters Definition

a1 Constant for scaling the contribu-
tion of social and cognitive ele-
ments

d Coefficient of nuptial dances

vt
ij Male and female MF velocity rmf Distance between male and

female MFs

J MF number fl Random walk coefficient

T Time step N Count of male MFs

xt
i Present place of male β Visibility coefficient

yt
i Present place of female a2 Constant for scaling the contribu-

tion of social and cognitive ele-
ments

pbestj Optimum place of MF male/female Male parent, female parent

whereas vt
ij refers the male MF velocity, xt

ij
indicates the

place, j implies the MF number, j = 1, ..., n represents
the space dimensional, t denotes the time step. However, a1

and a2 are constants executed for corresponding constants
to scale the contribution of social and cognitive elements.
Also, pbestj represents the optimum place stayed by MF i

and N defines the count of male MFs. Lastly, β represents
the visibility co-efficient that limits the visibility of MFs to
other MFs, but rp and rg indicate the distances amongst xj

and pbesti and gbest correspondingly. A novel place of the
male is computed as adding the velocity vt+1

i to the present
place. It is represented by Eq. 2.

xt+1
i = xt

i + vt+1
i (2)

An optimum MFs endure for executing its nuptial dance.
So, the optimum MFs have altered their velocity based on
the subsequent relation, represented by Eq. 3.

vt+1
i = vt

ij + d ∗ r (3)

d refers to the co-efficient of nuptial dances and r denotes
the arbitrary number between the range of −1 and 1. These
movements present a stochastic element to this technique.
The velocity of females is computed with the help of Eq. 4.

vt+1
i =

{
vt
ij + a3e

−βr2
mf (xt

ij | − yt
ij ), iff (yi) > f (xi)

vt
ij + f l ∗ r, iff (yi) ≤ f (xi)

(4)

whereas vt
ij indicates the female MF velocity, yt

ij refers the
place, i is MF number, j = 1, ..., n indicates the space
dimensional, t denotes the time step. In addition, a3 is a
constant executed for scaling the contribution of social and
cognitive elements. However, β represents the visibility co-
efficient, but rmf refers to the distance between female and
male MFs.

At last, f l represents the random walk co-efficient
executed in case of attraction between a female and male

failed, and r stands for the arbitrary number with −1 and 1
range. A novel place of female MF was calculated as added
velocity vt+1

i to the present place. It is represented by Eq. 5.

yt+1
i = yt

i + vt+1
i (5)

The mating procedure amongst MFs is executed with the
crossover operator. As stated previously, fitness value has
been utilized for selecting the parent to mate, and outcomes
in two offspring are created with the help of Eqs. 6 and 7.

off spring1 = L ∗ male + (1 − L) ∗ f emale (6)

off spring2 = L ∗ f emale + (1 − L) ∗ male (7)

In these equations, male refers to the male parent,
female indicates the female parent, and L stands for the
arbitrary number in an existing range. A primary velocity
off spring1 and off spring2 are considered that zero.

The QMFO algorithm has been developed by utilising
Quantum Computing (QC) concepts to improve the
outcomes of the MFO algorithm. It is a new type of
computing model based on quantum theory, such as
quantum entanglement, quantum measurement, and state
superposition, which adapt the model. The core component
of QC is qubit [43]. The two fundamental states |0 >

and |1 > form a qubit, represented by Eq. 8 as a linear
integration of both states.

|Q >= α|0 > +β|1 > (8)

|α|2 denotes the probability of observing state |0 >,
|β|2 indicator the probability of observing state |1 >,
where |α2| + |β2| = 1. The Quantum is composed of n

qubits. According to the nature of quantum superposition,
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every Quantum comprises 2n possible values. An n-qubits
quantum is represented by Eq. 9.

� =
2n−1∑
x=0

Cx |x >,

2n−1∑
x=0

|Cx |2 = 1 (9)

Quantum gate changes the state of qubits, namely NOT
gate, rotation gate, Hadamard gate, etc. The rotation gate is
determined as a mutation operator for improving the quanta
method and finding the global optimum solution.

The rotation gate can be defined by Eqs. 10 and 11.

[
α2(t + 1)

β2(t + 1)

]
=

[
cos(�θd) − sin(�θd)

sin(�θd) cos(�θd)

] [
αd(t)

βd(t)

]
, d = 1, 2, ...., n

(10)

�θd = � × S(αd, βd) (11)

�θd indicates the rotation angle of the qubit, whereby
� and S(αd, βd) denote the size and direction of rotation
correspondingly.

3.3 Steps involved in ELSTM-based classification

Once the feature subsets are elected, the ELSTM model
is utilized to classify the malware. Traditional Recurrent
Neural Network (RNN) utilizes preceding context states
to determine future states. Bidirectional RNN (BRNN)
processes data in two directions with two different hidden
states later propagated towards a similar output layer [44].
BRNN employs two RNNs to assist with backward and
forward data regarding the sequence at each time step.
BRNN calculates the output sequence y, the hidden forward
sequence hf and the backward hidden sequence hb by
iterating data from the backward layer t = T to t =
1. Next, data in the other networks are propagated from
t = 1 to t = T for updating the output layer; once
these two networks are integrated, data is propagated bi-
directionally. A bi-directional LSTM network (BLSTM)
was initially developed for word embedding in NLP for
accessing long-range contexts or states in two directions.
BLSTM network has been utilized in real-time sequence
processing problems, including speech synthesis, phoneme
classification, and continuous speech recognition. Figure 2
illustrates the LSTM network structure.

ELSTM is a sequence-to-sequence method for mapping
a set length input to a set length output. Therefore, the input
sequence of video frames (x1, ..., xn), and the output can
be the sequence X(t + 1)X(t + 2)X(t + 3)X(t + m) of
words (y1, ..., ym). Thus, evaluate the conditional possibility
of output sequence (y1, ..., ym), assumed sequence of input
(x1, ..., xn), that is p(y1, ..., ym|x1, ..., xn). In multi-step
sequence predicting, the input and output are of parameter
length. In the encoding stage, assuming a sequence of input,
the ELSTM calculates a sequential hidden layer.

3.4 Optimal hyperparameter tuning using BOA

The BOA has been applied to modify the hyperparameter
values in the ELSTM model. The presented BOA replicates
the performance of butterflies (BFs) on mating and food
source finding [45]. This technique employs two distinct
navigation patterns for searching the field. During the
exploration stage (r1 ≤ p), BF move towards the optimal
BF of the colony, whereas from the exploitation stage (r1 >

p), BF performs an arbitrary search inside the searching
space by moving toward an arbitrary BF from the colony.
Eq. 12, arithmetically expresses this two-searching pattern.

{
if r1 ≤ p t+1Xi = tXi(r

2
2 × g∗ − tXi) × φi Global Search

if r1 > pt+1Xi = tXi(r
2
3 × tXi − tXk) × φi Local Search

(12)

Whereas t and t + 1 indicate the present and upgraded
state of the respective parameter. The position of the optimal
BF in the colony is represented as g∗. tXj

and tXk
denotes

the location of two randomly chosen BFs. r1, r2 and r3

indicates three arbitrary values within [0, 1]. φi denotes the
fragrance factor. It is determined by Eq. 13.

φi = cIa (13)

φi denotes the fragrance magnitude to ith BF; I and a

indicate the intensity of the stimulus and the fluctuating
absorption degree, and c represents a coefficient. I refers
the related intensity to the main function value, and ith

BF can be assumed as f (Xi), whereas f returns objective
function value. The a and c coefficients are chosen from the

Fig. 2 LSTM networks
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Fig. 3 Sequence flow of the proposed system

range of [0, 1]; p denotes the probability switch that defines
the searching behaviour. The BOA approach constructs
a fitness function to increase classification performance.
It calculates a positive integer to indicate the candidate
solutions’ improved performance. The best solution has
the lowest error rate, whereas the worst option has a
higher error rate. This work’s fitness function minimises the
classification error rate, as shown in Eq. 14.

f itness(xi) = Classif ierErrorRate(xi)

= number of misclassif ied samples

T otal number of samples
× 100 (14)

Figure 3 presents the sequence flow of the proposed
system. It initiates with the pre-processing, feature selection
and selection using different classification techniques. Now,
it is further used for malware detection and classification
with the OELSTM-DC model.

Table 4 Model parameters

Parameter Value

Epochs 100

Batch Size 90

Optimizer Adam

Activation ReLU

Validation Spilt 0.1

4 Experimental validation

In this section, malware detection and classification
performance have been evaluated.

4.1 Dataset description

The dataset involves 2000 applications in which 1000
applications fall under the category of malicious class and
another 1000 applications fall under the category of benign
class. The considered dataset includes various features.
We must select the relevant one based on the malware
detection and classification requirement. The dataset’s
relevant features include 75 features in which classification
using the QMFO-FS technique requires 25 features for
malware detection based on the malicious and benign
classes.

4.2 Malware detection and classification using
OELSTM-MDC technique

In this section, the malware detection and classification
outcomes of the OELSTM-MDC model are tested using
dataset [46, 47]. The dataset consists of 2000 applications
divided equally into two classes (malicious and benign),

Fig. 4 Confusion of
OELSTM-MDC technique
under the training of 70% and
testing of 30%

801Mobile Networks and Applications (2023) 28:795–807



Table 5 Result analysis of OELSTM-MDC technique on the training
of 70% and testing of 30%

Class Label Accuracy Precision Recall F-Score MCC

Training (70%)

Benign 97.14 98.38 95.83 97.09 94.32

Malware 97.14 95.98 98.44 97.19 94.32

Average 97.14 97.18 97.14 97.14 94.32

Testing (30%)

Benign 98.33 98.36 98.36 98.36 96.67

Malware 98.33 98.31 98.31 98.31 96.67

Average 98.33 98.33 98.33 98.33 96.67

with 1000 applications in each class. The dataset includes
75 features and the QMFO-FS technique has chosen a set of
25 features.

Figure 4 exhibits the confusion matrices generated by
the OELSTM-MDC model on 70% of training and 30%
of testing datasets. Figure 4a illustrates that the OELSTM-
MDC model has effectually recognized 667 samples under
the benign class and 693 samples under the malware
class. In addition, Fig. 4b shows that the OELSTM-MDC
technique has effectually recognized 299 samples under
the benign class and 291 samples under the malware
class. Table 4 shows the parameters used to implement the
OELSTM-DC model considering the dataset for malware
detection and classification.

Table 5 reports a brief malware classification outcome
of the OELSTM-MDC model on training data of 70% and
testing data of 30%.

Figure 5 offers detailed classifier outcomes of the
OELSTM-MDC model on the training dataset. The
OELSTM-MDC model has classified the samples under
benign class with accuy , precn, recal , Fscore, and

Fig. 5 Result analysis of OELSTM-MDC technique on the training of
70% dataset

Fig. 6 Result analysis of OELSTM-MDC technique on testing of 30%
dataset

MCC of 97.14%, 98.38%, 95.83%, 97.09%, and 94.32%
respectively. Moreover, the OELSTM-MDC technique has
classified the samples under the Malware class with accuy ,
precn, recal , Fscore, and MCC of 97.14%, 95.98%,
98.44%, 97.19%, and 94.32% correspondingly.

Figure 6 provides detailed classifier outcomes of
the OELSTM-MDC model on the testing dataset. The
OELSTM-MDC technique has classified the samples under
benign class with accuy , precn, recal , Fscore, and
MCC of 98.33%, 98.36%, 98.36%, 98.36%, and 96.67%
respectively. Additionally, the OELSTM-MDC model has
classified the samples under the Malware class with accuy ,
precn, recal , Fscore, and MCC of 98.33%, 98.31%,
98.31%, 98.31%, and 96.67% correspondingly.

Figure 7 showcases the classifier results of the ODCNN-
RFIC method on the test dataset. Figure 7a depicts
that the ODCNN-RFIC technique has showcased effective
precision-recall outcomes under the training of 70%. At the
same time, Fig. 7b depicts that the ODCNN-RFIC technique
has showcased effective precision-recall outcomes under
testing of 30%. In addition, Fig. 7c illustrates that the
ODCNN-RFIC technique has offered ROC, resulting in
a maximum training performance of 70%. Also, Fig. 7d
illustrates that the ODCNN-RFIC technique has offered
ROC, resulting in maximum performance on testing of 30%.

Figure 8 depicts the overall accuracy of the OELSTM-
MDC system’s results analysis on the test data. The
results exhibited that the OELSTM-MDC approach has
achieved improved validation accuracy compared to training
accuracy. It is also worth noting that the accuracy values get
saturated as the number of epochs increases.

Figure 9 shows the total loss outcome analysis of the
OELSTM-MDC technique on the test data. The figure
revealed that the OELSTM-MDC technique had denoted the
reduced validation loss over the training loss. Furthermore,
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Fig. 7 a) Precision recall-training 70%, b) Precision recall-testing at 30%, c) ROC-training at 70%, d) ROC-testing at 30%

Fig. 8 Accuracy analysis of
OELSTM-MDC technique
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Fig. 9 Loss analysis of
OELSTM-MDC technique

the loss values become saturated as the number of epochs
increases.

A comparison study with existing models is made in
Table 6 [48] to ensure the OELSTM-MDC model’s better
outcomes.

Figure 10 reports a comparative precn investigation of
the OELSTM-MDC model with recent models. The results
indicated that the GA-SVM and LR-MLP models had
lowered precn values of 94.93% and 94.95%, respectively.
The IG-Random Forest and RST-PSO algorithms have
slightly increased precn values of 95.68% and 95.62%,
respectively. Moreover, the CFS-Random Forest model
has accomplished a reasonably precn of 96.96%. Though
the RDT-XGBoost and E-LSTM models have exhibited
considerable precn of 97.58% and 97.85%, the OELSTM-
MDC model has depicted a maximum precn of 98.33%.

Figure 11 defines a comparative recal examination of
the OELSTM-MDC model with recent models. The results

Table 6 Comparative analysis of OELSTM-MDC algorithm with
existing methods

Method Precision Recall Accuracy F-Score

CFS-Random Forest 96.96 96.28 95.00 95.86

RDT-XGBoost 97.58 97.30 95.71 94.16

IG-Random Forest 95.68 94.60 97.35 97.01

IG-Random Forest 95.68 94.60 97.35 97.01

GA-SVM 94.93 94.37 95.07 97.99

RST-PSO 95.62 94.10 97.45 91.20

LR-MLP 94.95 95.76 96.17 96.00

E-LSTM 97.85 97.38 97.79 98.09

OELSTM-MDC 98.33 98.33 98.33 98.33

revealed that the GA-SVM and LR-MLP models have
resulted in lower recal values of 94.37% and 95.76%,
respectively. Similarly, the IG-Random Forest and RST-
PSO algorithms have slightly increased recal values of
94.60% and 94.10%, respectively. Besides, the CFS-
Random Forest approach has accomplished a reasonably
recal of 96.28%. Lastly, the RDT-XGBoost and E-LSTM
methodologies have exhibited considerable recal of 97.30%
and 97.38%. The OELSTM-MDC technique has depicted a
maximum recal of 98.33%.

Figure 12 showcases a comparative Accy analysis of
the OELSTM-MDC model with recent models. The results
revealed that the GA-SVM and LR-MLP models have
resulted in lower Accy values of 95.07% and 96.17%,
respectively. At the same time, the IG-Random Forest and

Fig. 10 Precision analysis of OELSTM-MDC technique with recent
algorithms
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Fig. 11 Recall analysis of OELSTM-MDC technique with recent
algorithms

RST-PSO algorithms have slightly increased Accy values
of 97.35% and 97.45%, respectively. Furthermore, the
CFS-Random Forest model has accomplished reasonably
Accy of 95%. Eventually, the RDT-XGBoost and E-LSTM
methods have exhibited considerable Accy of 95.71%
and 97.79%. The OELSTM-MDC model has depicted a
maximum Accy of 98.33%.

Figure 13 determines a comparative Fscore examination
of the OELSTM-MDC model with recent models. The
outcomes indicated that the GA-SVM and LR-MLP models
have resulted in lower Fscore values of 97.99% and 96%,
respectively. Also, the IG-Random Forest and RST-PSO
algorithms have reached slightly increased Fscore values
of 97.01% and 91.20% correspondingly. In addition, the
CFS-Random Forest model has accomplished a reasonably
Fscore of 95.86%. At last, the RDT-XGBoost and E-LSTM

Fig. 12 Accuracy analysis of OELSTM-MDC technique with recent
algorithms

Fig. 13 F-score analysis of OELSTM-MDC technique with recent
algorithms

models have exhibited considerable Fscore of 94.16% and
98.09%. The OELSTM-MDC methodology has depicted a
maximum Fscore of 98.33%.

The simulation results and discussion show that the
OELSTM-MDC model has produced the best results
compared with the recent algorithms.

5 Conclusion

This paper established a new OELSTM-MDC algorithm
to identify and classify malware. The presented OELSTM-
MDC technique undergoes a series of sub-processes: pre-
processing, QMFO-based feature subset selection, ELSTM
classifier, and BOA-based hyperparameter optimisation.
The utilization of BOA helps to significantly enhance the
overall malware detection performance of the ELSTM tech-
nique. A wide-ranging experimental analysis is carried
out on the benchmark dataset to examine the enhanced
performance of the OELSTM-MDC approach. The com-
parative analysis reported the improved outcomes of the
OELSTM-MDC model on existing techniques. Therefore,
the OELSTM-MDC approach is utilized as a proficient
approach for malware classification with an accuracy of
97.14% and 98.33% based on the benign and malware
class category in the training and testing datasets. In future,
hybrid DL models can be applied to boost the efficiency of
the OELSTM-MDC technique in a dynamic environment.
Furthermore, various DL models can be explored and imple-
mented to improve the overall performance of malware
detection and classification.
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