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Abstract
With the development of new generation information technology, many traditional factories begin to transform to smart fac-
tories. How to process the huge volume data in the smart factories so as to improve the production efficiency is still a serious 
problem. Based on the characteristics of smart factory, a fog computing framework suitable for smart factory is proposed, 
and Kubernetes is used to automatically deploy containerized smart factory applications. First, in the scene of fog comput-
ing, an improved interval division genetic scheduling algorithm IDGSA (Interval Division Genetic Scheduling Algorithm) 
based on genetic algorithm is proposed to schedule and allocate tasks in smart factory. We consider the optimization of 
task execution time and resource balance at same time and combined with IDGSA, the optimized scheduling decision is 
given. Second, we further design an architecture of cloud and fog collaborative computing. In this scenario, we propose the 
IDGSA-P (Interval Division Genetic Scheduling Algorithm with Penalty factor) for optimization based on IDGSA. Finally, 
we carry out simulation experiments to verify the performance of the proposed algorithms. The simulation results show that 
compared with Kubernetes default scheduling algorithm, IDGSA can reduce data processing time by 50% and improve the 
utilization of fog computing resources by 60%. Compared with traditional genetic algorithm, with fewer iterations, IDGSA 
can reduce data processing time by 7% and improve the utilization of fog computing resources by 9%. And compared with 
the conventional Joines&Houck method, the proposed IDGSA-P algorithm can converge much faster and archived better 
optimization results. Further, the simulation shows that IDGSA-P in cloud and fog collaborative computing can reduce the 
total task delay by 18% and 7%, respectively, when compare to only-cloud and only-fog computing.

Keywords  Fog computing · Cloud computing · Smart factories · Resource allocation · Genetic algorithm.

1  Introduction

New generation information technologies, such as Internet 
of things, cloud computing, fog computing, artificial intel-
ligence, big data, etc., have brought valuable development 
opportunities to many industries [2, 21]. Traditional industry 
is experiencing the development of information technology. 

Smart factory was born under such a background [6, 12]. 
Compared with traditional factories, smart factories need 
to process a large amount of data. One way is to use remote 
cloud computing, but there are many disadvantages [5], such 
as large delay, high bandwidth requirements, and unable to 
guarantee security and privacy. The emergence of fog com-
puting can alleviate these problems [1]. It transfers comput-
ing, storage, control and network functions from cloud to 
edge devices, so as to reduce data transmission delay and 
required bandwidth. It allows a group of adjacent end users, 
network edge devices and access devices to cooperate to 
complete the tasks requiring resources. Therefore, many 
computing tasks that originally need to be completed by 
cloud computing can be effectively completed at the edge of 
the network through the decentralized computing resources 
around the data generation equipment.

Smart factory can realize resource virtualization 
and automatic service deployment through container 
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technology and container automatic orchestration tools 
[8]. Container is a virtualization technology. Compared 
with virtual machine, it is lighter and can be quickly 
deployed on different operating platforms. Currently, 
docker containers are common. Related orchestration tool 
is Kubernetes (K8S), a platform tool that can span multi-
ple computing nodes and manage containers on multiple 
computing nodes. We can containerize the application in 
the smart factory [9] into a docker container, and then use 
Kubernetes to automatically deploy the docker container 
to the appropriate fog computing node [13, 16].

How to reasonably deploy the above containers to the 
fog computing node of the smart factory and make full use 
of the fog computing resources is essentially a resource 
allocation and scheduling problem. At present, there are 
some related studies on this problem. Shahab Tayeb [15] 
proposed a new three-tier fog computing architecture, 
but they did not study the scheduling of fog computing 
resources. Skarlat [14] proposed a two-layer fog comput-
ing architecture and optimized the delay, but they did not 
consider resource balance. Sagar Verma [17] proposed a 
cloud architecture and considered load balancing, but this 
work did not consider the delay optimization problem. 
Hamid Reza faragardi [4] proposed the application of fog 
calculation in intelligent factory. Ruilong Deng [3] mainly 
studied the energy consumption and time delay of cloud 
computing system. However, they do not consider the 
delay caused by network communication. Hend Gedawy 
[7] used a group of heterogeneous fog computing devices 
to form an edge micro cloud. Wan Jiafu [18] proposed 
a load balancing scheduling method based on fog com-
puting to solve the complex energy consumption problem 
of manufacturing clusters in intelligent factories. Both of 
them consider the delay and resource balance problems at 
the same time, but the proposed algorithm needs to be fur-
ther improved. Wenzhu Wang [19] proposed the allocation 
method of dominant resources under the condition of het-
erogeneous resources, but the final result does not accord 
with Pareto optimality. Zening Liu [10, 11] proposed a 
scalable and stable distributed task scheduling algorithm, 
but there is a lack of consideration of resource balance and 
application scenario of smart factories.

As summary, there are some deficiencies in the exist-
ing research: First, they basically optimize the processing 
time of tasks without considering the limited comput-
ing resources in the smart factory; Second, it is basically 
improved in one aspect, and it is not comprehensively opti-
mized in combination with the characteristics of smart fac-
tory as a whole. Third, these optimizations are often based 
on pure fog computing. There are few articles on cloud and 
fog collaborative computing.

Compared with other studies, according to the task char-
acteristics of smart factory, this paper uses Kubernetes to 

realize the task automatic deployment in smart factory. The 
contributions of this paper are summarized as following:

1)	 Framework: A framework with fog and cloud comput-
ing is proposed, in which the tasks are categorized into 
different types and may be matched to different type of 
fog computing resources. Compared with the traditional 
computing framework, the framework is more flexible 
and can adaptively adjust the use of cloud and fog com-
puting resources.

2)	 Scheduling algorithm for only-fog resource schedul-
ing: In this paper, we proposed IDGSA (Interval Divi-
sion Genetic Scheduling Algorithm) to optimize tasks 
scheduling for use of only-fog resources scenarios. Dif-
ferent to other works, we consider to jointly optimize 
task processing time delay and resource usage balance. 
Basically, the scheduling optimization problem is non-
deterministic polynomial (NP), and may not be solved 
by traditional genetic algorithm because of double opti-
mization objects and easy to get local optimization solu-
tions. As such, we propose to construct a dual-objective 
fitness function and to allocate individuals into three 
intervals based on their fitness values, and to use dif-
ferent operators for individuals of different intervals in 
the process of evolution. This algorithm may keep more 
diversities and can avoid local optimization.

3)	 Scheduling algorithm for joint cloud and fog resource 
scheduling: Further, in case of joint cloud and fog 
resource scheduling, we propose IDGSA-P (Interval 
Division Genetic Scheduling Algorithm with Penalty 
factor)algorithms to optimize resource allocation, in 
which the scheduling work is modeled as a NP problem 
with constraints so a penalty factor is introduced to solve 
the problem.

4)	 Simulations: We carried out simulation experiments to 
verify our proposed algorithms. Compared with the tra-
ditional genetic algorithm and the default algorithm of 
K8S, our proposed algorithm has faster iteration speed 
and better optimization effect. IDGSA can reduce data 
processing time by 50% and improve the utilization of 
fog computing resources by 60% when compare with 
K8S default scheduling method. Compared with tradi-
tional genetic algorithm, with fewer iterations, IDGSA 
can reduce data processing time by 7% and improve the 
utilization of fog computing resources by 9%. With the 
simulation settings, IDGSA-P algorithm converges faster 
than Joines&Houck method and may get better results. It 
may be 18% and 7% faster when compare to only-cloud 
and only-fog computing, respectively.
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2 � Scheduling framework in smart factories

In the smart factory with cloud computing resources, task 
allocation and management are very important. At present, 
the mainstream virtualization technology, such as docker 
technology, is commonly used for resource management and 
allocation. This virtualization technology can bring many 
benefits. Kubernetes is a commonly used docker manage-
ment framework, which can realize the flexible distribution 
and deployment of tasks. In this section, we will introduce a 
framework of computing with Kubernetes in smart factories.

2.1 � Task classification and fog resource 
classification

Firstly, in order to process tasks efficiently, we divide factory 
tasks into three categories based on their properties:

1)	 Real-Time Tasks (RTT): delay sensitive tasks, such as: 
judgment of the operating status of key smart devices 
and faults. This type of tasks must be completed within 
specified time delay.

2)	 General Tasks (GT): it is a type of task that can with-
stand a certain amount of delay, such as: monitoring the 
quality of products, processing video information in the 
factory.

3)	 Storage Tasks (ST): tasks that has no requirement on 
latency but needs storage spaces, such as: data analysis 
for each production line, analysis of the energy con-
sumption.

Secondly, we categorize fog nodes with different char-
acteristics, too:

1)	 Exclusive Fog Computing Nodes (EFCN): These nodes 
are close to the equipment, have outstanding perfor-
mance, and can give result feedback in the fastest time.

2)	 Balanced Fog Node (BFN): The processing performance 
and storage performance of this type of fog node are rel-
atively good, and it can process most tasks in the smart 
factory.

3)	 Fog Storage Node (FSN): Such nodes have average pro-
cessing performance, but good storage performance, 
closer to the cloud, and can upload data to the cloud 
data center for processing at an appropriate time.

2.2 � Task assignment

Secondly, we study how to assign different type of tasks to 
appropriate fog computing nodes after task classification. 

In previous works, tasks were usually deployed in the way 
of fog and cloud classification, but it did not involve auto-
matic deployment and container application monitoring. 
Therefore, combined with Kubernetes, this paper further 
improves the fog computing framework in smart factory.

The components in Kubernetes mainly include:

Etcd: used to save the configuration and object status 
information of all networks in the cluster.
API server: Provides API interface and is the hub of 
data interaction and communication between other 
modules.
Scheduler: The execution module of Kubernetes sched-
uler dispatched the task to the appropriate node by algo-
rithm.
RC (replication controller)/deployment: Monitors the 
number of tasks in the Kubernetes cluster to stabilize 
the number of tasks.

The scheduling framework of the smart factory pro-
posed in this paper is shown in Fig. 1. Firstly, the tasks in 
the smart factory are containerized, and then the contain-
erized tasks are labeled as different type. This information 
will be stored in Etcd. Then, the Scheduler will interact 
with API server to obtain the tasks that have not been 
deployed in Kubernetes cluster, and automatically deploy 
the tasks to the corresponding nodes according to their 
labels. For the container application whose label is RTT, it 
is assigned to EFCN for processing. For a container appli-
cation with a label of ST, it is deployed on FSN. And for 
the container application with a label as GT, it is deployed 
on the BFN. In the whole process, the deployment module 
in Kubernetes will monitor the container applications in 
Kubernetes and recreate them when a container applica-
tion has problems.

Because label is the most widely used container in 
handling tasks, how to reduce the delay and improve the 
resource utilization is the most important question. There-
fore, we propose the corresponding system model and 
algorithms to reasonably allocate such tasks.

3 � Fog resource scheduling and balancing 
in smart factories

In this section, we will discuss the problem of resource 
scheduling and balancing in intelligent factory in fog 
computing scenario. We establish delay optimization 
model and resource balance model to describe the whole 
fog computing system, and design TSB factor to balance 
delay and resource usage. Finally, we designed IDGSA 
algorithm to solve the optimization problem.
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3.1 � System model

In an intelligent manufacturing factory, a production line is 
a service. The services in the smart factory can be defined 
by appj, appj ∈ A, where j represents the j − th service in the 
smart factory and A represents the collection of all services 
in the whole smart factory. All container applications used 
during the execution of a production line appj are defined as 
set S, and the i − th container application is defined as msi. 
msi, cpu, msi, mem respectively represent the minimum require-
ments of container application msi for CPU and memory 
of fog computing node. When all container applications 
monopolize one CPU for task processing, the time required 
is a unit time, expressed in ut(unit time), because the num-
ber of different container applications may have different 
requirements when processing tasks, Therefore, msreq

i
 is used 

to indicate how many such container applications are needed 
on this production line.

In the process of task processing, container applica-
tions are executed in sequence, so container applications 
may use each other’s data or processing results. Therefore, 
two container applications with consumption relationship 
can be expressed as (msprov, mscons) indicating that mscons 
needs the processing results of msprov. The fog computing 
node resource pool can be defined as set P. the fog com-
puting nodes in the node resource pool are represented by 
pml. If a container application msi is deployed on the node 

pml, it can be represented as alloc (msi) = pml. pml, cpu and 
pml, mem respectively represent the CPU resources and mem-
ory resources of the fog computing node.

3.2 � Balance factor

In this paper, there are three optimization objectives: (1) Task 
execution time; (2) Cluster resource balance; (3) Cluster equal-
ization degree and delay equalization factor.

3.2.1 � Task execution time

The execution time of the task can be expressed by the maxi-
mum of the completion time of all container tasks, as shown 
below

Where S(msi) represents the data processing time of the 
container application msi.

The calculation time of a single container application can 
be expressed as

Where Trun
(
msi

)
=

msi,cpu×R

pml,cpu

 represents the processing time 
of the container application msi(unit:ut), and R in the molecule 
represents the number of all container applications on pml.

If the container application has a consumption relationship 
with other container applications, then we have:

(1)Tservice = max
{
S
(
msi

)}
i = 1, 2, 3…

(2)S
(
msi

)
= max

{
Trun

(
msi

)
, Twait

(
msi

)}

Fig. 1   Scheduling frameworks 
in smart factories incorporating 
Kubernetes

22 Mobile Networks and Applications (2023) 28:19–30



1 3

Where, Ttrans(msj) represents the time when the provider 
container application transmits the processing results to the 
consumer container application. For ease of calculation, if 
two container applications are deployed on the same fog 
computing node, Ttrans(msj) = 0. If they are deployed on dif-
ferent fog computing nodes, Ttrans(msj) = 0.1 × S(msj).

3.2.2 � Cluster resource balance

In order to make full use of the fog computing resources 
in the cluster and keep the cluster balance, we should try 
our best to ensure that the usage of various resources in the 
node are balanced. At the same time, the resource usage of 
each node in the cluster should also be consistent. Therefore, 
the cluster resource balance can be divided into two parts: 
(1) the balanced use of various resources on a single fog 
computing node; (2) The balanced use of resources among 
different nodes in the whole cluster.

And we define:

Bcluster is equal to the balance degree of different fog com-
puting nodes in the whole cluster. The smaller the value of 
Bcluster, the more uniform the use of resources on different 
fog computing nodes in the whole cluster.

Similarly, we have:

Bsingle represents the resource usage balance of a fog com-
puting node, where pml, cpuusage, pml, memusage represent the 
CPU and memory used on the node respectively. In this way, 
it can ensure that in a single fog computing node, there will 
be no excessive use of one resource and almost no use of 
another resource, so that all resources on the node can be 
fully utilized.

3.2.3 � Tradeoff between service‑time and balance (TSB)

This paper defines an equilibrium factor as another optimi-
zation objective of the model. This optimization objective 
integrates the two objectives of task calculation time and 

(3)
Trun = max

{
S
(
msj

)
+ Ttrans

(
msj

)}
,∀msj ∣

(
msj,msi

)
prov∕cons

(4)Ball = Bcluster + Bsingle

(5)Bcluster = �

(
PMpml

usage
, if∃msi|alloc

(
msi

)
= pml

)

(6)PMpml

usage
=

1

2

(
Σmsi

msi,cpu

pml,cpu

+
Σmsi

msi,mem

pml,mem

)

(7)Bsingle =∣
pml,cpuusage

pml,cpu

−
pml,memusage

pml,mem

∣

cluster equilibrium, which can enable the factory to rely on 
Tservice or Ball by adjusting the weight of cluster equilibrium 
in TSB. It can be expressed by the following formula:

Bnorm
all

(i) , Tnorm
service

(i) represents the normalized result of 
Ball(i), Tservice(i).

In summary, container application scheduling problems in 
smart manufacturing plants can be summarized as follows:

The above problems are NP (non-deterministic polyno-
mial) problems, so heuristic genetic algorithm can be used to 
solve them. For the assignment of tasks in a factory, genetic 
algorithm is the most common one. This paper proposes 
the IDGSA algorithm and introduces the concept of inter-
val partition to improve the performance of the traditional 
genetic algorithm.

3.3 � IDGSA algorithm

When be applied to smart factories, traditional genetic 
algorithms cannot handle the dual-objective problem, and 
some invalid results may possibly be not properly handled. 
Furthermore, the iteration speed is relatively slow and has 
problem of local optimum results.

Therefore, this paper presents IDGSA algorithm to deal 
with the situation where the initialization results in an indi-
vidual that is not a feasible solution (to assign container 
applications on overutilized nodes to other nodes), and to 
improve the idea that the crossover mutator and roulette 
selection operator in the traditional genetic algorithm use 
interval partitioning. Compared with the traditional genetic 
algorithm, it improves the iteration speed and achieves better 
results, while guaranteeing the diversity of the population 
and avoiding falling into the local optimal situation.

The traditional genetic algorithm selects good indi-
viduals, crosses over, mutates them, and generates the 
next generation using a method called roulette selection 
operator. The idea of the roulette selector is to select 
individuals according to their fitness values, cross 
and mutate them, and produce the next generation of 
individuals.

Traditional roulette operator thought: the probability of 
an individual being selected is proportional to its fitness 
function value, set the population size to N, the fitness of 

(8)TSB(i) = β × Bnorm
all

(i) + (1 − �) × Tnorm
service

(i)

(9)
min Tservice,Ball

s.t. alloc
(
msi

)
= pml,∀msi ∈ appj
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an individual xi to f(xi), then the selection probability of an 
individual xi is

Although this selection operator is simple to construct 
and widely used, it has drawbacks because it can preserve 
excellent genes, but it has always been saved by individu-
als with higher fitness values. As a result, the individual 
diversity of the population is poor and the results tend to 
be locally optimal, resulting in no better results. To avoid 
premature convergence of IDGSA algorithm and traditional 
genetic algorithm and discard some search subspaces, this 
paper proposes interval division method to treat individuals 
with different fitness values. Figure 2 shows the diagram of 
IDGSA algorithm that incorporating the interval division 
method. First, the population is initialized and then to evalu-
ate the rationality of each individual. If an individual is not 
rational then it will be modified until it becomes rational. 

(10)P
(
xi
)
=

f
(
xi
)

Σjf
(
xj
)

For rational individuals, in each evolution we calculate its 
fitness value. When its calculated fitness value is high, then 
we keep the individual. When the fitness is low, we mutate 
it and try to let it change to an individual with high fitness 
value in next round evolution. For individuals with medium 
fitness value, we propose to use an interval division selection 
operator to generate new individual. We call the proposed 
interval division selection operator as interval partitioning 
roulette selection operator.

The operation steps of the proposed interval partition-
ing roulette selection operator is described as following:

1)	 According to the dual-objective fitness function in the 
algorithm (which is TSB, Eq. 8), the fitness values of all 
individuals in the population are calculated.

2)	 Select the individuals with the best and worst fitness 
values in the whole population, then divide the individu-
als with the best and worst fitness values into M grades 
and assign the individuals of the population to the cor-
responding grade areas according to the fitness values.

Fig. 2   The proposed IDGSA 
algorithm incorporating interval 
division selection based on 
individual’s fitness values
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3)	 Calculate the average fitness values for each of the M 
regions (dividing all individual values in this region by 
the number of individuals in this region);

4)	 In M regions, assume that the probability of each hier-
archical region being selected is Pm, where Pm is the 
average fitness value of the current hierarchical region 
divided by the sum of the average fitness values of all 
hierarchical regions (M), and then calculate Pm;

5)	 Assume that the probability of an individual xi being 
selected in each of the M-level zones is Pxi

m , which is the 
sum of the fitness values of the individual divided by the 
fitness of all the individuals in the hierarchical zones in 
which they are located;

6)	 Calculate the probability that each individual in the 
entire population will be selected P

(
xi
)
= Pm × P

xi.
m

The whole population is defined as P, and there are N indi-
viduals in a population. The fitness value of individual xi is 
f(xi) calculated from the dual-bojective fitness function. At the 
second iteration, the fitness values of individuals in the entire 
population P can be expressed as

The range of fitness values for subspaces of population P is

Therefore, the population P of the T − th iteration can be 
divided into

Where f (xi
)T
m
∈
[
f
(
xi
)
min

+ diff × (m − 1), f
(
xi
)
min

+ diff × m
] . Combined 

with the previous analysis, we can get that

It can be seen that P(xi) is inversely proportional to nm, 
so if the number of individuals in an interval is too large, 
the probability of being selected will be reduced, and if 
the number of individuals in an interval is small, the prob-
ability of being selected will be increased. So, when the 
fitness of all individuals in the whole population is too 
different, the roulette selector with interval partitioning 
can avoid the early elimination of poor fitness individuals 
and improve the diversity of selection.

(11)P(T) =
{
f
(
x1
)
, f
(
x2
)
,… f

(
xN

)}

(12)diff =
f
(
xi
)
max

− f
(
xj
)
min

M

(13)P(T) =
{
f
(
x1
)T
1
, f
(
x2
)T
2
,… f

(
xi
)T
m

}

(14)Pm =
f T
m

(
xi
)
avg

Σmf
T
m

(
xi
)
avg

(15)P
(
xi
)
=

f T
m

(
xi
)

nm × Σmf
T
m

(
xi
)
avg

4 � Joint scheduling of fog and cloud resource 
in smart factories

In above, we discussed the problem of task scheduling and 
resource balance of smart factory with only-fog computing 
resources, and proposed IDGSA for optimization. In this 
section, we will further discuss the task scheduling problem 
under the scenario of cloud and fog collaborative computing. 
We try to introduce cloud computing into the fog computing 
resource pool, and ultimately achieve cloud-fog collabora-
tive computing.

Therefore, we set up a fog management node in the fog 
computing resource pool to assign tasks to specific fog nodes 
and determine when to collaborate with cloud resources for 
computing. The specific scheduling architecture is shown 
in Fig. 3.

4.1 � System model of cloud and fog collaborative 
computing

The task assignment framework can be regarded as a 
weighted undirected graph G(V, E)  as shown in Fig. 4, 
where V = {F1, F2, …, Fi, FM, …, Fm, C} is a vertex 
set, Fi is the fog node, FM is the fog manager,C is cloud 
server.E =

{
eFMF1

,… , eFMFi
,… , eFMC

}
 is the edge set,eFMFi

 

Fig. 3   Task assignment framework in case with joint cloud and fog 
computing
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a communication link between fog node Fi and fog manager, 
weight on edge is WFMFi

 . The fog manager only allocates 
tasks and does not perform specific tasks. The computing 
power of Fi is denoted as AFi

 , the computing power of C is 
denoted as AC.For m fog nodes and 1 cloud server, task D 
can be divided into m subtasks of different sizes, which is 
denoted as D = {d1, d2, …, dj, …, dC, …, dm} , where dC is the 
subtask that is assigned to the cloud server.

The total time consumed by node Fi to execute task dj is

where dj

AFi

 is the computing delay, Tt(Fi, dj) is the communi-

cation delay.
Similarly, the total time consumed by C is:

The total time delay T(dj, dC) cost by the task can is:

Finally, we have a constrained optimization problem:

(16)Ta
(
Fi, dj

)
=

dj

AFi

+ Tt
(
Fi, dj

)

(17)Ta
(
C, dC

)
=

dc

AC

+ Tt
(
C, dc

)

(18)
T
(
dj, dC

)
= max

{
Ta
(
Fi, dj

)
, Ta

(
C, dC

)}
j = 1, 2, 3,…

(19)

min max
�
T
�
dj, dc

��
j = 1, 2, 3,…

s.t.0 ≤ dj,dc ≤ D
m−1∑
j=1

dj + dc = D

4.2 � IDGSA‑P algorithm

The original problem is an optimization problem with con-
straints, and the IDGSA cannot solve it directly, so we pro-
pose IDGSA-P to convert the original constrained problem 
into an unconstrained problem.

We design an adaptive penalty function based on the con-
cept of offset. First, construct the chromosome of genetic alg
orithm:xi = {δ1, δ2, …, δj, …, δm, δC}, where δj is scale factor:

Then, the original constraint can be converted to:

where gj(xi) and h(xi) is:

We define gz(xj), gf(xj) as the positive and negative offset 
value of gj(xi). Then we have:

Similarly, we have the positive and negative offset value 
of h(xj):

In the chromosome set {xi} , we can find the infeasible solu-
tion set according to (24) ~ (27), it is denote as

{
x
reject

j

}
 , thus, 

the positive and negative offset degrees constrained in eq. (19) 
are introduced:

(20)�j =
dj

D
j = 1, 2, 3,…

(21)
s.t.0 ≤ gj

(
xi
)
≤ 1j = 1, 2, 3…

h
(
xi
)
− 1 = 0

(22)gj
(
xi
)
= �j j = 1, 2, 3…

(23)h
(
xi
)
=

m−1∑
j=1,

�j + �C

(24)gz
(
xi
)
= max

{
0, gj

(
xi
)
− 1

}
j = 1, 2, 3…

(25)gf
(
xi
)
= min

{
0, gj

(
xi
)}

j = 1, 2, 3…

(26)hz
(
xi
)
= max

{
0, h
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Fig. 4   Undirected graph of fog exclusive node
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Based on (28) ~ (29) we can define ϕ(xi) , ξ(xi) as the offset 
degree of the current solution xi to the inequality constraint 
function, its expression is:

Finally, according to (30) ~ (31), we set the penalty function 
in the genetic algorithm as:

where β is penalty factor.
By introducing a penalty function, the original constrained 

optimization problem is finally transformed into an uncon-
strained optimization problem [19]:

5 � Simulation and results

In this part, we design experiments to test our algorithm. Vari-
ous parameters and equipment in the experimental process are 
given in the following sections.

5.1 � Simulation environment

In the simulation of idgsa algorithm,this paper uses socks 
shop, a smart manufacturing factory that produces socks to 
carry out simulation experiments, and the parameter values 
in the experiment come from the analysis of socks shop [20]. 
Socks shop is a micro service demo application, which simu-
lates the actual operation of a smart factory producing socks. 
The resource usage of each container application comes from 
the load test of the demo, and the number of each container 
application required by a task comes from the analysis of cus-
tomer behavior model graph (CBMG) [7]. Table 1 shows the 
resource consumption.

The IDGSA-P algorithm is simulated in the cloud and fog 
collaborative computing scenario, so we deal with the cloud 
node and join the cloud server at the same time. We can see 
the configuration in Table 2.
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5.2 � Results and analysis

This part introduces simulation experimental results to 
verify the proposed scheduling algorithms and presents 
analysis.

5.2.1 � Results of IDGSA with different optimization weights

In this paper, the performance of IDGSA algorithm under 
different balance optimization weights is simulated experi-
mentally, which changes the weight of balance optimization 
target in the balance factor TSB.

As can ben seen in Fig. 5(a), with β increasing, the com-
puting time of tasks increases and the balance in the cluster 
decreases (representing a gradual increase in resource utili-
zation). And as shown in Fig. 5 (b), when β is 0.9, TSB will 
get the minimum value, that is, it can ensure that the com-
puting time of tasks and the cluster balance are both small 
(cluster resource utilization is high), and two optimization 
goals reach a relative optimal value (balance optimization).

5.2.2 � Comparison between IDGSA algorithm 
and traditional genetic algorithm (traditional GA)

To prove the advantages of IDGSA algorithm, IDGSA 
algorithm is compared with traditional GA by simulation. 
In the simulation experiment, the population size is 200, 
the number of iterations is 4000, the horizontal coordinate 
is the number of iterations, and the vertical coordinate is the 
balance factor TSB, task completion time, cluster balance, 
respectively.

Figure 6 (a) shows the balance factor TSB obtained by 
using IDGSA algorithm and traditional GA. It can be seen 

Table 1   Container application in socks shop

Name Id NUM CPU Memory

Worker Ms1 3 0.47 353.7
Shipping Ms2 2 0.0028 406.9
Master Ms3 3 0.0004 696.6
Orders Ms5 2 0.0048 939.6
Front-end Ms7 15 0.0528 101.7
Router Ms8 15 0.0076 11.4
Consul Ms14 3 0.7508 33.3

Table 2   Parameters related to fog node and cloud server

Parameter type F1 F2 F3 C

Frequency(GHz) 4 4.5 5 10
Transfer rate(Mbps) 100 350 200 50
Packet loss rate 0.0232 0.140 0.0154 0.0200

27Mobile Networks and Applications (2023) 28:19–30



1 3

from that IDGSA algorithm has obtained the optimal solu-
tion when iterating to 500 times, while the traditional GA 
needs to iterate to 1500 times to obtain the optimal solu-
tion, and we can also see that the IDGSA can get a better 
result. Figure 6 (b) and (c) show the cluster balance degree 
and task execution time obtained by IDGSA algorithm and 
traditional GA respectively. It can also be seen that IDGSA 
algorithm has achieved better results than traditional GA 
when the number of iterations is about 500, while genetic 
algorithm needs to iterate to 1500 times. Therefore, we can 
have two conclusions: First, the final results of IDGSA are 
better than the traditional GA. Second, IDGSA algorithm 
can achieve the result in fewer iterations.

5.2.3 � Comparison of IDGSA algorithm and Kubernetes 
default algorithm

IDGSA algorithm is needed to replace the default sched-
uling algorithm of Kubernetes, so the performance of the 

IDGSA algorithm is compared with that of the Kubernetes 
default algorithm. By changing the number of fog computing 
nodes in the fog computing resource pool, the performance 
of the two algorithms is compared when the resource situ-
ation changes. In Fig. 7 (a) and (b), the horizontal coordi-
nates represent the number of fog computing nodes. As the 
number of fog computing nodes increases, the task execu-
tion time and resource balance of both algorithms decrease. 
The results show that the processing time of IDGSA algo-
rithm is reduced by about 50% and the resource utilization 
is increased by about 60% compared with the default sched-
uling algorithm of Kubernetes. It can be also clearly seen 
that IDGSA algorithm has shorter task processing time and 
higher resource utilization than Kubernetes default algo-
rithm regardless of whether fog computing resources are 
sufficient or scarce.

Fig. 5   Simulation results under 
different equalization optimiza-
tion weights

Fig. 6   Performance simulation diagram between IDGSA and tradi-
tional GA

Fig. 7   Performance simulation diagram of IDGSA and Kubernetes 
algorithm
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5.2.4 � Comparison between IDGSA‑P and Joines & Houck 
methond

Joines&Houck method is a commonly used method to solve 
constrained optimization problems. This method also opti-
mizes the traditional genetic algorithm and converts the con-
strained problem into an unconstrained problem.

In this simulation, IDGSA-P and Joines&Houck method 
are compared and the results are shown in Fig. 8. We have 
conducted 4000 iterations, and the iterative results are shown 
in the figure below. It can be seen that IDGSA-P has faster 
convergence speed and can better find the optimal solution 
than the Joines&Houck method.

5.2.5 � Performance comparison under different computing 
scenarios

In order to verify the difference between the computing 
method of fog exclusive node and cloud server used in 
this paper and other computing methods, it is simulated 
and compared with pure cloud computing and pure fog 

computing. The number of cycles during simulation is 3000, 
and IDGSA-P is adopted.

As can be seen from Fig. 9, compared with the pure cloud 
computing method, the cloud computing method adopted in 
this paper has powerful computing power and can reduce the 
computing delay of tasks, but the cloud server is generally 
far away from the smart factory, the network link bandwidth 
is limited, and there is a large communication delay. There-
fore, the total delay of task processing in pure cloud comput-
ing is greater, and with the increase of the number of tasks, 
the performance gap is becoming more and more obvious. 
Compared with the pure fog computing method, the cloud 
server with powerful computing power is introduced, and 
the total task delay can be reduced by reasonably allocating 
the task proportion. Compared with the traditional cloud 
computing and fog computing, the method adopted in this 
paper can reduce the total task delay by 18% and 7% when 
the number of users is 500, so as to reduce the total task 
delay and improve the plant efficiency when processing the 
real-time tasks of the smart factory.

6 � Conclusion

In literatures there is few studies of task scheduling frame-
works of fog and cloud computing resources in smart fac-
tories with consideration of using task scheduling tools like 
Kubernetes. Furthermore there is lack of studies with joint 
optimization of task processing time delay and resource bal-
ance. Based on the characteristics and requirements of smart 
factories, this paper improves the fog computing architecture 
for smart factories. Firstly, we discuss the scheduling and 
resource balancing of smart factory tasks in fog computing 
scenario and design the equalization factor TSB to compre-
hensively consider the delay and equalization problem. To 
solve this problem, we proposed IDGSA algorithm. Com-
pared with the traditional genetic algorithm, IDGSA can 
achieve better optimization and faster convergence speed. 
Secondly, we further establish a cloud and fog collabora-
tive computing model to flexibly allocate fog computing 
and cloud computing resources. According to the model, 
IDGSA-P is designed on the basis of IDGSA to optimize 
the original problem. Finally, we did simulation experiments 
to verify the proposed algorithms. The simulation results 
show that IDGSA has better performance than the traditional 
genetic algorithm and K8S default algorithm. At the same 
time, compared with only-cloud computing and only-fog 
computing, cloud and fog collaborative computing can make 
more effective use of resources and bring lower computing 
delay under IDGSA-P.

Future work of this study include considering more opti-
mization objectives like limited computing resource or/
and communication bands, real-time analysis model with 

Fig. 8   Performance comparison between IDGSA-P and 
Joines&Houck method

Fig. 9   Performance under different computing scenarios
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consideration of resource faults, and implementation of the 
algorithm in smart manufacturing testbed using K8S.
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