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Abstract
Several equitable approaches have been proposed to reduce world energy consumption against a backdrop of a growing global 
climate crisis. Among these, we can mention the attempts to improve the energy use of household appliances and utilities, 
such as air conditioners. One of the strategies used to reduce these devices’ unnecessary energy consumption is estimating 
the thermal variation in the environments, especially still during their design phase. One of the most advanced methods for 
this estimation uses computer simulations, which require a high level of technical knowledge. For that, a relatively simple 
alternative is the creation of metamodels. This work compares two machine learning approaches for developing a metamodel 
capable of estimating the thermal load in single-family buildings. The metamodels evaluated were the Artificial Neural 
Networks and the Gradient Boosting Machine. The results obtained made it possible to observe a better performance in the 
Gradient Boosting Machine approach indicators in relation to Artificial Neural Networks. The negative point is that Gradient 
Boosting Machine requires a relatively long training time, making its use in routine projects less feasible.

Keywords Energy consumption · Thermal cooling load · Predictive models · Artificial neural networks · Gradient boosting 
machine · Building simulation

1 Introduction

According to the International Energy Agency (IEA) [6], in 
2017 the building sector represented more than 30% of the 
total final energy consumption in the world. The [1] report 
points out that the energy demand for air cooling in build-
ings has tripled in 1990 and 2016. It is estimated that if no 
change in the current scenario happens, this demand will 
triple by the year 2050, representing 37% of the increase in 
the building’s electricity consumption. The potential increas-
ing demand for artificial cooling in hot climate countries 
is even more significant. According to [1], among the 2.8 
billion people living in the hottest parts of the world, only 
8% have an air conditioning system. In Brazil, in 2016, the 
portion of artificial cooling at peak loads of electricity grids 
corresponded to 7.6% of the total, and the projection is that 

this portion will represent 30.8% of the peak load by the 
year 2050 [1].

To ensure the user’s thermal comfort without signifi-
cant energy consumption, it is crucial to understand how 
thermal variations occur in a building. Analysis during the 
early design stages of a building indicates fundamental deci-
sions for thermal performance. In the early-design phase, the 
optimization potential is significant, and at this stage, any 
building’s comfort estimating and energy performance can 
be reflected in decision-making [3, 13].

The most advanced method of estimating thermal perfor-
mance in buildings is through computer simulations. It uses 
models based on physical heat transfer equations, following 
the principles of energy conservation. However, this process 
requires the technical knowledge of an expert, as dynamic 
thermal simulations require detailed models and face several 
problems, mainly associated with the information needed 
for input data for the simulated model [4]. In the Brazilian 
context, the analysis of the building’s thermal performance 
through computer simulations is a relevant measure, as the 
lack of accessible data related to energy consumption pat-
terns makes it difficult to conduct analyses from databases 
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[2]. An alternative to overcome these issues is the develop-
ment of models from computer simulations, the metamodels. 
Through metamodels, it is possible to obtain energy perfor-
mance results close to those of complex simulations.

Metamodels for energy efficiency in buildings can be 
developed using different methods [8]. The most appropri-
ate solution depends on the context and purposes of each 
application. Versage [16] was able to estimate thermal loads 
for commercial buildings through different metamodeling 
methods. Melo et al. [7] developed an Artificial Neural Net-
works (ANN) model to estimate the cooling degrees hours 
and heating and cooling thermal loads in residential build-
ings. The development of a Support Vector Machine (SVM) 
metamodel capable of estimating thermal comfort in com-
mercial buildings was proposed by [12].

Energy consumption for cooling in buildings is expressive 
worldwide, and the expectation is that the energy demand 
will continue to grow in the coming decades, especially in 
countries with hot climates. In this context, the use of con-
structive techniques that minimize the need for air condi-
tioning, through specific building components or geometry 
design, are presented as a solution to mitigate energy con-
sumption. However, the thermal performance of buildings 
present complex thermophysical phenomena, making ther-
mal comfort estimates to be considered preferentially from 
the early-design phases. Seeking a tool capable of helping 
the designers quickly and simply, the possibility of using 
metamodels arises as a good option.

Therefore, this work presents a comparison between 
two machine learning approaches for the development of a 
metamodel capable of estimating the thermal load in single-
family buildings.

2  Review

Designers find difficulties in using building performance 
simulation tools, which may not be compatible with their 
needs and working methods. Picco et  al. [10] proposes 
to simplify the description of the building and convert a 
detailed model into a simplified model, with only a limited 
number of entries. Despite margins of error of around 15% 
in estimating annual heating and cooling thermal loads, it is 
observed that model simplifications can help in early design 
stages when certain characteristics in the building design are 
not well-defined. In addition to simplifications of models 
based on physical equations, it is possible to develop models 
based on statistical functions, which deduce these behav-
iors. Statistical models work only with inputs and outputs, 
without correlating cause and effect, although they are more 
agile. To adapt to the main functionalities of both models, 
metamodels are introduced.

Automatic learning-based metamodels are mathematical 
functions that, applied to a significant amount of data, can 
identify hidden patterns and predict future functionality. 
According to [18], the most used machine learning meth-
ods for predicting the building’s energy performance are 
ANN and SVM. These models effectively solve nonlinear 
problems and provide highly accurate predictions as long 
as the defined model definitions and established parameters 
are properly defined. ANN models have been used to analyze 
various types of building energy consumption under various 
conditions, such as heating and cooling loads, electricity 
consumption, sub-level component operation and optimiza-
tion, and estimation of usage parameters. The use of SVM 
has been growing in research and industry. In many cases, 
the SVM are superior in performances compared to the 
ANN, even with a small amount of data training.

Yigit [17] developed a metamodel using Gradient Boost-
ing Machine (GBM), through the Sklearn library, to esti-
mate cooling and heating loads in residential buildings in 
Turkey. According to the author, GBM models are based on 
decision tree models and have already demonstrated high 
performance and flexibility in several areas. These models 
can operate with a database of several variables, discrete 
and/or continuous, without the need for data pre-processing. 
The GBM method enables robust metamodels regardless of 
the number of parameters or type of parameters. Including 
parameters with low influence on the dependent variables 
does not compromise the model’s accuracy either. The 
importance of choosing hyperparameters to ensure better 
performance of the models is highlighted. The metamodel 
developed in the work of [17] was applied in an optimization 
algorithm to find the most appropriate types of envelopes 
to minimize energy consumption. The results demonstrate 
that the use of the optimization system could bring design 
solutions with greater energy efficiency and low cost. Addi-
tionally, the increased cost of building envelope can reduce 
energy consumption by up to 10%. However, the author 
comments that the implementation of GBM in energy opti-
mization buildings problems is still limited.

Versage [16] developed a metamodel to estimate the 
annual integrated cooling load to evaluate the energy per-
formance of artificially conditioned buildings through the 
individual performance of their thermal zones. A database 
of approximately 1.29 million simulated cases was devel-
oped, with varied building parameters, for the climate of 
the Brazilian city Florianópolis. A data sample was adopted 
for the elaboration of metamodels with the techniques of 
multiple linear regression, multivariate adaptive regres-
sion splines, Gaussian process, SVM, random forest, and 
ANN. To evaluate and compare the metamodels, four per-
formance indicators were chosen: training time, coefficient 
of determination  (R2), root-mean-square deviation (RMSE) 
and Normalized Root Mean Square Error (NRMSE). The 
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ANN metamodel presented the best performance among 
those tested. The ANN trained with 1% of the database 
cases and 72 nodes in the inner layer presented the best 
overall performance. It was able to reproduce results with 
errors smaller than 10% for 99.2% of the cases. On the 
other hand, the metamodel built from SVM had the worst 
performance. However, the author highlights that other 
configurations and data processing could change the per-
formance of the evaluated metamodels.

According to the literature, it is observed that different 
machine learning methods can be used to develop metamod-
els related to energy efficiency in buildings. There is no rule 
for choosing the method, and the comparison between the 
performance of metamodels developed by different machine 
learning approaches may depend on the configuration of 
the hyperparameters. Furthermore, they may also depend 
on specific characteristics of the database used, such as the 
input and output parameters considered. Therefore, it may be 
pertinent to consider using more than one type of machine 
learning technique to search for the most suitable method.

3  Method

This work used a datab ase composed of buildings thermal 
analyses to develop metamodels using two approaches: ANN 
e GBM. We compared the performance of the metamod-
els concerning both approaches and could observe specific 
issues in the development of each of them. The model train-
ing was conducted using 19 parallel processes with a 3.30 
GHz Intel Xeon processor. The code used to develop the 
metamodel is available at the autho r's \textt t{githu b} profi 
le.1

3.1  The Database

The datab ase (link)2 used for this work is composed of 
simulations from the computer program EnergyPlus [5]. 
The simulation output data is the thermal load necessary 
to maintain the air temperature in the occupied thermal 
zones of the building between  21∘C and  23∘C. The simu-
lations were based on a model (Fig. 1) of a single-family 
building of social housing [15], which had several build-
ing characteristics related to the geometry of the enve-
lope and the windows, as well as constructive components 
varied.

Table 1 presents the parameters of quantitative values, 
with the maximum and minimum values considered in the 
sampling. Table 2 presents the variations of the qualitative 
parameters. Although qualitative, the variables are repre-
sented in the database by integer numbers, ranging from 1 
to 6 for the wall, 1 to 4 for the roof, and 0 or 1 for blinds and 
geometry mirroring.

The 46 696 cases in the database were sampled using 
Sobol’s method [14], a quasi-random sampling method 
that ensures better distribution of cases in hyperspace. 
The input variables distributions were uniform. Fig-
ure 2 shows the independent variable’s occurrence dis-
tribution as well as the dependent variable. The only 
input parameter that does not have a uniform distribu-
tion is the Mean Annual Temperature. Although the 
average temperature has been uniformly sampled for 
values between 10.8∘C and 28.2∘C, from the database of 
weather files in Brazil, there are no cities with average 
annual temperatures between 10.8∘C and 13.6∘C. There 
are only three cities with average annual temperatures 
between 13.6∘C and 15.3∘C. As a result, the sampled 
cases with temperatures in these ranges were simulated 

Fig. 1  Simulations’ base model. 
Adapted from [15]

1 https:// github. com/ marce losal les/ disci plina- machi ne- learn ing. git
2 https:// drive. google. com/ uc? export= downl oad& id= 1XROG I9ZaU 
X711M jWiyE Mv4U8 4lZFU cGW
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using weather files with mean annual temperatures 
closer to the sampled value. The output parameter, air 
conditioning thermal load, had a non-uniform distribu-
tion, which varied between 0 and 235kWh/m2year, with 
an average equal to 53kWh/m2year and median equal 
to 43kWh/m2year.

3.2  ANN Development

The ANN metamodel was developed using the Sklearn 
library [9], available for [11]. Quantitative variables were 
standardized by calculating the z-score, according to Eq. 1, 
so that all parameters had the same order of magnitude.

Where Z is equal to the new value considered for 
the variable x; μ is the mean of the values of the con-
sidered variable; and σ is the standard deviation value 
of the considered variable. The qualitative variables 

(1)Z =

x − �

�

were transformed into dummy variables, so each col-
umn of qualitative value parameters in the dataframe was 
replaced by new columns. These new columns represent 
the different values considered for the qualitative values 
parameter. Thus, for each line of the dataframe, the value 
1 is assigned to the column referring to the value con-
sidered for the qualitative parameter in that line. On the 
other hand, the value 0 is assigned to the other columns, 
referring to the other possible values for that parameter. 
The number of new columns introduced to replace the 
original parameter column depends on the number of 
unique values. The number of columns entered is equal 
to the number of unique parameter values minus 1. The 
approach to indicate that a case has the value related to the 
variable without the corresponding column considers the 
value 0 in all other columns referring to that parameter. It 
is also essential to observe the hyperparameters (param-
eters related to the machine learning process) chosen in 
developing the metamodel, which influence the results’ 
accuracy. Therefore, we conducted a grid search to find 
the best combination of hyperparameters.

The varied hyperparameters were:

– hidden_layer_sizes: the number of hidden layers 
and number of nodes in those layers;

– activation: the activation function used;
– batch_size: the number of cases used in each itera-

tion in the stochastic optimization process;
– learning_rate_init: the learning rate;
– tol: minimum value of reduction of the loss function 

over a specified number of iterations (for this study, the 
specified number of iterations was equal to 10).

The values applied in grid to find the optimal combina-
tion of hyperparameters are presented in Table 3

Before the metamodel training step, the sample was 
divided into a data frame for training, with 90% of cases, and 
a data frame for testing, with the remaining 10% of cases. 

Table 1  Quantitative parameters considered in the database

*  WWR = Window-to-wall ratio

Parameter Minimum value Maximum value

Area [m2] 48 152
Ratio between axes [-] 0.47 2.03
Ceiling height [m] 2.48 3.52
Azimuth  [∘] 0 360
Wall absorptance [-] 0.19 0.81
Roof absorptance [-] 0.19 0.81
Living room WWR* [-] 0.19 0.81
Bedroom WWR* [-] 0.19 0.81
Glass transmittance [W/m2K] 2.74 5.76
Solar heat gain coefficient [-] 0.21 0.88
Window opening factor [-] 0.39 0.91
Average annual temperature  [∘C] 10.8 28.2

Table 2  Database qualitative 
parameters

Parameter Values

Concrete
Concrete + EPS

Wall Steel frame
Solid brick (10 cm)
Solid brick (20 cm)
Hollow brick
Fiber cement tile + concrete slab

Roof Fiber cement tile + glass wool (2.5 cm) + concrete slab
Fiber cement tile + glass wool (5.0 cm) + concrete slab
Fiber cement tile + concrete slab + plaster

Blinds Yes / No
Mirrored geometry Yes / No

1980 Mobile Networks and Applications (2022) 27:1977–1986
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The performance indicator used to compare the different 
models generated by the grid was the mean of the cross-
validation score. We chose the ANN model with the best 
score in the training stage to have its performance analyzed 
with the training and test samples. The accuracy indicators 
of the final metamodel were: the  R2, the RMSE, the mean 
absolute error (MAE) and the 95th percentile of the absolute 
error (AE95).

3.3  GBM Development

The GBM metamodel was also developed using the 
Sklearn library [9], available for [11]. As this approach 
does not require data pre-processing, there was no stand-
ardization or transformation of quantitative variables, and 
qualitative variables were not transformed into dummy 
variables. Hyperparameters were also defined from a 
search for a grid. The varied hyperparameters were:

– n_estimators: the number of estimators, or trees;
– max_depth: the maximum number of nodes in each 

tree;
– min_samples_split: the minimum number of cases 

required in a leave of a node;

– loss: the loss function. ls refers to the least squares 
regression, lad refers to the minimum absolute devia-
tion function, and huber refers to a method that com-
bines the previous two;

– learning_rate: the learning rate.

The values applied in the grid to find the optimal combi-
nation of hyperparameters for GBM are presented in Table 4.

The sample was also divided into a data frame for 
training, with 90% of cases, and a data frame for test-
ing, with the remaining 10% of cases. As for the ANN, 
the performance indicator used to compare the different 
models generated by the grid was the mean of the cross-
validation score. The accuracy indicators of the final met-
amodel were the  R2, the RMSE, the MAE and the AE95.

4  Results

4.1  ANN Results

Figure 3 shows the input data distribution after applying 
the z-score standardization. It is possible to observe that 
the quantitative input parameters started to present values 

Fig. 2  Input Occurrence distributions parameters
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of the same order of magnitude, with an mean equal to 
zero.

The parameters Wall, Roof, Blinds and Mirrored geom-
etry were transformed into dummy variables. Therefore, the 
parameter related to wall components was replaced by five 
columns. On the other hand, the parameter related to roof 
components was replaced by three columns. Finally, the 
parameters related to the blinds and the mirror geometry 
were kept with one column. With the combination of the 
grid hyperparameters, 162 models were trained. The total 
training time was 2 hours and 17 minutes. The chosen model 
obtained a value of 0.943 for the mean of the cross-vali-
dation score and had the training process interrupted after 

310 iterations. The hyperparameters of the chosen model are 
presented in Table 5.

Figure 4 presents the scatter plot comparing the pre-
dicted cases with the simulated cases for the training and 
test samples. The dotted line corresponds to the line y = 
x, so the accuracy of the results is related to the proximity 
of the points to the line. Similar trends can be observed in 
both graphs, but the test sample presents a proportionally 
more significant number of points away from the dotted 
line.

The performance indicators of the metamodel are pre-
sented in Table 6.

Fig. 2  (continued)

Table 3  Hyperparameters considered in the search for the ANN grid

Hyperparameter Values

hidden_layer_sizes 32 and 64, 64 and 128, 
32, 64 and 128

activation logistic, relu
batch_size 32, 64, 128
learning_rate_init 0.005, 0.01, 0.05
tol 0.0001, 0.0005, 0.00005

Table 4  Hyperparameters considered in the GBM search for the grid

Hyperparameter Values

n_estimators 400, 4 000 and 40 000
max_depth 3, 5 and 7
min_samples_split 2, 50 and 100
loss ls, lad and huber
learning_rate 0.005, 0.01, and 0.05
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4.2  GBM Results

With the combination of the grid hyperparameters, 243 
models were trained by the GBM. The total training time 
was 17 hours and 1 minute. The chosen model had the 
value of 0.991 for the mean of the cross-validation score. 
The hyperparameters of the chosen model are presented in 
Table 7.

Figure 5 presents the scatter plot comparing the pre-
dicted cases with the simulated cases for the training and 
test samples.

The performance indicators of the final metamodel are 
presented in Table 8.

5  Discussion

Despite significant differences between the performance 
indicators of the evaluated metamodels, both machine learn-
ing approaches have characteristics that can be considered 
adequate. The choice of the approach depends on how the 
metamodel development proposal is determined. The first 
difference that stands out is the need for pre-processing the 
input data for ANN while for GBM there is no such need. 
Defining how the pre-processing of each input variable of 
the metamodel could take a significant amount of time, as 
the ideal processing method varies according to the variable 
type. In this work, we used only standardization by z-score 
for quantitative variables and transforming qualitative vari-
ables into dummy variables. However, other types of data 
pre-processing can be applied to different types of variables.

Another aspect that may be relevant is the training time of 
the metamodels. The ANN required significantly less train-
ing time (2 hours and 17 minutes) compared to GBM (17 
hours and 1 minute).

Considering that we conducted the training of the meta-
models on a machine with above-average processing and 

Fig. 3  Standardized input parameters distributions occurrence

Table 5  Final ANN template hyperparameters

Hyperparameter Value

hidden_layer_sizes 64 and 128
activation relu

batch_size 128
learning_rate_init 0.01
tol 0.0001
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parallelization capacity, the need for agility in the develop-
ment of the metamodel could make the GBM application 
unfeasible, as the training can take more than 12 hours to 
complete. This fact indicates a trend that ANN can be a 
more coherent metamodel to use in a professional routine 
since GBM training takes more than 12 hours to complete, 
and the difference between indicators’ results is short.

Regarding the metamodels’ performance, the GBM pre-
sented indicators considerably better than those of the ANN. 
Both presented acceptable  R2 values, both for the training 
sample and for the test sample. The difference between the 
scatter plots of Figs. 4 and 5 shows how the GBM metamodel 
has better accuracy, with points that are closer to the dotted 
line, along the entire range of thermal load values considered. 
In the case of ANN, the model still seems to have a bias in the 
ranges of higher thermal load values, causing the metamodel 
to underestimate the output value in the predictions. Despite 
the differences, in both metamodels the values of MAE and 
RMSE have a good order of magnitude in relation to the 
estimated output parameter. The AE95 also remains in the 
same order of magnitude as the MAE and RMSE, which indi-
cates that the accuracy of the metamodel is not significantly 
compromised for at least 95% of the cases in the test sample.

Both analyzed metamodels present data overfitting, as 
the indicators presented lower accuracy values when meas-
ured from the test sample concerning the training sample. 
The reasons for overfitting differ between machine learning 
methods. In the case of ANN, a number of nodes greater 
than necessary in the hidden layers can be the cause, as 

well as the variable tol, which interferes in the number of 
iterations that occur in the training process. In the case of 
GBM, the increase in the number of estimators can cause 
the overfit phenomenon. After a certain number of estima-
tors, there is little improvement in the model’s performance 
during the training process, at which point it is possible 
for overfitting to occur. Since the criterion for choosing the 
best model within the grid does not consider the test sam-
ple, there may be models with the mean value of the cross-
validation score close to those of the chosen models that 
could present superior performance for the test sample. The 
differences between the indicators obtained by the training 
and test samples were proportionally more significant in 
GBM. We observed that their values were greater than twice 
the values of the training sample for the RMSE, MAE, and 
AE95. However, the performance of GBM was significantly 
superior compared to ANN, since the performance indica-
tors of the test sample obtained from it were significantly 
higher in accuracy than those of the test sample using ANN.

6  Conclusion

The development of metamodels can help building design, 
facilitating the estimation of thermal load demand. The 
metamodels presented in this work were developed 

Fig. 4  Comparison between 
predictions and simulated 
values for (a) training and (b) 
testing samples from ANN

Table 6  Performance indicators 
of the final ANN model for 
training and testing samples

Indicator Training Test

R2 0.975 0.945
RMSE 5.97 8.76
MAE 4.29 5.92
AE95 12.05 18.85

Table 7  Hyperparameters of the final GBM model

Hyperparameter Value

n_estimators 40 000
max_depth 5
min_samples_split 100
loss huber

learning_rate 0.05
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employing the GBM and ANN methods, implemented with 
the Python Sklearn library.

The two machine learning approaches presented in 
this work have specific characteristics that may suit 
the application context. The ANN requires data pre-
processing and can make its application more complex 
compared to GBM, which does not require this pre-
processing. On the other hand, training GBM models 
are significantly more computationally expensive than 
training ANN models.

The use of a grid allowed finding the best combination 
of hyperparameters for the development of metamodels. 
However, this method defines the final model without 
considering the test sample, resulting in overfitting the 
data. A more rigorous adjustment of the hyperparame-
ters that influence overfitting could be explored in future 
works, guaranteeing more robust metamodels for unseen 
cases.

According to the performance indicators evaluated 
 (R2, RMSE, MAE and AE95) the metamodels were able 
to adequately estimate the thermal loads. However, the 
GBM metamodel showed considerably higher indicators 
than the ANN metamodel, both for the training sample 
and for the test sample. Therefore, the GBM metamodel 
was the most suitable for the application proposed in 
this work.

Although the performance of the GBM model got 
higher performance indicators compared to the ANN 
model in this study, other configurations of the hyperpa-
rameters and pre-processing of the input and output data 

could result in a better performance for de ANN model. 
Since there are no definitive answers to the best configu-
ration for these machine learning methods, the results are 
limited to the optimization methods applied and the com-
putational power available.
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