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Abstract
The development of new information technologies at the beginning of the 21st century allows the integration between the
physical and the virtual world. In Engineering, an emerging technology called digital twins is presented as the mechanism
to virtualize the operation of devices, machines and processes. In industrial engineering and specifically in supply chains
there is a growing interest in the development of digital twins. For this reason, this paper proposes the integration of large-
scale optimization problems in a digital platform that allows the solution of these problems for decision-making in real time.
Bin-Packing and Vehicle Routing problems are addressed through the interface of a commercial supply chain management
platform and heuristic optimization algorithms. We use technology based on simulation of discrete events to achieve the
periodic decisions that make up the Digital Supply ChainTwin engine. A hypothetical case solution is presented to verify
the performance of the proposed development.

Keywords Digital twins · Packing problem · Digital supply chain twin · Vehicle routing problem · Discrete event simulation

1 Introduction

Nowadays, one of the most important technological strate-
gies to add value to a process or a set of processes is through
the design and implementation of a digital twin. This strat-
egy is applicable to any type of organization, manufacturing
or service company. However, the investment required to
design and develop it is highly dependent on the objectives
for which it was created. As the authors mention in [4],
in the field of business, for example in supply chains, the
technological platforms for the implementation of digital
twins in available supply chains are scarce and expensive.
Most of them are based on Enterprise Resource Planning
systems (ERP), see [15, 26, 30]. An ERP system is gener-
ally commercial software that collects the most important
information from the various areas of the organization in
databases. This cluster of information allows decision mak-
ers monitoring the performance of the company using a
global and integrated vision of reality. Full integration of
ERP systems on a digital twin platform is not yet available.
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However, there are initiatives that propose the use of spe-
cialized software in supply chain management, simulation,
business intelligence and others to develop digital supply
chain twins. Some examples can be seen in [13, 14, 18]
and [25]. Recently, novel business initiatives have emerged.
These proposals ensure digital twin solutions for supply
chain, building management & manufacturing [24] and [1].
Nevertheless, the solutions proposed for the real-time opti-
mization of the supply chain do not ensure the handling of
large-scale problems such as the Vehicle Routing Problem
(VRP) and Bin-Packing Problem (BPP) among others.

For this reason, this work proposes the development of
a digital supply chain twin that integrates the VRP and BPP
in a joint scheme. The use of a commercial technology plat-
form such as anyLogistix (ALX) [1] and ad-hoc heuristic
algorithms allow solving large problems in real time. A
hypothetical case is developed to verify the performance of
the proposed digital twin.

The manuscript is organized as follows. Section 2 illus-
trates the literature review. Section 3 introduces the 3D-BPP
and GVRP mathematical models used. Section 4 presents
the twining data-driven joint optimization, the heuristic algo-
rithm used for the 3D-BPP solution as well as how to integrate
it into the GVRP solution through ALX. Section 5 shows
the case study environment. Section 6 discusses the paper
results. Finally, Section 7 summarizes the conclusions.
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2 Literature review

Within digital supply chain twins development, recently
some authors have directed their efforts in the optimization
and simulation function of a digital twin. Some examples
can be found in [3, 14, 18, 29] and [31]. Two large-scale
optimization problems are addressed in this study: BPP and
VRP. About the classic packing problems we can see in
[5] that the authors focus on the study of the Bin Packing
Problem. Each item consumes an interval of time which
depends a piece. The objective is to use the least number
of bins but at the same time it is necessary to consider the
capability. There are different algorithms and formulations
that are being studied through tests.

In [21], the authors focus on single stage stochastic bin
packing problem (SBPP), which is based on a given item
list. The items sizes are represented by stochastically inde-
pendent variables. The SBPP needs to determine the mini-
mum number of unit capacity bins that are needed to pack
all the items in the list. Such calculations are important for
the server consolidation field, because in that field is where
jobs are assigned so they can manage low costs and keep the
energy consumption as low as possible. This study is only
focused on normally distributed item sizes; however, it can
function in any other kind of distribution. From a mathe-
matical perspective the characteristics of this kind of items
are a challenge, because they turn out to be nonlinear inte-
ger program. For that scenario, the scientists, derived lower
and upper bounds and studied the worsts case scenarios.
Finally, all different mathematical approaches are tested on
computational experiments involving both, randomly and
real-world instances.

Additionally, there is a different problem variant, pop-
ularly known as the 2D circle bin packing problem (2D-
CBPP). This variant involves packing circles into multiple
square bins as densely as possible, this with the objective
of minimize the number of bins used as much as possible.
In [11], this paper proposes an adaptive large neighbor-
hood search algorithm, which uses their Greedy Algorithm.
The Greedy solution helps normally in a local optimum
trap, which enables multiple neighborhood searches that
depend on a stochastic schedule to avoid local traps. This
method is tested or benchmarked with computational results
in heterogenous instances, in all cases the study’s method
outperforms the computational results, which means that the
number of bins used is reduced.

Other authors consider the 3D bin packing problem (3D-
BPP) which normally sets orthogonally in packs of rect-
angular items with different dimensions into the minimum
number of 3D rectangular bins. In [8], they proposed a
method that ensures the minimization of bins used and
maximization of safety of the logistic operations, thanks to
the load-balancing objective along with the orientation and

stability. This paper develops a new concept, that is called
family unity, which encourages packing a family of prod-
ucts together while taking advantage of the load-balance in
3D-BPP by combining the orientation and stability. This is
the first paper that proposes a multi-objective mixed inte-
ger programming model for the problem to determine the
optimal number of bins used and the deviation of balance
from the ideal barycenter while maximizing family unity
ratio. Finally, they test this particular method in a real-life
container problem and solved the issue at hand. In [22],
the main focus is on a specific version of the temporal
bin packing problem (TBPP) that occurs in a job-to-server
scheduling. The TBPP is a representation of BPP but with
an additional variable, time. It requires to find or deter-
mine the minimal number of bins used to accommodate a
given list of items at any instant of time. In addition to
the aforementioned goal, recent paper suggests including
the number of fire-ups of the servers as an important fac-
tor in sustainable and energy-efficient operation. It has been
shown that the parameter that is used to weight both of
the goals influence directly to the applicability of heuris-
tics, making the problem more difficult so only favorable
choices can be handled correctly. Even in these specific sce-
narios the approaches that have been taken fail to compute
an exact answer. For this reason, this paper suggests differ-
ent approaches to reduce the number of variables or new
processing techniques to strengthen the LP bound. Based
on different numerical tests it is shown that the improved
method got better performances than the old one.

Finally, some applications in delivery and storage can
be find in [7]. In this paper they focus on the bin packing
problem with conflicts and item fragmentation (BPPC-IF)
which has applications in the delivery and storage of items
that cannot be packed together. Given a list of variable size
items the main goal is to minimize the number of bins used
for its packing while not packing fragments of conflicting
items into the same bin. They make an assumption of same
size-preserving fragmentation, the total size of fragments
of an item packed into the bins has to be equal to the
item’s original size. It is proved that this method does not
necessarily admit optimal solutions with a special structure.
Lastly, a heuristic proposal is made, which sequentially
packs items into the bins using the observation about the
oversized items. Thorough a computational study, they
could demonstrate the out performance of this method
compared to the existing algorithms.

Talking about digital twins (DT), we find several works
related to its development, for example in [28] the study
mentions that Fifteen years ago was the first time that
the concept of digital twins was introduced. Digital twins
are an important and promising technology that can be
implemented in many areas and different industries. The
objective of this paper is to research the principal advantages
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of DT and how it can be applied in the different fields of the
industry.

Reviewing the works that integrate optimization methods
and storage strategies we can find what was done by [6].
The objective of this paper is to propose three lean manufac-
turing tools to improve the production of warehouses. The
first one is called Unified Modeling Language.The function
is to display the design of the warehouse logistics. The sec-
ond tool is the Value Stream Mapping, it determines if an
activity is useful and valuable. And the last one is a math-
ematical formulation of the philosophy of Genba Shikumi,
the objective is to inspect the performance of the warehouse
to find irregularities. The tools were applied in a real case
and the analysis showed a profitability warehouse and an
upgrade quality.

Another example is founded in [12]. This study proposed
a method to have a better control of the production logistics.
It is complicated to plan the production due to the vari-
ability. However, with the technology of the Internet of the
things (IoT) it is possible to reduce the fluctuation with the
real-time information. The method consists of a mathemati-
cal scheduling model with a time interval to reduce the cost.
Then with the algorithm designed it is implemented levels of
satisfaction.After that, a real case is carried out with a real-
time manufacturing environment. Finally, to prove the via-
bility of the method it is necessary to do many experiments.
Regarding the use of support systems, in [32] the authors
propose a tool using a Decision Support System (DSS) and
digital twins for having a better management of the port
resilience computation and updating due to the variability
and control how it is going to impact, it also can predict how
it is going to perform and have a better resilience evaluation
for different operational obstacles.For applying this tool it
is necessary to have an optimal computing environment.

Other applications of digital twins are related to factory
design and process improvement.The importance of a good
design is the productivity and the space-use. Digital Twins
make possible to check different designs and evaluate which
is the better one. In [10] optimization of the factory design
using the technology of digital twins is presented. To show
all the advantages of this tool it was used in a real factory.
Other applications as production engineering and material
products is the work consulted in [27].

In the studies analyzed and discussed above, several
applications of digital twins in engineering are presented.
However, there are few works that present the integration of
optimization techniques for solving optimization problems
in real calculation times.

In this study that we present, large-scale problems such as
bin-packing are addressed. However, some authors address
these problems from different approaches and without the
use of schemes or platforms such as digital twins. For example,

in [21] the authors solve the stochastic Bin Packing Problem
(SBPP), the objective is to minimize the quantity of pack-
aging necessary for all the products. SBPP is a nonlinear
integer program which is a problem. The proposed solution
consists of trying lower and upper bounds to find the one
that doesn’t work perfectly. Also it is necessary to linearize
and to do many experiments.

Multi-objective temporal bin packing problem is pre-
sented in [2]. The main objective of this paper is to propose
an heuristic method based on the bin packing problem to
reduce the operations cost and minimize the servers neces-
sary to reach the target. The obstacle is the capacity given.
The study is established on the problem of energy efficiency
of virtual machines and cloud servers. The paper proposes
an algorithm to submit the lower limit in the expected value
and it is useful to measure the performance of the heuristic
method.

Production scheduling is complicated to synchronize the
industry of manufacturing due to the deranged setups. In
[17] the authors propose an automobile standard part factory
applying internet of things with 3 principal objectives. First,
there are two dimensions for synchronization. The horizon-
tal synchronization (HSynch) and the vertical synchroniza-
tion (VSynch). Second one is the IoT-enabled synchroniza-
tion using instantaneous information. The third one is the
use of advanced planning and scheduling (APS) for carry-
ing out the synchronization mechanisms. Machine learning
based Digital Twin Framework for Production Optimiza-
tion Petrochemical Industry is presented in [23]. This paper
focuses on the implementation of innovative technologies
and tools, such as machine learning, big data, internet of
things (IoT) to create a digital twin that can be used in the
petrochemical industry. In this field it is important to have
a precise control of the production due to the lack of time.
The digital twin construction is important to have a better
management of the demanded production and also with the
variability.

As can be seen in the literature, there are many works
on how to approach packing problems. However, there are
few studies that address the solution of packaging problems
integrating them into vehicle routing and within a scheme
of digital twins.

3 Large-scale optimizationmodels

3.1 3D-bin packing problem (3D-BPP)

The bin packing problem in its three-dimensional version
considers the orthogonal packing of n rectangular shaped
items. All items have a known length, width and depth. In
this study we are based on the model proposed by [19].
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An unlimited number of containers is considered and the
objective is to minimize the number of them. All containers
have the same dimensions.

The bin packing problem (BPP) can be informally defined
in a very simple way. We are given n items, each having an
integer weight wj(j = 1, ..., n), and an unlimited number of
identical bins i of integer capacity c. The objective is to
pack all the items into the minimum number of bins so
that the total weight packed in any bin does not exceed the
capacity.(In a different but equivalent normalized definition,
the weights are real numbers in [0,1], and the capacity is 1.)
We assume,with no loss of generality, that 0 < wj < c for
all j .

yi =
{

1 if bin i is used in the solution;(i = 1, ..., u),

0 otherwise

xij =
{

1 if an item j is packed into bin i:(i =1, ..., u; j =1, ..., n),
0 otherwise

We can model the BPP as a basic Integer Linear Program
(ILP) of the form, see [20].

min

u∑
i=1

yi (1)

s.t .
n∑

j=1

wjxij ≤ cyi(i = 1, ..., u), (2)

u∑
i=1

xij = 1(j = 1, ..., n), (3)

yiε {0, 1 } (i = 1, ..., u), (4)

xij ε {0, 1 } (i = 1, ..., u; j = 1, ..., n) (5)

Constraint (2) is the capacity limit of each bin, while
constraint (3) guarantees that each item is packed in a bin.
For the case of three dimensions, constraint (2) must be
replaced for the following:

n∑
j=1

wj ≤ W(i = 1, ..., u), (6)

n∑
j=1

hj ≤ H(i = 1, ..., u), (7)

n∑
j=1

dj ≤ D(i = 1, ..., u), (8)

Where w, h, d are three dimensions correspond to the
width, height and dept values.

3.2 The generalized vehicle routing problem (GVRP)

The Generalized Vehicle Routing Problem is a subclass of
the classic network design problems and is an extension of
the typical Vehicle Routing Problem. Therefore, it has been
widely studied due to its NP-Complete nature. We use the
GVRP proposed by [9] that uses binary variables xv

nm and
yv
n . xv

nm indicates whether m ∈ N is visited immediately
after node n ∈ N by vehicle v ∈ ν (xv

nm = 1), or not
(xv

nm = 0). yv
n indicates whether node n ∈ N is visited by

vehicle v ∈ ν(yv
n = 1), or not (yv

n = 0). For each node
n ∈ N the model contains the variable tn and ρn. If node
n ∈ N is visited by a vehicle tn specifies the arrival time
and ρn are without any meaning. The contribution of each
vehicle vεν to the objective function∑
oεφ

yv
n(0,1)po −

∑
(n,m)εA

xv
nmcv

nm

The first term models revenues, the second term models
transportation costs.

Max
∑
vεν

⎛
⎝∑

oεφ

yv
n(0,1)po −

∑
(n,m)εA

xv
nmcv

nm

⎞
⎠ (9)

subject to∑
(n,m)εA

xv
nm =

∑
(m,n)εA

xv
mn f or all vεν, nεN (10)

Y v
n =

∑
(n,m)εA

xv
nm f or all vεν, nεN (11)

∑
vεν

Y v
n ≤ 1 f or all nεN (12)

f or all vεν, (n, m)ε A with n �= n(v,λv) :

if xv
nm = 1 then tn + dv

nm ≤ tm (13)

tmin
n ≤ tn ≤ tmax

n f or all nεN (14)

tn(v,μ)
≤ tn(v,μ+1) f or all v ε ν, 1 ≤ μ < λv (15)

tn(o,μ)
≤ tn(o,μ+1) f or all o εØ, 1 ≤ μ < λo (16)

yv
n(v,μ) = 1 f or all v ε ν, 1 ≤ μ ≤ λv (17)

λo∑
μ=1

yv
n(o,μ) = λoy

v
n(o,1) f or all o ε Ø, vεν (18)

ρn(v,1) = rn(v,1) f or all v ε ν (19)

f or all v ε ν, (n, m)ε A with n �= n(v,λv) :

if xv
nm = 1 then ρm = ρn + rm (20)
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Fig. 1 Pseudo-code for the
S-DBLF packing method

f or all vεν, n εN : if yv
n = 1 then 0 ≤ ρn ≤ rv

yv
n(o,1)

≤ δov f or all o εØ, vεν (21)

xv
nm ∈ {0, 1} f or all vεν, (n, m)εA, (22)

yv
n ∈ {0, 1} f or all vεν, n εN (23)

The objective function is represented by Eq. 9. Equa-
tion 10 represents the flow conservation constraints which
impose that each vehicle which reaches a node n ∈ N

also departs from the node. Constraints (11) and (12)
impose that each node is visited at most once.Inequality (13)
imposes that each node which is not the starting point of
a tour is reached no earlier than the preceding node to the
mode.Inequality (14) impose that each arrival time within
the time windows of the node.Constraints (15) and (16)
are the precedence constraints imposed on the sequence in
which nodes associated to vehicles and orders are visited.
Equation 17 imposes that all nodes which must be visited
by a vehicle are visited by this vehicle. Equation 18 repre-
sents the grouping constraint which imposes that, if the first

Fig. 2 Packing algorithm results (a)
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Fig. 3 Packing algorithm results (b)

node of an order is visited by some vehicle, all other nodes
belonging to the order are visited by the same vehicle. Con-
straints (19) to (20) are the capacity constraint which impose
that the load at each node equals the load at the node and that
at each node the load is below the capacity of the vehicle and
non negative. Inequality (21) represents the compatibility
constraint which imposes that the orders are only assigned
to vehicles capable of serving the order. Finally, constraints
(22) and (23) impose the values of xv

nm and yv
n are binary.

4 Twining data-driven joint optimization

In this study we propose the digitization of the solution of
two large-scale problems. We use a free and open source
tool (R-studio) and enterprise-ready professional software
for data science teams. We also developed an interface to
exchange information between 3D-BPP and GVRP using
a supply chain design and simulation tool (Anylogistix).In
other words, we propose a digital twin prototype to aggre-
gate data of the physical orders of a shipping service system
to optimize packing and vehicular routing to customers.

The methodology proceeds as follows:

1. Using the R-studio software, items with random dimen-
sions are generated for their width (wj ), height (hj ) and
depth (dj ).

2. The items are ordered based on their volume and with-
out increasing the height, this criterion helps to reduce
the computational complexity in general terms.

3. Layer by layer the items are packed in the container (bin).

4. Later the heuristic algorithm (S-DBLF), see [16], opti-
mizes the packaging. The pseudocode is shown in Fig.1.

5. Once the accommodation indicated by the stop criteria
has been obtained, see Figs. 2 and 3, a plain text file
is printed that will serve as input parameters for the
specialized supply chain design (ALX) software. For
reference see Table 1.

6. Customer locations, demand and lead time are entered
into the ALX software. Likewise, the vehicle fleet sug-
gested by the number of bins obtained in the optimization
process is also entered through the developed interface.

7. All the data and parameters necessary to optimize the
production, inventory and distribution process are loaded
directly into the logistics software. In this module you
can enter the supply and inventory policies that you
want to test, see Figs. 4, 5 and 6.

Table 1 Output file example

Solinst beasley rect01 FACTIBLE.csv

ID-obj , COORD-X , COORD-Y ,COORD-Z

10,10.6667,5.33333,26.6667

10,10.6667,5.33333,80

.

.

.

.

.

34,138.667,138.667,272

35,138.667,80,298.667
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Fig. 4 Discrete event diagram of the production level (supplier) simulation

8. Finally, after solving the GVRP by using the CPLEX
optimizer, the vehicle routing is calculated. The pro-
posed routes satisfy all constraints and are also carried
out at minimum cost.

9. The results are presented in Microsoft’s Power BI.

5 Case study environment

This study is based on the hypothetical case of an automotive
parts manufacturing center in Mexico. The supply chain is
made up of two manufacturers, two warehouses for finished

Fig. 5 Discrete event diagram of a Distribution Center Simulation
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Fig. 6 Customer simulation

parts and customers scattered throughout the country, see
Table 6. We consider customer demand data of Table 3, as
well as the production and storage capacities of the facilities
in the supply chain under study. Purchase orders made by
customers generate orders that must be satisfied by the
manufacturing and warehousing centers. At this stage of the
supply chain the 3D-BPP is resolved. The order information
is provided by a shipping service system.

5.1 File entry model for 3D-BPP

The file input model is a plain text file, no informative
texts have been included in the file. The objects to be
packed are considered as rectangular or cuboid parallels,
the dimensions of the objects are handled with semi-radii,
which are the half of each side for each direction or axis
of the object. The first row refers to the dimensions of the
container w = 160, l = 160, d = 320. The second line
refers to the number of types of objects (not the list of
objects to pack). The next 9 lines describe each of the 9
types of objects. See Table 2.

5.2 Output file for 3D-BPP

The output file is a simple or plain text file separated by
commas, the file is created as a table where in each line the
type of object is specified followed by the coordinates of the
center of the object, separated by a comma, see Table 1.

5.3 Input data for the GVRP

To begin the optimization of the supply chain it is necessary
to take into account the geographic locations of the clients
as well as their product demand. The data used is shown in
Tables 3 and 4.

Subsequently, Table 5 showh the 3D-BPP solution that
gives us the number of vehicles that have to be occupied to
satisfy the orders. In this part it is necessary to consider the
characteristics of the vehicles as well as the specification of
their capacity and average speed, see Table 6.

Table 2 File entry

W L D

160 160 320

9

10 10 5 25

21 30 30 10

22 10 30 30

23 30 10 30

31 25 20 10

32 25 10 20

33 20 10 25

34 10 20 25

35 10 25 20
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Table 3 Customer demand
Customer Product Demand Type

Customer Product PeriodicDemand[period::30.0;quantity::250.0]

Customer 2 Product PeriodicDemand[period::30.0;quantity::240.0]

Customer 3 Product PeriodicDemand[period::30.0;quantity::500.0]

Customer 4 Product PeriodicDemand[period::30.0;quantity::450.0]

Customer 5 Product PeriodicDemand[period::30.0;quantity::420.0]

Customer 6 Product PeriodicDemand[period::30.0;quantity::300.0]

Customer 7 Product PeriodicDemand[period::30.0;quantity::380.0]

Customer 8 Product PeriodicDemand[period::30.0;quantity::400.0]

Customer 9 Product PeriodicDemand[period::30.0;quantity::450.0]

Customer 10 Product PeriodicDemand[period::30.0;quantity::450.0]

Customer 11 Product PeriodicDemand[period::30.0;quantity::510.0]

Customer 12 Product PeriodicDemand[period::30.0;quantity::480.0]

Customer 13 Product PeriodicDemand[period::30.0;quantity::110.0]

Customer 14 Product PeriodicDemand[period::30.0;quantity::200.0]

Customer 15 Product PeriodicDemand[period::30.0;quantity::127.0]

Customer 16 Product PeriodicDemand[period::30.0;quantity::125.0]

Customer 17 Product PeriodicDemand[period::30.0;quantity::85.0]

Customer 18 Product PeriodicDemand[period::30.0;quantity::170.0]

Customer 19 Product PeriodicDemand[period::30.0;quantity::36.0]

Customer 20 Product PeriodicDemand[period::30.0;quantity::50.0]

Customer 21 Product PeriodicDemand[period::30.0;quantity::260.0]

Customer 22 Product PeriodicDemand[period::30.0;quantity::120.0]

Customer 23 Product PeriodicDemand[period::30.0;quantity::40.0]

Customer 24 Product PeriodicDemand[period::30.0;quantity::16.0]

Customer 25 Product PeriodicDemand[period::30.0;quantity::56.0]

Customer 26 Product PeriodicDemand[period::30.0;quantity::20.0]

Customer 27 Product PeriodicDemand[period::30.0;quantity::41.0]

Customer 28 Product PeriodicDemand[period::30.0;quantity::44.0]

Customer 29 Product PeriodicDemand[period::30.0;quantity::43.0]

Customer 30 Product PeriodicDemand[period::30.0;quantity::50.0]

Customer 31 Product PeriodicDemand[period::30.0;quantity::155.0]

Customer 32 Product PeriodicDemand[period::30.0;quantity::133.0]

Customer 33 Product PeriodicDemand[period::30.0;quantity::103.0]

Customer 34 Product PeriodicDemand[period::30.0;quantity::87.0]

Customer 35 Product PeriodicDemand[period::30.0;quantity::130.0]

Customer 36 Product PeriodicDemand[period::30.0;quantity::176.0]

Customer 37 Product PeriodicDemand[period::30.0;quantity::89.0]

Customer 38 Product PeriodicDemand[period::30.0;quantity::84.0]

Customer 39 Product PeriodicDemand[period::30.0;quantity::90.0]

Customer 40 Product PeriodicDemand[period::30.0;quantity::157.0]

Customer 41 Product PeriodicDemand[period::30.0;quantity::195.0]

Customer 42 Product PeriodicDemand[period::30.0;quantity::163.0]

Customer 43 Product PeriodicDemand[period::30.0;quantity::180.0]

Customer 44 Product PeriodicDemand[period::30.0;quantity::53.0]

Customer 45 Product PeriodicDemand[period::30.0;quantity::36.0]

Customer 46 Product PeriodicDemand[period::30.0;quantity::31.0]

Customer 47 Product PeriodicDemand[period::30.0;quantity::157.0]

Customer 48 Product PeriodicDemand[period::30.0;quantity::171.0]

Customer 49 Product PeriodicDemand[period::30.0;quantity::169.0]

Customer 50 Product PeriodicDemand[period::30.0;quantity::120.0]

Customer 51 Product PeriodicDemand[period::30.0;quantity::98.0]
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Table 4 Customer and facility locations

Name Latitude Longitude

Customer location 19.622246 -99.329188

Customer 2 location 19.535595 -99.213399

Customer 3 location 24.045396 -104.658753

Customer 4 location 23.638437 -105.611488

Customer 5 location 24.029057 -104.650225

Customer 6 location 31.730409 -106.479027

Customer 7 location 17.066841 -96.73772

Customer 8 location 24.025755 -104.681621

Customer 9 location 29.078191 -111.007372

Customer 10 location 31.106039 -108.027081

Customer 11 location 22.729944 -102.596272

Customer 12 location 28.656116 -106.137723

Customer 13 location 19.495112 -99.166898

Customer 14 location 19.557386 -99.202654

Customer 15 location 22.699102 -102.488394

Customer 16 location 19.076131 -98.151291

Customer 17 location 21.084454 -101.619794

Customer 18 location 19.488353 -99.172571

Customer 19 location 29.038027 -110.958645

Customer 20 location 29.019799 -110.919995

Customer 21 location 19.073619 -98.169829

Customer 22 location 20.620163 -103.282011

Customer 23 location 25.563156 -103.462991

Customer 24 location 25.593644 -103.397649

Customer 25 location 25.595307 -103.397985

Customer 26 location 25.588523 -103.397613

Customer 27 location 25.590331 -103.393417

Customer 28 location 25.590607 -103.389259

Customer 29 location 25.588643 -103.397726

Customer 30 location 25.593428 -103.403541

Customer 31 location 22.112905 -100.914221

Customer 32 location 22.115783 -100.913006

Customer 33 location 22.113843 -100.906509

Customer 34 location 22.084968 -100.894021

Customer 35 location 21.983956 -100.874232

Customer 36 location 19.386347 -98.050961

Customer 37 location 19.306047 -97.790961

Customer 38 location 18.912961 -99.175681

Customer 39 location 18.915797 -99.169144

Customer 40 location 19.298028 -99.555593

Customer 41 location 19.043975 -98.159575

Customer 42 location 17.085111 -96.745687

Table 4 (continued)

Name Latitude Longitude

Customer 43 location 17.073319 -96.757021

Customer 44 location 25.771817 -100.167444

Customer 45 location 25.769437 -100.161392

Customer 46 location 25.756051 -100.137675

Customer 47 location 20.068149 -98.741626

Customer 48 location 20.125285 -98.773954

Customer 49 location 19.237095 -103.761941

Customer 50 location 18.453487 -97.392052

Customer 51 location 18.449896 -97.392263

GP location 25.661 -103.528

ZAC location 22.699 -102.448

TARGP location 25.558 -103.465

TARZAC location 22.75 -102.438

Table 5 Fleet size

Facility Vehicle type Amount

GP T66 2

GP T43 4

GP T31 3

GP T20 3

ZAC T66 3

ZAC T43 4

ZAC T31 4

ZAC T20 3

Table 6 Vehicle type

Name Capacity Capacity unit Speed Speed unit

T66 66 m3 50.0 km/h

T43 43 m3 50.0 km/h

T31 31 m3 50.0 km/h

T20 20 m3 50.0 km/h
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Fig. 7 Vehicle routing 1

Fig. 8 Vehicle routing 2
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Fig. 9 Vehicle routing 3

Fig. 10 Vehicle routing 4
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Fig. 11 Vehicle routing 5

Fig. 12 Lead time RQ-policy
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Fig. 13 Lead time stock security-policy

Fig. 14 Analytics-Power BI interface
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Table 7 Key performance
indicators RQ-policy Statistics name Value

Available Inventory 490756.5788

Demand (Products Backlog) 0

Demand Placed (Products) by Customer 1061896.722

Demand Received (Products) 2311896.722

Fulfillment Received (Products) 1250000

Fulfillment Shipped (Orders) 295

Peak Capacity 697649.8862

Products Produced 1400000

Profit 302839148.2

Service Level by Products 0.856244682

Total Cost 3017803.702

Transportation Cost 3017803.702

Traveled Distance 32887.90236

Table 8 Site state after network optimization

Iteration Period Site Initial state New state Initial cost Closing cost

1 Basic period DC 2 Open Closed 0 0

Table 9 Storage by product

Iteration Period Facility Product In Flow Storage Percentage Out flow Storage min Storage max

1 Basic period DC 3 P1 11815.5 2880 80 8935.5 2880 3600

1 Basic period DC 3 P2 36447.75 7200 71.42857143 29247.75 7200 10080

1 Basic period DC 1 P1 21113.25 2880 80 18233.25 2880 3600

1 Basic period DC 1 P2 43824 7200 71.42857143 36624 7200 10080

1 Basic period Factory P1 0 2880 80 32928.75 2880 3600

1 Basic period Factory P2 0 7200 71.42857143 80271.75 7200 10080

Table 10 Production flows

Iteration Period Facility BOM Product Consumed Produced

1 Basic period Factory P1 0 35808.75

1 Basic period Factory P2 0 87471.75
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6 Results

The entire process described above is calculated and stored
in the cloud to create the necessary reports. These indicators
and tables are available in real time to anyone involved in
the decision-making process in the supply chain.

Figures 7, 8, 9, 10 and 11 show snapshots of the vehicle
routing obtained by specialized supply chain software.

Figures 12 and 13 show the lead times of the two
inventory policies tested in this case study:

– RQ-Policy
– Stock Security-Policy

As can be seen in Fig. 12, the RQ policy provides better
results and decreases the average lead time to customers.

Finally the data dashboards are developed in a business
intelligence tool, see Fig.14. Specific results for logistics
KPIs, warehousing, product flow and warehouse operation
are shown in the Tables 7, 8,9 and 10.

7 Conclusions

Nowadays, many industries are evolving for the adoption
of technology based on digital twins.This technology will
allow in the future to obtain a digital mirror of any thing
or process in the physical world.The present study was
motivated by the need to solve large-scale problems in near-
real times that arise in the supply chain operation. The
3D-BPP and GVRP are solved combining mathematical
programming methods with a genetic algorithm and spe-
cialized supply chain software. A digital twin supply chain
prototype is presented that solves large mathematical prob-
lems with classical optimization techniques. The results
obtained encourage the development of modules that com-
plement the tool. As future work, the incorporation of arti-
ficial intelligence tools to manage predictions and improve
the resilience of the supply chain can be considered.

Declarations

Conflict of Interests The author declare that he does not have conflict
of interest.

References

1. anyLogistix: Supply chain digital twins (2021). https://www.
anylogistix.com/supply-chain-digital-twins/
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