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Abstract
Nowadays various distributed stream processing systems (DSPSs) are employed to process the ever-expanding real-time
data. The DSPSs are highly susceptible to system failure, and the fault-tolerance issue is a major problem, which is
getting lot of attention nowadays. Flink is a popular streaming computing framework that implements a lightweight,
asynchronous checkpoint technique based on the barrier mechanism to ensure high efficiency in analysing the data. In a
checkpoint-based fault-tolerance mechanism, a shorter checkpoint interval can increase runtime cost of streaming ap-
plications, while a longer one will increase recovery time of failure recovery. So, selecting an optimal checkpoint
interval is critical to attain high efficiency of the streaming applications. Traditional optimal checkpoint interval mech-
anisms usually assume that the checkpointing delay and the fault recovery time are fixed. However, both factors have a
strong relation to the intensity of the application’s workload. To obtain more optimal checkpoint interval under different
workload intensities, this paper proposes a performance model to estimate the tuples processing latency and a recovery
model to estimate the fault recovery time. With these two models, an optimal checkpoint interval can be arrived. These
models and the interval optimisation interval are verified experimentally on Flink. The results show that the proposed
model can recommend an optimal checkpoint interval according to the system reliability related indicators. This pro-
posed system optimised recovery time and performs efficiently in applications with delay constraints.
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Large amount of real-time data are generated in the net-
work with the development of smart home, smart trans-
portation, social media, Internet of things and Internet
applications. These data are collected, processed and
analysed in real-time, so that the data processing results
can be delivered in real-time with sub-second delay. The
requirement for processing these real-time data spawned
the concept of stream computing. Stream computing is a
paradigm of memory computing that runs in a distributed
environment and is therefore highly susceptible to system
failure [1].

Once the stream processing system fails, the system
must be normalised or get everything back to normal as
soon as possible. Otherwise, the final estimated result

may be worthless due to timeout. The fault-tolerance
mechanism of streaming computing systems is one of
the important research fields, which has received a greater
attention from academia and enterprises. So far, main-
stream stream processing systems generally use active or
passive backup to enhance their reliability. Active backup
can realise seamless failure recovery by switching among
active standby tasks, but doubles the resource consump-
tions. As a result the cost will be very high when used in
large-scale applications. Because of the high costs of ac-
tive backup, checkpoint-based passive backup mecha-
nisms are getting very popular, which reduce the
expenses.

Flink [2] is an open source stream processing frame-
work for distributed, high-performance stream processing
applications. Compared with other stream processing en-
gines such as Storm [3] and Spark Streaming [4], Flink
can support both stream processing and batch processing,
support real-time data processing with better throughput
and exactly-once semantics process. Moreover, it also
supports application in flexible deployment and flexible
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expansion. Therefore, it is widely used in production en-
vironments. A comparative study is performed with
existing distributed stream processing engines [5].

Flink implements a lightweight asynchronous checkpoint
based on the barrier mechanism to ensure high availability and
efficiency. Choosing an optimal checkpoint interval is critical
for checkpoint-based stream processing systems to ensure ef-
ficiency of the streaming applications. A shorter checkpoint
interval will increase the cost of the streaming applications.
Moreover, a longer checkpoint interval will increase the fail-
ure recovery time. Therefore, consumers need to balance be-
tween the additional cost for trouble-free operation and the
cost of failure recovery to get the best quality of service.

The frequent alignment of the barrier markers will have an
impact on the data processing delay, especially under a heavy
workload in the exactly-once semantics process. However,
Flink requires users to determine the checkpoint interval prior
to the deployment phase. Therefore the user may set an inap-
propriate checkpoint interval due to incorrect evaluation of the
incoming load characteristics, which adversely affect the qual-
ity of service of the streaming application. To solve the above
problems, we are proposing a new model and its scheme of
steps are as follows:

(1) Performance model based upon Jackson’s open queuing
network is used to estimate the tuples processing latency
with different workloads and checkpoint intervals.

(2) A recovery model is used to estimate the fault recovery
time with different workloads and checkpoint intervals.

(3) Checkpoint interval optimisation method based on the
above models is used to calculate an optimised check-
point interval with the system failure rate.

(4) Finally, experiments are conducted on Flink to verify the
effectiveness and efficiency of our models and check-
point interval optimisation method.

1 Related work

Active backup and checkpoint-based passive backup are two
fault-tolerance techniques widely used in distributed stream
processing systems [6]. When failures occur, active backup
requires at least one active backup instance to enable the task
to switch from the primary task to its backup task. This en-
sures the shortest fault recovery time, but also incurs high
resource consumptions. Therefore, in the past, active backup
is only suitable for stream processing systems deployed in a
small number of servers [7].

As the volume of stream data increases, the stream process-
ing system is getting more and more complex, and the fault-
tolerance mechanism based on active backup will become
inefficient and may even be unavailable [8]. In contrast,

resource efficiency can be significantly increased by using
checkpoint-based fault-tolerance mechanisms. Therefore, in
recent years, a large number of research studies analysed
checkpoint-based fault-tolerance mechanisms used in distrib-
uted stream processing platforms. Sebepou et al. [9] intro-
duced a state partitioning mechanism that supported incre-
mental state checkpoints with minimal pausing of operator
processing, thereby reducing the update cost of checkpoints.
Zaharia et al. [10] proposed a new method to selectively write
memory checkpoints on stable storage, thereby reducing the
cost of saving checkpoints. Castro et al. [11] and Heinze et al.
[12] proposed a checkpoint fault-tolerance method combined
with upstream backup to reduce the recovery cost of global
checkpoints. Su et al. [13] proposed a checkpoint fault-
tolerance method that combined partial active backup with
passive backup, thereby taking advantage of active backup
to reduce rollback-recovery time. In summary, we can say that
checkpoint-based fault-tolerance mechanisms are getting
more and more attention in distributed stream processing
systems.

When checkpoint-based fault-tolerance mechanisms are
used, an optimal checkpoint interval is the key to ensure high
efficiency of the submitted stream processing applications.
The optimisation of checkpoint interval has been extensively
studied in the field of high-performance computing. In 1973,
Young et al. [14] used a first-order approximation to calculate
an optimised checkpoint interval. In 2006, Daly et al. [15]
extended the first-order approximation and proposed a high-
order approximation scheme by taking into account the cost of
failure recovery. Fernandez et al. [11] demonstrated the effect
of checkpoint interval on delay and fault recovery time
through experiments and proposed a method to set checkpoint
interval based on estimated fault frequency and performance
constraints. Liu et al. [16] and Jin et al. [17] further optimised
the checkpoint interval setting of different fault distributions
and execution scales based on some classical checkpoint in-
terval optimisation methods. There are only few studies that
explored and analysed optimal checkpoint interval setting in
the field of stream computing. Liu Zhiliang et al. [18] de-
signed a protocol for dynamic adjustment of checkpoint inter-
vals in the sudden flow scenarios through coordination be-
tween upstream and downstream nodes. Zhuang et al. [19]
proposed the Optimal Checkpoint Interval Model to dynami-
cally alter checkpoint interval based on online workload.

The research in the past assumed that the checkpoint
time is a stable value, and the checkpoint interval only
affects the number of checkpoints. However, in a real
system, the checkpoint time is directly related to the
checkpoint interval. To obtain a more optimal checkpoint
interval under different workload intensities, a perfor-
mance model is proposed by us to estimate the tuples
processing latency and a recovery model to estimate the
fault recovery time.
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2 Modelling and analysis

2.1 System model

In the stream processing system, each stream processing job
can be abstracted as a directed acyclic graph (not considering
the existence of a loop), which is recorded as G = <V, E>,
where V represents the set of operators and E represents the
direction of data flow between operators. Since each operator
in the topology may have multiple parallel instances in actual
operation, this paper uses the vector n = (n1, n2,…, n∣V∣) to
represent the parallelism of each operator, i.e., there are ni
instances of the operator Vi.

Flink use barrier markers to achieve consistent asynchro-
nous checkpoints. The barrier markers are periodically
injected into the input data streams by the JobManager of
Flink, which are special signals to command the operators to
save the state. These signals are pushed throughout the whole
stream processing graph.

As shown in Fig. 1, when the operator task receives all
barrier markers from its pre-tasks, it makes a snapshot of its
current state and broadcasts the barrier marker to all of its
successor tasks. Flink supports incremental snapshot and al-
lows asynchronous state snapshots with low costs [20]. As
noted above, to guarantee the correct results from exactly-
once processing, the operator task must wait for all barrier
markers from its pre-tasks to be aligned before saving the
snapshot. The input connection whose barrier marker arrives
earlier will be blocked, and the tuple will be cached. This
phase is the alignment phase of the barrier markers and is a
significant increase in overhead cost of checkpoint. So we
divide the overhead cost of checkpoint into two parts: fixed
overhead and alignment overhead.

2.2 Performance model based on Jackson network

When the checkpoint mechanism is not enabled, the arrival
rate of tuples that arrive at operator Vi is denoted by λi and the
processing rate of operatorVi is denoted byμi. We assume that
both the inter-arrival time of external tuples and the service
time of the operators are independently and identically distrib-
uted exponential random variables. It is also assumed that load

balancing is achieved in every operator. We need classify
workload based on statistical features of traffic flows [21,
22]. Then, statistical tests are applied to check whether the
load characteristics of the application conforms the distribu-
tion characteristics [23, 24].

The intensity of multiple inputs can be directly added, as
the Poisson distribution is cumulative. Therefore, for each
operator, it can be considered as conforming to the M/M/n
queuing model, and the entire stream topology is modelled
as the open Jackson queuing network. When the system
reaches a stable state, the average sojourn time E[Ti] of the
operator Vi consists of two parts: (1) the expected queuing
delay, denoted by E[Qi](M/M/ni) and (2) the expected pro-
cessing time, which is equal to 1/μi. Therefore, E[Ti] can be
calculated using Eq. 1.

E Ti½ � nið Þ ¼ E Qi½ � M=M=nið Þ þ 1

μi
ð1Þ

According to the Erlang delay formula, the expected queu-
ing delay in the M/M/n service is calculated by Eq. 2.

E Qi½ � M=M=nið Þ ¼
π0 niρið Þni

ni! 1−ρið Þ2μini
; ρi < 1

þ ∞; ρi≥1

8<
: ð2Þ

In the above formula, ρi ¼ λi
ni
μi denotes the resource

utilisation of the operator Vi. It is easy to know that in the case
of ρi ≥ 1, the processing rate cannot keep up with incoming
workloads, and the average tuple queuing delay will increase
indefinitely. The probability that there is no tuple in the system
under steady state is denoted by π0, which can be calculated
by Eq. 3.

π0 ¼ ∑
ni−1

l¼0

niρið Þl
l!

þ niρið Þni
ni! 1−ρið Þ

 !−1

ð3Þ

Based on the theoretical model of the open Jackson queu-
ing network, the average processing delay E[T](n) of the en-
tire queuing network can be obtained by adding the average
processing delay E[Ti](ni) of each operator, given by:

E T½ � nð Þ ¼ 1

λ0
∑ jV j

i¼1λiE Ti½ � nið Þ ð4Þ

When a checkpoint is enabled in Flink, the probability
distribution of the tuple arrival interval and the operator pro-
cessing time does not change. According to the analysis in
Section 2.1, the Flink save state snapshot to persistent storage
can be performed asynchronously, so that the actual backup
overhead is small, and the average delay of backup overhead
is recorded as tc. However, if there are multiple upstream
operators for an operator, to guarantee exactly-once semantic
it must wait for barriers from all upstream operators beforeFig. 1 Checkpoint Execution Flow Diagram
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taking snapshot of its current state asynchronously. This kind
of barrier alignment operation will cause the tuples to arriving
earlier to wait in queue, which will have a great impact on the
overhead of the tuple latency. Therefore, the effect of the
alignment operation on E[Qi](M/M/ni) will be modelled in
the next section.

According to Flink’s checkpoint mechanism, it can be con-
cluded that: when the system reaches a stable state and if the
overhead of the checkpoint alignment phase of the sub-
instance Oi is Δi, then the tuple flowing to Oi waits for the
checkpoint operation not to exceedΔe [25]. In this paper, the
correctness of the results is proved only by the existence of
two different upstream instances. When there are more than
two upstream instances, similar analysis can be performed.

As shown in Fig. 2, the two upstream tuple flow of the
operator instanceOi are s1 and s2, which are Poisson processes
with parameters λ1 and λ2, respectively. We assume that the
barrier of s1 reaches Oi before s2, and then Oi enters the align-
ment phase earlier. Obviously, within the aligned intervalΔe,
Oi caches approximately λ1 ∗Δt tuples from s1, denoted as
e1ð ; e2;…e λ1Δtj jÞ, where e1 is the first tuple cached in the s1
buffer queue. At the end of the alignment phase, Oi immedi-
ately continues to pass the barrier downstream, saves the cur-
rent snapshot asynchronously, and processes the tuples in the
buffer queues. It is easy to know that e1 arrives first, and the
waiting time is increased toΔt. If a subsequent tuple ei enters
the buffer queue byΔl later than e1, then ei actually waits for
only (Δt −Δl) in the alignment phase. However, in the stage
of processing the cache tuple, ei needs to wait for the preced-
ing (λ1 ∗Δl) tuples to be processed initially. The front (λ1
∗Δl) tuple processing delay is approximately
λ1*Δl
μi

< λi*Δl
μi

≤Δl. Therefore, ei needs to wait

Δt−Δl þ λ1Δl
μi

� �
, which is smaller than Δt.

It is assumed that the overheads of the ni instances of the
operator Vi for the checkpoint alignment operation are t1,
t2,… and tni , respectively. Figures 1 to 3 shows the increment
of the tuple wait time during one of the operator alignments.
Based on above conclusions, we can say that the average

additional waiting time of all tuples cached in buffer queues
does not exceed the average additional waiting time of the
tuples cached in their respective buffer queue, which is

∑
k¼1
ni tk
ni

, in the same operator.

It is known thatE alignVi

� �
represents the average addition-

al wait time of the tuples caused by the barrier alignments and
E alignVi

� �
intervalð Þ a function of the checkpoint interval.

Tuples in each operator require approximately E Qi½ � M=M=nið Þ
interval

alignments in the M/M/n queuing model so that E alignVi

� �
intervalð Þ can be estimated according to Eq. 5.

E alignVi

� �
intervalð Þ ¼

π0 niρið Þni
ni! 1−ρið Þ2μini

 !
*
∑

k¼1

ni
tk

ni

interval
ð5Þ

In summary, once the checkpoint mechanism is enabled in
Flink, E[Qi](M/M/ni) can be approximated using Eq. 6.

E Qi½ � M=M=nið Þ

¼
π0 niρið Þni

ni! 1−ρið Þ2μini
þ E alignVi

� �þ tc; ρi < 1

þ ∞; ρi≥1

8<
:

ð6Þ

2.3 Checkpoint recovery model

JobManager and TaskManager are the two main daemons
(computer programs that run in the background) of the system.
JobManager is responsible for both scheduling and failure
recovery. The JobManager monitors the heartbeat information
of each TaskManager through the Actor System to detect

1

2

i

       ei e3 e2 e1

i

l

t

iO

1s

2s
Fig. 2 Task level queuing delay analysis
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Fig. 3 Operator level queuing delay analysis
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whether a fault has occurred or not. One can inspect or analyse
the entire process of Flink fault recovery by tracing the log
information of Flink.

When the target job is running normally, the subtasks in the
job are in the running state. When the job implement the
checkpoint and the restart policy, the JobManager detects
the failure, the status of the job changes to Failing, and the
status of each task in the job is switched to the cancelling or
cancelled states. The JobManager will restart the job, and the
Checkpoint Coordinator in the JobManager will restore the
state of each task from the most recently completed check-
point. Then, each subtask in the job is rescheduled and
dispatched to a new slot and switched to the running state.
At this point, JobManager should have restored the failed
job to the state of the latest checkpoint. The job requires the
reprocessing the records from Kafka, starting from the offsets
that were stored in the checkpoint.

It is learned from the above failure recovery process that
the overhead of the checkpoint recovery Trecovery mainly con-
sists of the following four parts: the fault detection time Tdetect,
the state recovery time Trestore, the task restart time Trestart and
the tuple reprocess time Treprocess.

Trecover ¼ Tdetect þ Trestore þ Trestart þ Treprocess ð7Þ

The fault detection time depends mainly on the heartbeat
timeout period and the value is set according to the actual
needs. The state recovery time depends mainly on the size of
the checkpoint state and the network bandwidth. Please note
that, the checkpoint status does not exceed the size 10 MiB in
our experiment and so the state recovery time is negligible.
The time of the task restart is related to the experimental plat-
form and the application topology scale, and the tuple repro-
cess time depends mainly on the number of tuples to be
replayed, which is closely related to both the length of the
checkpoint interval and the intensity of workload. This paper
assumes that the workload intensity is λ. In a pipeline-style
job, the throughput of the job depends on the least throughput
operator in the job, which is recorded as min{μi}. In general,
the number of reprocessed tuples can be expressed as λ ∗
interval/2, so Treprocess can be approximated by Eq. 8.

Treprocess ¼ λ*interval
2*min μif g ð8Þ

2.4 Optimised checkpoint interval method

When configuring the checkpoint interval, both the overhead
of completing the checkpoint and fault recovery time should
be considered. To make a trade off, these two parts are given
weights to evaluating indicator F, where f_rate represents the
failure rate of the cluster. A checkpoint interval that allows F
to take a minimum value can be approximated based on Eq. 9.

F ¼ α*E T½ � nð Þ þ 1−αð Þ*f rate*Trestart ð9Þ

In the above formula, the weight α has a value range of (0,
1). When the value of the weight α tends to 1, it indicates that
the user is more concerned with the application performance.
When the weight α tends to 0, it indicates that the user is more
concerned with the application recovery time.

3 Experimental results and analysis

3.1 Experimental environment

To verify the accuracy of the checkpoint performance model
and the checkpoint interval optimisation model in the actual
system, several experiments are performed on both the simple
topology and the complex topology. This article uses Apache
Flink as the stream processing platform, Apache Kafka as the
intermediate message queue, Apache Zookeeper as the distrib-
uted application coordination service and Apache Hadoop and
RocksDB as the state backstage to save the snapshot state. The
software and hardware experimental environment are shown
in Tables 1 and 2, respectively. The experimental topology is
shown in Fig. 4. In our experiments, the input uses simulated
data to approximate the negative exponential distribution with
a parameter λ. The operator processing logic is replacedwith a
processing delay time, and the processing delay time is ap-
proximated to a negative exponential distribution with the
parameter μ.

3.2 Experiments and analysis

3.2.1 Checkpoint performance model verification

Now the accuracy of the checkpoint performance model is
verified with the set of experiments. So, the experiments that
may shed light on the relationship between the processing
delay of the tuple and the checkpoint interval under different
resource utilisation rates were performed. The processing time
of the tuples were subjected to negative exponential distribu-
tion with parameters μ of 100, 300 and 500, respectively.
Tuples were run five times on the cluster and the average tuple
latency was recorded for the five experiments under different

Table 1 Cluster hardware configuration

Hardware Configuration

CPU Intel(R) Xeon(R) CPU E5–2620 v2 @ 2.10GHz * 2

Memory 128GB

Disc 2 TB HDD

NIC 1000 Mbps
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experimental parameter configurations. Since it is difficult to
accurately control the parameters such as λ and μ in the Flink
system, these parameters also need to be adjusted according to
the actual cluster. Figures 5 and 6 show observed and theoret-
ical results of simple topology and complex topology, respec-
tively, when the parallelism is 4 and 1.

As shown in Fig. 5, the Y-axis represents the tuple average
latency under different workload intensity and operator
utilisation, while X-axis represents the checkpoint interval.
The curve labelled ‘Measured’ represents the real tuple aver-
age latency measured during the experiment, while the curve
labelled ‘Estimated’ is the tuple average latency calculated by
the checkpoint performance model. The experimental results
show that the tuple average latency shows a gradual decline
with the gradual increase of the checkpoint interval under

different workload intensity λ and resource utilisation ρ.
Moreover, when the checkpoint interval is short, the latency
decreases more rapidly and the amplitude is larger. For each
increase in the checkpoint interval, the latency is reduced by
approximately 1% to 10%; however, as the checkpoint inter-
val continues to increase, the trend of latency decline also
slows down significantly.

Themeasurements for the complex topology in Fig. 6 show
similar characteristics. It should be noted that the effect of
checkpoint operations on tuple processing delays in this mod-
el depends on not only the checkpoint interval, but also the
time of a checkpoint alignment. In the complex topology ex-
periment, as the parallelism of the topology is set to 1, there
will be only one alignment operation at the join operator, and
the checkpoint interval has less influence on the average pro-
cessing delay. By comparing the theoretical and experimental
results, It can be concluded that the observed data conform to
the data estimated by our performance model.

3.2.2 Checkpoint recovery model verification

Experiments are conducted to verify the checkpoint recovery
model. In these experiments faults are injected into the
TaskManager to trigger Flink fault-tolerance mechanism and
a mass of data under different conditions are collected. As

Table 2 Software configuration

Software Version Number of Instances

OS CentOS 7 9

Flink 1.7.2 1JobManager 5TaskManager

Kafka 2.12–0.11.0.3 3 Brokers

Zookeeper 3.4.13 3

Hadoop 2.8.5 3

Source

rebalance rebalance rebalance rebalance

Process 1 Process 2 Process 3 Sink

a

Source 1

Source 2

Source 3

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6 Sink

b

Fig. 4 Experimental topology
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shown in Fig. 7, the Y-axis represents the reprocess time
under different operator utilisation, while X-axis represents
the checkpoint interval. The bars labelled ‘Measured’ rep-
resent the real reprocess time measured during the experi-
ment under different workload intensity, while the bars la-
belled ‘Estimated’ represents the reprocess time calculated
by the checkpoint recovery model. In these experiments,

the service time of the operators are homogeneous.
Therefore, It can be seen from Eq. 8, the reprocess time is
only related to checkpoint interval and operator utilisation.
The results prove this conclusion and show that under dif-
ferent checkpoint intervals, the average reprocess time
measured by multiple experiments are very close to the
estimated reprocess time of our model.

(g) = 100 = 0.85                  (h) = 300 = 0.85                   (i) = 500 = 0.85
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3.2.3 Optimal checkpoint interval method validation

In this set of experiments, the optimal checkpoint interval
recommended based on F is observed by adjusting the failure
rate f_rate and the weight α. F = α ∗ E[T](n) + (1 − α) ∗ f _
rate ∗ Trestart In the above formula, When the value of the
weightα tends to 1, it indicates that the user is more concerned
with the application performance. When the weight α tends to
0, it indicates that the user is more concerned with the appli-
cation recovery time. According to the actual situation of the
cluster, except the reprocess time, the time required for fault
detection, state recovery and topology restart, is about 30s. In
Fig. 8, the red arrows indicate the recommended optimal
checkpoint interval.

The experimental results show that when the failure rate is
small (such as 0.1%), the minimum value of F approaches to
longer checkpoint interval; when the failure rate increases
gradually (increases to 10%), the minimum value of F ap-
proaches to shorter checkpoint interval. It can be observed
by comparing Fig. 8b and d that the recommended checkpoint
interval increases with the increase in input rate λ for the same
failure rate. As λ increases, the checkpoint interval has a sig-
nificant impact on the tuple processing delay, especially when
the utilisation ρ is close to 1. The influence of the weight α on
the recommended checkpoint interval can be observed
through analysing the Fig. 8d, e and f. When α tends to 0,
the user is more concerned about the fault recovery time. At
this time, the recommended checkpoint interval will be shorter
to guarantee rapid recovery when a fault occurs; whenα tends

to 1, the user is more concerned about the impact of the check-
point on the processing delay. At this time, the recommended
checkpoint interval will increase accordingly. In summary,
based upon the performance of different application parame-
ters and results, we can conclude that the proposed checkpoint
interval optimisation model system is a reliable one and has
better user requirements and can be recommended for getting
a better checkpoint interval.

4 Conclusion

This paper analyses the fault-tolerance mechanism of Flink
lightweight asynchronous checkpoint and its performance
based on Jackson queuing network. The experimental results
show that our proposed checkpoint optimisation performance
model based on the Jackson network is similar to the Flink
system processing latency as the checkpoint interval changes,
and the deviation between the estimated and measured values
does not exceed 15%. The statistical results of the checkpoint
recovery model in multiple experiments are very close to the
estimated values. The F optimisation indicator proposed in
our paper can recommend a more appropriate checkpoint in-
terval depending on the system’s failure rate and the applica-
tion’s operating parameters. Experiments show that the check-
point interval recommendation calculated by our checkpoint
interval optimisation model is consistent with the checkpoint
interval recommendation obtained by using actual values.
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Fig. 7 Relationship between
reprocessing time and checkpoint
interval
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In the future, we have planned to analyse different types of
practical application topologies and examine how checkpoint
interval can be adjusted based on real-time varying workloads.
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