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Abstract
Deep convolutional neural networks have significantly improved the peak signal-to-noise ratio of Super-Resolution (SR).
However, image viewer applications commonly allow users to zoom the images to arbitrary magnification scales, thus far
imposing a large number of required training scales at a tremendous computational cost. To obtain a more computationally
efficient model for arbitrary-scale SR, this paper employs a Laplacian pyramid method to reconstruct any-scale high-
resolution (HR) images using the high-frequency image details in a Laplacian Frequency Representation. For SR of
small-scales (between 1 and 2), images are constructed by interpolation from a sparse set of precalculated Laplacian pyramid
levels. SR of larger scales is computed by recursion from small scales, which significantly reduces the computational cost.
For a full comparison, fixed- and any-scale experiments are conducted using various benchmarks. At fixed scales, ASDN
outperforms predefined upsampling methods (e.g., SRCNN, VDSR, DRRN) by about 1 dB in PSNR. At any-scale, ASDN
generally exceeds Meta-SR on many scales.

Keywords Image super-resolution · Any-scale SR · Convolutional neural network

1 Introduction

Deep neural networks have made good progress in Single-
image Super-Resolution (SISR), adeptly extracting image
priors from data sets and efficiently learning mapping
functions from LR to HR patches. However, for applications
that allow users to zoom to arbitrary scales (e.g., face image
SR [5] and satellite image SR [18]), multi-scale methods
which learn the LR to HR mapping functions independently
at each of several scales [12, 15, 29] become inefficient.
Meta-SR [8] shows that SR of arbitrary decimal scales can
be achieved by training one single model with the dynamic
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meta-upscaling module. But meta-SR can only generate
HR images on scales for which it has trained, making it
computationally impractical to train for all scales of interest
for any-scale SR.

To alleviate the need for so many training scales, we find
image patches have the same similarity at different scales.
The self-similarity-based SR method [17] enhances the
textural content with similar patches across different scales.
Furthermore, image edges are scalable, and different-scale
images have similar edge information, represented by high-
frequency image information. In order to seek the missing
high-frequency information of SR images, a Laplacian
pyramid based-method is proposed to interpolate between a
sparse set of trained scales. Indeed, the Laplacian filter is
an edge detector, and the Laplacian noise term can be used
to detect the outliners for robust tracking [24]. Therefore,
similar high-frequency image information across different
scales can be highlighted through the Laplacian pyramid
structure. Moreover, the Laplacian pyramid structure has
been proved to reduce the training data requirements for
multi-scale SR in MS-LapSRN [14], generating the 3×
HR images with the 4× SR results and predicting 8× HR
images by progressively deploying through the network for
2× SR. Therefore, it is feasible to reduce the training costs
with a Laplacian Pyramid [13] network structure.
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Unlike previous Laplacian Pyramid networks for multi-
scale SR, we seek to train a model to predict any-
scale SR images. Obviously, a large upsampling ratio can
be expressed as an integer power of ratios in a small
range. Therefore, given a network for super-resolution at
scales in a small range (such as the real-number interval
(1, 2]), arbitrary larger scales (real numbers greater than
2) can be implemented by recursion. Inspired by the
classical Laplacian pyramid method [3], which reconstructs
HR images by restoring the residual images between
two Laplacian pyramid levels, we introduce a Laplacian
Frequency Representation to learn the mapping function
for SR of scales in the small range (1, 2]. Our algorithm
represents the HR images of any continuous decimal scale in
the range by the two neighboring Laplacian pyramid levels.
For SR of the large decimal ratios, we progressively upscale
the coarse HR images, and recursively deploy them through
the network multiple times with a small decimal ratio in the
range to gradually refine the HR images.

In this paper, we propose our network as Any-Scale Deep
Super-Resolution Network (ASDN) based on the multi-
scale parallel reconstruction architecture. Each reconstruc-
tion branch shares the Feature Mapping Branch (FMB) and
predicts the Laplacian pyramid levels through the Image
Reconstruction Branch (IRB). Our network requires a min-
imal amount of training data and computational resources
but effectively generates any-scale SR results.

We present extensive comparisons on both fixed integer
scales and any decimal scale on commonly used bench-
marks, and provide the results of the ASDN and the fine-
tuned ASDN (FSDN), for the reference in comparison with
the existing multi-scale SR methods. ASDN outperforms all
of the other predefined upsampling methods and even some
single upsampling models, without training on the specific-
scale data samples. FSDN has state-of-the-art performance
for fixed scale SR, comparing favorably to all existing
methods. For any-scale SR factor, we retrain many previ-
ous network structures [12, 15, 29] with our any-scale SR
method into any-scale SR categories for comparison. Our
ASDN is effective for SR of any desired scale and specif-
ically achieves the state-of-the-art performance on scales
within the small range (1, 2].

In summary, our work provides the following contribu-
tions:

(1) Laplacian Frequency Representation: We propose
a Laplacian frequency representation mechanism
to reconstruct image SR at small scales, those
continuously varying between 1 and 2. The HR images
are the weighted interpolation of their two neighboring
Laplacian pyramid levels, which efficiently reduces
the training scale demands for learning the SR at
continuous scales.

(2) Recursive Deployment: We introduce Recursive
Deployment for generating the HR images of the larger
upsampling ratios, as we find that the HR images
of the larger scales can be gradually upsampled and
recursively deployed with small ratios. This extends
any-scale SR from small scales to larger ones without
requiring additional training scales.

(3) Any-scale Deep SR Network: We propose an Any-
Scale Deep Super-Resolution Network (ASDN) to
generate HR images of any random scale with one
unified network, providing enormous computational
savings over directly applying existing CNN-based
multi-scale methods for any-scale applications.

2 Related works

2.1 Image super-resolution using CNN

Image super-resolution has evolved greatly over the past
decades, and numerous image SR methods [12, 15, 29]
have been proposed to improve image reconstruction
performance. With the fast development of the computation
processor, CNN-based SR methods have demonstrated
state-of-the-art results by optimizing an end-to-end network
to learn the LR-HR mapping function. Dong et al. [4]
initially introduced convolutional layers into image SR,
which have been proved effective for the task. However,
the network consists of only three layers, unable to observe
superior results with the deeper model. He et al. [10] solved
this problem by residually skip connecting layers inside the
network to help the gradient flow across the deeper models.
Later on, more skip connection structures, dense connection
[23] were proved to accelerate network convergence by
feature reusing across the layers. RDN [29] and DBDN
[25], embed the dense convolutional neural network into
image SR to further improve image reconstruction accuracy.
Then, the attention module was adopted into the SR to help
the network focus on the high-frequency feature learning.
Liu et al. [16] introduced the spatial attention to mask
out the high-frequency component locations in the HR
images,and RCAN [28] replaced normal feature layers
with residual channel layers to adaptively rescale channel-
wise features to reduce the unnecessary computations for
abundant low-frequency features. However, these methods
mainly focus on multi-scale SR (e.g., 2×, 3×, and 4×).
In this paper, we propose to reconstruct any-scale SR with
a few numbers of training scales, which can significantly
reduce the computational cost.

Any-scale SR model is seldom investigated in image SR.
Recently, Meta-SR [8] proposed a meta-upscale module for
arbitrary scale SR, which dynamic magnifies image with
decimal scales, by training and testing with 40 different
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scales at the stride of 0.1. However, Meta-SR [8] did not
provide a systemic approach or experimental results for
any scale that not included in the 40 trained scales. In
other words, only training with 40 different scales, Meta-
SR can not solve the SR of undetermined decimal scales.
Nevertheless, if we use enormous scales of data to train the
Meta-SR model for the full any-scale SR approximation, it
might take a very long time to optimize the network for its
convergence, which is not practical. Different from these
methods trained with all the scales of interest, we propose
a novel network ASDN for SR of any potential scale,
which adopts our any-scale SR method, including Laplacian
Frequency Representation and Recursive Deployment.

2.2 Laplacian pyramid structure

The Laplacian Pyramid [3] is used for restoring HR images
by preserving residual image information. As shown in
Fig. 1a, the decomposition step firstly preserves the residual
information R1, R0, as image downscaled. Then the kept
residual information R1, R0 will be stored back by adding
with the low-resolution image I1, I0, to reconstruct the
initial HR image H1, H0.

With the development of deep learning, many models
adopt the Laplacian Pyramid structure as the main mapping
frameworks, which construct progressive upsampling net-
works for image SR. Such as LapSRN [13] in Fig. 1b, a
multi-phase network and each phase learn the residual infor-
mation with convolutional layers. LapSRN progressively
reconstructs each pyramid levels at the interval of 2 times,
for 2×, 4×, and 8× SR, respectively. MS-LapSRN [14] is
the parameter sharing version of LapSRN, which shares the
network parameters across pyramid levels and exhibits the

efficiency of recursive deployment. However, these models
are designed to effectively predict SR of large scale factors.

In this paper, we present Laplacian Frequency Represen-
tation to reconstruct SR results of continuous scales. In our
design, each pyramid level is at the interval of 0.1 in scale
and parallelly allocated at the end of the network. Accord-
ing to the Laplacian pyramid [3] that the lost high-frequency
information can be presented by the two neighboring pyra-
mid levels, the high-frequency information of HR image is
predicted based on the weighted interpolation of the two
Laplacian pyramid levels neighboring the testing scale. The
Laplacian Frequency Representation entails fewer training
SR samples to generate HR images of scales in the con-
tinuous ratio range, which reduces the undesired training
data storage space and shrinks the optimization period to
accelerate the network convergence.

3 Any-scale image super-resolution

In this section, we provide the mathematical background
of the any-scale SR method including Laplacian Frequency
Representation and Recursive Deployment and introduce
the structure of our proposed ASDN.

3.1 Any-scale SRmethod

There are two steps in the any-scale SR method: Laplacian
Frequency Representation and Recursive Deployment. The
proposed Laplacian Frequency Representation method is to
generate HR images of decimal scales in a continuous scale
range, and Recursive Deployment is to define the recursion
times N and the small ratio r at each recursion for any-scale
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Fig. 1 Comparison of two-level Laplacian Pyramids. a Laplacian
Pyramid [3]. The decomposition step produces two residual images
R1, R0 by subtracting H1 with I1, H0 with I0 to preserve the high-
frequency information, which then added with the interpolated LR

I1, I0 respectively to reconstruct the 2×, 4× frequency levels H1, H0.
b LapSRN [13]. The residual images R1, R0 are progressively learned
by the networks and upsampled at each level, then added with I1, I0
for HR images H1, H0
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SR prediction. To use the minimum training samples, we
define the small decimal ratios r ∈ (1, 2]. For SR of each
upscaling ratio R, the HR image of upscale ratio R can be
achieved by recursively upscaled with a small ratio r and
deployed N times.

3.1.1 Laplacian frequency representation

To generate SR of decimal scales in a continuous range,
the intuitive method is to train the network with random
dense scales in the range. However, we find this method
is difficult due to a large amount of training scale samples
and computation power for optimizing the network. To
deal with this problem, we introduce Laplacian Frequency
Representation as the intermediate representation of the
high-frequency image information of SR results.

As shown in Fig. 2, our proposed Laplacian Frequency
Representation has L Laplacian pyramid levels, and each
pyramid level l is tasked with learning the high-frequency
image information of HR images Orl for the scale rl with
training samples of corresponding scales.

rl = l

L − 1
+ 1, l = 0, ..., L − 1 (1)

According to the scalability of the image edges and the
comprehensive coverage of high-frequency information of
images in edges, we can interpolate the high-frequency
image details of SR results of any small decimal scales r

based on their two neighboring Laplacian pyramid levels.
For a given scale factor r in this continuous range, the

Laplacian frequency represented HR images Or can be
defined as

Or = Ori + wr ∗ Pi (2)

where

Pi = Ori−1 − Ori , i = 1, ..., L − 1 (3)

Here the phase number i = �(L − 1) ∗ (r − 1)� and
wr is the weight parameter of the edge information for the

r scale SR. We define the weight parameter according to
distance proportion of the scale r to the ri in the phase Pi .

wr = (L − 1) ∗ (ri − r) (4)

The interpolated representation can be regarded as
calculating the missing high-frequency image details of HR
images of certain scales, so we name the mechanism as
Laplacian Frequency Representation. The further evaluation
of the accuracy of Laplacian Frequency Representation
and the density of Laplacian pyramid levels in the
experiment section proves that the represented SR results
highly coordinate with the directly learned results, and the
performance is stable when the Laplacian pyramid levels
are at a certain density. As a result, we propose to train the
Laplacian pyramid levels using deep neural networks with
several scales and reconstruct the HR images of continuous
decimal scales in the range with Laplacian Frequency
Representation.

3.1.2 Recursive deployment

For SR of any upsampling ratio R in the larger range, it is
impossible to train SR samples of all the scales to learn the
mapping function of these scales. To minimize the training
sample demands, we reuse the learned mapping network
for SR of decimal scales in the range of (1, 2]. We are
based on the idea that any upscale decimal ratio R can
be expressed as an integer N power of decimal ratios r

in a small range. Therefore, the HR images of R can be
generated by gradually upscaling and recursively deploying
through the mapping network N times with small decimal
ratios r ∈ (1, 2].

We express the R as an integer N power of small decimal
ratios r ∈ (1, 2]. The integer N denotes the recursion times
for the deployment, and the small ratio r is the upsampling
ratio at each recursion. To determine the best solution of
N and r for any-scale SR, several comparison experiments
are performed in the experiment section. As we observed,
SR with the larger upscale ratio r at the early recursions
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Fig. 2 The Laplacian Frequency Representation has 11 Laplacian pyramid levels (Or0 , ..., Or10 ), with 10 phases in the scale range of (1, 2]
(P1, ..., P10). Each phase represents the difference between the successive Laplacian pyramid levels
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and the smaller recursive deployment times N has better
performance than other N and r solutions.

Therefore, for any scale factor R, the recursive times N

N = �log2 R� (5)

The upscale ratio rn at each recursion n can be defined as

rn =
{
2 if n ≤ N − 1

R

2N−1 if n = N
(6)

Based on the definedN and r solution forR, if the recursion
time N is 1, the HR images of R = r are directly deployed
by the network. In other situations, the coarse HR images
from the previous recursion are bicubic upscaled with the
small ratio r as the input LR images at the current recursion.
For better SR performance, at the early N − 1 recursions,
the small ratio rn = 2, and at the Nth recursion, rn = R

2N−1 .

3.2 Any-scale SR deep network

In this section, we build a deep neural network to predict the
Laplacian Frequency Representation from the input images.

3.2.1 Network architecture

The Laplacian Frequency Representation should consist
of L = 11 Laplacian pyramid levels for SR in the
scale range (1, 2]. Each Laplacian pyramid level is the

reconstructed HR image containing high-frequency details.
Due to the mutual relationship among different scales in
the SR networks [12], our network for Laplacian Frequency
Representation are based on the multi-scale parallel [28]
framework by sharing the Feature Mapping Branch (FMB)
across different scales and restoring HR images with
separate Image Reconstruction Branches (IRBs). Sharing
the FMB can largely reduce the computation capacity,
and separating IRB reduces the complexity of the original
learning problem and leads to an accurate result.

The feature mapping branch (FMB) of the Laplacian
Frequency Representation is constructed by a deep con-
volutional neural network H = ff mb(I ). As shown in
Fig. 3, FMB consists of Bi-Dense structure [25] for effi-
cient feature learning and channel attention modules [28]
for highlighting high-frequency context information. In the
Dense Attention Block (DAB), channel attention module
(see Fig. 3c) connects right after the concatenated feature
channels. Therefore, the high-frequency information of the
concatenated channel features are highlighted before pre-
ceding into the next block and thus allow the network to
focus on more useful channels to improve reconstruction
performance.

The other part of the network firb is the image recon-
struction branch (IRB), which represents the Laplacian
pyramid levels. For each Laplacian pyramid level Ori =
firb(H), i = 0, ..., 10, the locations of the tiny textures
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Fig. 3 a The overall architecture of the proposed ASDN network, mul-
tiple Image Reconstruction Branches (IRBs) parallelly allocate after
Feature Mapping Branch (FMB). The FMB adopts the bi-dense struc-
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and channel attention module from RCAN [28]. c The illustration of
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from CSFM and RCAN [9, 28]
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are different, and these textures usually contain high-
frequency information, while the smooth areas have more
low-frequency information. Therefore, to recover high-
frequency details for image SR of different scales, it is help-
ful to mask out the discriminative high-frequency locations
with spatial attention mechanism [16]. As shown in Fig. 3a,
the learned high-level features are firstly restored into image
space by a three-channel convolutional layer at each Lapla-
cian pyramid Level. Then the restored image goes into the
spatial attention (SA) [9] unit in Fig. 3c, to mask out the
adaptive high-frequency information in the HR images of
different scales. To preserve the smooth areas information
and concentrate on training high-frequency information, the
input interpolated LR images are added with the network
output by identity skip connection (SC) to generate HR
images.

To train the Any-scale SR Deep Network (ASDN) and
generate Laplacian Frequency Representation, each IRB is
randomly selected and combined after FMB at each update.
For some practical applications where only require SR of
specific scales, our ASDN can be fine-tuned to a fixed-
scale network (FSDN) to further improve the reconstruction
accuracy for the scales of interest by training image samples
of specific scales. FSDN shares the same network structure
as ASDN, except the deconvolutional layer of a specific
scale, is inserted at the front of each IRB, which follows the
common multi-scale single upscaling SR networks [15, 28,
29].

4 Experiments

In this section, we describe the implementation details of
our models, including model hyper-parameters, training
and testing details. Then we compare the proposed any-
scale network and the fine-tuned fixed-scale model with
several state-of-the-art SR methods on both fixed and
any scale benchmark datasets including the quantitative,
qualitative comparisons and any-scale comparisons. The
effectiveness evaluation of the proposed any-scale method
and the contribution study of different components in the
proposed any-scale deep network are also provided in the
paper.

4.1 Implementation details

Network settings In the proposed ASDN, all convolutional
layers have 64 filters and 3× 3 kernel size except the layers
in IRB for restoring images and the convolutional layers
in CA and SA units. The layers for image restoration have
3 filters and all the convolutional layers in CA and SA
units are 1 × 1 kernel size, which adopt the same setting as
CSFM [9]. Meanwhile, the 3 × 3 kernel size convolutional

layer zero-pads the boundaries before applying convolution
to keep the size of all feature maps the same as the input
of each level. ASDN and FSDN share the same FMB
structure, where 16 DAB are densely connected and each
DAB has 8 dense layers. But in FSDN, the deconvolutional
layer settings follow single upsampling networks [15, 29] to
upscale feature mappings with the corresponding scales.

Training details The original training images are from
DIV2K dataset [1] and Flicker dataset [1]. The input
LR images for ASDN are bicubic interpolated from the
training images with 11 decimal ratios r , which are evenly-
distributed in the range of (1, 2]. In each training batch,
16 augmented RGB patches with the size of 48 × 48
are extracted from LR images as the input, and the LR
images are randomly selected from one scale training
samples among the total 11 scales training data. Here the
data augmentation includes horizontal flips and 90-degree
rotations are randomly adopted on each patch. To fine-tune
the FSDN, the input LR images are downscaled by the scale
factor among 2×, 3×, 4×, and 8×. In the training batch,
a batch of 96 × 96 size patches is used as the targets and
the corresponding scale LR RGB patches to optimize the
specific scale modules. In general, ASDN and FSDN are all
built with the platform Torch and optimized by Adam with
L1 loss by setting β1 = 0.9, β2 = 0.999, and ε = 10−8.
The learning rate is initially set to 10−4 and halved at every
2 × 105 minibatch updates for 106 total minibatch updates.

Testing details Our proposed networks are tested on five
widely-used benchmark datasets for image SR: Set5 [2],
Set14 [26], BSD100 [22], Urban100 [11] and Manga109
[19]. To test any-scale network (ASDN) for SR of a random
scale s, the testing images are first downscaled with the
scale factor s as the LR images. If the scale s is not larger
than 2, the LR images with scale s are upsampled and
forwarded into the ASDN with the two enabled neighboring
Laplacian pyramid levels of the scale s. HR images are
predicted by interpolating these two levels based on Eq. 2.
While if the scale s is larger than 2, the testing recursion
times are based on N = �log2 R�. At each recursion n,
the outputs of previous recursion are upscaled as input and
deployed through ASDN with rn according to the Eq. 6,
except the initial recursion, which uses the LR images as
input. To test fixed-scale network (FSDN), the testing input
images are downscaled by the fixed scales s and deployed
into the FSDN with the scale corresponding modules are
enabled to yield the testing output.

4.2 Comparison with state-of-arts

To confirm the ability of the proposed methods, We first
compare with state-of-the-art SR algorithms for qualitative
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and quantitative analysis on the normal fixed scales 2×, 3×,
4×, 8×, which includes predefined upsampling methods
(SRCNN [4], VDSR [12], DRRN [7], MemNet [21]
and SRMDNF [27]), and single upsampling methods
(RDN [29], LapSRN [13], EDSR [15], RCAN [28]).

4.2.1 Quantitative comparison

We compare the performance of our any-scale SR networks
with state-of-the-art methods on the five challenging dataset
benchmarks. Table 1 shows quantitative comparisons for

Table 1 Quantitative evaluation of state-of-the-art SR algorithms

scale Algorithms Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

2× Bicubic 33.64 0.929 30.22 0.868 29.55 0.842 26.66 0.841 30.84 0.935

SRCNN [4] 36.65 0.954 32.29 0.903 31.36 0.888 29.52 0.895 35.72 0.968

VDSR [12] 37.53 0.958 32.97 0.913 31.90 0.896 30.77 0.914 37.16 0.974

DRRN [7] 37.74 0.959 33.23 0.914 32.05 0.897 31.23 0.919 37.52 0.976

LapSRN [13] 37.52 0.959 33.08 0.913 31.80 0.895 30.41 0.910 37.27 0.974

MemNet [21] 37.78 0.959 33.28 0.914 32.08 0.898 31.33 0.919 37.72 0.974

SRMDNF [27] 37.79 0.960 33.32 0.916 32.05 0.899 31.33 0.920 38.07 0.976

ASDN(ours) 38.12 0.961 33.82 0.919 32.30 0.901 32.47 0.931 39.16 0.978

EDSR [15] 38.11 0.960 33.92 0.920 32.32 0.901 32.93 0.935 39.10 0.976

RDN [29] 38.24 0.961 34.01 0.921 32.34 0.902 32.96 0.936 39.19 0.978

DBPN [6] 38.09 0.961 33.85 0.920 32.27 0.900 32.55 0.932 38.89 0.978

RCAN [28] 38.27 0.961 34.12 0.922 32.41 0.903 33.34 0.938 39.44 0.979

FSDN(ours) 38.27 0.961 34.18 0.923 32.41 0.903 33.13 0.937 39.49 0.979

3× Bicubic 30.39 0.867 27.53 0.774 27.20 0.738 24.47 0.737 26.99 0.859

SRCNN [4] 32.75 0.909 29.30 0.822 28.41 0.786 26.25 0.801 30.59 0.914

VDSR [12] 33.66 0.921 29.77 0.831 28.82 0.798 27.41 0.830 32.01 0.934

DRRN [7] 34.03 0.924 29.96 0.835 28.95 0.800 27.53 0.764 32.42 0.939

LapSRN [13] 33.82 0.922 29.87 0.832 28.82 0.798 27.07 0.828 32.21 0.935

MemNet [21] 34.09 0.925 30.00 0.835 28.96 0.800 27.57 0.839 32.51 0.937

SRMDNF [27] 34.12 0.925 30.04 0.838 28.97 0.802 27.57 0.839 33.00 0.940

ASDN(ours) 34.48 0.928 30.35 0.843 29.18 0.808 28.45 0.858 33.87 0.947

EDSR [15] 34.65 0.928 30.52 0.846 29.25 0.809 28.80 0.865 34.17 0.948

RDN [29] 34.71 0.929 30.57 0.847 29.26 0.809 28.80 0.865 34.13 0.948

RCAN [28] 34.74 0.930 30.65 0.848 29.32 0.811 29.09 0.870 34.44 0.949

FSDN(ours) 34.75 0.930 30.63 0.848 29.33 0.811 28.98 0.868 34.53 0.950

4× Bicubic 28.42 0.810 26.10 0.704 25.96 0.669 23.15 0.660 24.92 0.789

SRCNN [4] 30.49 0.862 27.61 0.754 26.91 0.712 24.53 0.724 27.66 0.858

VDSR [12] 31.35 0.882 28.03 0.770 27.32 0.730 25.18 0.750 28.82 0.886

DRRN [7] 31.68 0.889 28.21 0.772 27.38 0.728 25.44 0.764 29.18 0.891

MemNet [21] 31.74 0.889 28.26 0.772 27.40 0.728 25.50 0.763 29.42 0.894

SRMDNF [27] 31.96 0.892 28.35 0.778 27.49 0.734 25.68 0.773 30.09 0.902

ASDN(ours) 32.27 0.896 28.66 0.784 27.65 0.740 26.27 0.792 30.91 0.913

LapSRN [13] 31.54 0.885 28.19 0.772 27.32 0.727 25.21 0.756 29.46 0.890

EDSR [15] 32.46 0.896 28.80 0.788 27.71 0.742 26.64 0.803 31.02 0.915

RDN [29] 32.47 0.899 28.81 0.787 27.72 0.742 26.61 0.803 31.00 0.915

DBPN [6] 32.42 0.898 28.76 0.786 27.68 0.740 26.38 0.796 30.91 0.914

RCAN [28] 32.63 0.900 28.87 0.789 27.77 0.744 26.82 0.809 31.22 0.917

FSDN(ours) 32.63 0.900 28.89 0.789 27.79 0.744 26.79 0.807 31.44 0.919
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Table 1 (continued)

scale Algorithms Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

8× Bicubic 24.40 0.658 23.10 0.566 23.97 0.548 20.74 0.516 21.47 0.650

SRCNN [4] 25.33 0.690 23.76 0.591 24.13 0.566 21.29 0.544 22.46 0.695

VDSR [12] 25.93 0.724 24.26 0.614 24.49 0.583 21.70 0.571 23.16 0.725

LapSRN [13] 26.15 0.738 24.35 0.620 24.54 0.586 21.81 0.581 23.39 0.735

MemNet [21] 26.16 0.741 24.38 0.619 24.58 0.584 21.89 0.583 23.56 0.738

ASDN(ours) 27.02 0.776 24.99 0.641 24.82 0.600 22.57 0.620 24.73 0.748

EDSR [15] 26.96 0.776 24.91 0.642 24.81 0.599 22.51 0.622 24.69 0.784

DBPN [6] 27.21 0.784 25.13 0.648 24.88 0.601 22.73 0.631 25.14 0.799

RCAN [28] 27.31 0.788 25.23 0.651 24.98 0.606 23.00 0.645 25.24 0.803

FSDN(ours) 27.33 0.789 25.24 0.651 24.98 0.604 22.90 0.638 25.24 0.803

We report the average PSNR/SSIM for 2×, 3×, 4× and 8× SR. Bold indicates the best performance, and italic indicates the best performance
among predefined upsampling methods

×2, ×3, ×4, ×8 SR. For fair comparisons with the recent
single upsampling networks, we fine-tune the ASDN with
the fixed ×2, ×3, ×4, ×8 scale SR samples as FSDN for
reference. It is obvious that FSDN has better performance
than state-of-the-art methods, except RCAN on some
datasets. Although on Urban100, which is consisted of
straight-line building structure images, RCAN has better
performance than FSDN due to the more channel attentions
across the network, which is sensitive to the sharp edges
in the image reconstruction. On other datasets, FSDN
reconstruction accuracy is comparable to RCAN. This
indicates the network, which is the same main framework as
ASDN is effective to learn mapping functions for SR tasks.

Due to the strong ability of the framework, our ASDN
performs favorably against the existing methods, especially
compared to the predefined upsampling methods. Noted
that ASDN does not use any 3×, 4×, 8× SR samples for
training but still generates comparable results as EDSR.
There are mainly two reasons for ASDN drops behind
some upsampling models. First, these upsampling models
are trained with fixed-scale SR samples, and customized for
the 2×, 3×, 4×, and 8× scales deployments, but ASDN
is trained with scales in (1, 2]. Second, the upsampling
layers [20] can improve the reconstruction performance, as
shown in our experiment, FSDN (the upsampling version of
ASDN) has more than 0.1dB PSNR compared to ASDN on
scale 2×. However, some of the upsampling layers can only
apply for SR of the integer scales [20], such as transposed
layers. Although, Meta-upsampling [8] layer can upscale
images with decimal scales, these scale factors need to
be trained before deployment. Therefore, we compromise
some reconstruction accuracy for the continuous scale SR

using the predefined upsampling structure, which only
requires to be trained with several representative scales. Our
ASDN is still very profound on the normal fixed scales
compared with the existing predefined upsampling deep
methods. Regarding the speed, our ASDN takes 0.5 seconds
to process a 288×288 image for 2× SR on a Titan X GPU,
and FSDN takes about 0.04 seconds to generate a 288×288
image for 2× SR.

4.2.2 Any-scale comparison

In this section, in order to evaluate the efficiency of our
ASDN for any upscale ratio SR, we firstly compare ASDN
with other methods. The Bicubic interpolation method is
adopted as the reference, and some deep learning network
frameworks (EDSR, RDN, VDSR) are retrained with the
proposed any-scale SR method and the same training data as
our ASDN for any-scale SR comparison denoted as EDSR-
Conv, RDN-Conv, and VDSR-Conv. Meta-EDSR andMeta-
RDN [8] are dynamic meta-upsampling models which are
trained with scale factors from ×1 to ×4 at the stride of 0.1.

The experimental results are shown in Table 2, which
uses the PSNR value for comparison. It shows the PSNR
value on SR of 9 trained scales from ×1.1 to ×1.9 and
it is obvious that our ASDN reaches the state-of-the-art
performance. Then it also illustrates ASDN efficiency on
the scales not trained before and evaluates the effective
scale range of our proposed any-scale SR network. For SR
of scales out of the range, ASDN is comparable to Meta-
EDSR, but slightly drops behind Meta-RDN. This is due to
ASDN is the recursively deployed results, and Meta-RDN
is customized with these scales. Although the recursively
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deployed SR results have slight drop back as the directly
deployed results, recursive deployment can still effectively
generate SR of scales not trained before. Through this way,
ASDN only needs 11 training scales for any-scale SR.

Figure 4 shows the any-scale SR results on a continuous
scale range. We test our any-scale network performance
with random decimal scales distributed in the commonly
used range of ×2 to ×8 on Set5 and plot out the results into
the line. It is proved that ASDN and the models trained with
our any-scale SR method can effectively reconstruct HR
images of continuous upscale ratios. Our ASDN outperforms
all the other methods, which is generally 0.15 dB better
than EDSR-Conv, outperforms VDSR-Conv by 0.6 dB and
robustly keeps the deference of more than 3 dB PSNR
from Bicubic method in the continuous scale range. The
result demonstrates our ASDN can effectively reconstruct
HR images of continuous upscale ratios and our any-scale
training method is flexible to many deep CNN networks.

4.2.3 Qualitative comparison

We show visual comparisons on the testing datasets for 2×,
4× and 8× SR. For 2× enlargement of Set14 in Fig. 5,
FSDN suppresses the bias artifacts and recovers the cloth
pattern and text closer to the ground truths than all the
other methods. Meanwhile, ASDN tends to construct less
biased images than other methods. For 4× enlargement of
the parallel straight lines in Fig. 6. Our methods generate a
clearer building line, while other methods suffer the blurring
artifacts. RCAN tends to generate misleading strong edges
due to the more channel attention structure, but our ASDN
and FSDN generates soft patterns closer to the ground
truth. The reconstruction performance on 8× SR is further
analyzed in Fig. 7. FSDN restores the sharper characters
than the compared networks and ASDN is able to recover
more accurate textures from the distorted LR image than
many other fixed-scale methods.

4.3 Study of any-scale methods

We study the effects of Laplacian Frequency Representation
and Recursive Deployment of the any-scale SR methods.

4.3.1 Laplacian frequency representation

To evaluate the accuracy of the Laplacian Frequency Represen-
tation for continuous scale SR. We compare the reconstruc-
tion results of the Laplacian Frequency Representation with
the directly deployed HR images of 100 scales in the range
(1, 2].

We first modify EDSR, RDN, and ASDN frameworks into
the single predefined upsampling networks and train them
with these 100 scales SR samples as EDSR-100, RDN-100
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Fig. 4 PSNR comparison of
ASDN with other works within
the continuous scale range
(×2,×8] on Set5

and ASDN-100 to generate HR images of Set5 on the 100
scales. Then we reconstruct the single redefined upsampling
EDSR-100 and RDN-100 with 11 parallel IRBs as EDSR-
Conv and RDN-Conv, as suggested in Section 4.2.2, trained
with the samemethod and data as ASDN. As shown in Fig. 8a,
It is obvious that the Laplacian frequency represented HR
images have a similar quality to the direct deployed HR
images.
To analyze the influence of the Laplacian pyramid

level density on the SR performance, we train ASDN
on 5, 9, 17 evenly distributed upscale decimal ratios
in (1, 2] with DIV2K, which separates the Laplacian

Frequency Representation into 4, 8 and 16 phases and
names ASDN-4, ASDN-8, and ASDN-16 separately. Figure
8b demonstrates the performance of the three versions
of ASDN with scales in (1, 2]. In order to make the
difference more obvious, we choose some scale ranges
in (1, 2]. It illustrates that ASDN-4 drops behind ASDN-
8 and ASDN-16 commonly, and ASDN-8 and ASDN-16
almost overlap. The results show the Laplacian pyramid
level density influences SR performance. To some extent,
the model trained with more dense scales achieves
better performance, but it saturates beyond a certain
point, such as 10 phases. Due to this reason, we can

VDSR
26.89/0.867

DRRN
27.47/0.866

Bicubic
26.67/0.831

A+
27.16/0.863

RFL
27.05/0.841

SelfExr
27.11/0.865

SRCNN
27.19/0.865

HR
PSNR/SSIM

Set14(2X):
barbara

Set14(2X):
ppt3

HR
PSNR/SSIM

Lapsrn
27.06/0.867

EDSR
28.99/0.899

DBPN
29.30/0.901

RCAN
29.83/0.905

ASDN(ours)
29.10/0.890

Bicubic
26.87/0.945

A+
30.33/0.979

RFL
30.20/0.978

SRCNN
31.52/0.979

SelfExr
31.36/0.982

VDSR
31.08/0.982

DRRN
31.87/0.984

Lapsrn
31.62/0.982

EDSR
36.20/0.993

DBPN
35.14/0.992

RCAN
37.09/0.993

ASDN(ours)
35.70/0.993

SRMDNF
28.36/0.881

FSDN(ours)
30.44/0.916

FSDN(ours)
37.30/0.994

SRMDNF
34.08/0.988

RDN
30.41/0.913

RDN
35.89/0.993

Fig. 5 Qualitative comparisons of our models with other works on ×2 super-resolution. Red indicates the best performance, and blue indicates
the second best

22 Mobile Netw Appl (2021) 26:13–26



BSD100(4X):
148026
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ASDN(ours)
22.23/0.696

FSDN(ours)
22.39/0.713

RDN
22.02/0.697

SRMDNF
22.08/0.697

RDN
19.18/0.679

SRMDNF
18.57/0.631

Fig. 6 Qualitative comparisons of our models with other works on ×4 super-resolution. Red indicates the best performance, and blue indicates
the second best

generate HR images of any decimal scale in the range
of (1, 2] by the several Laplacian pyramid levels in
(1, 2].

4.3.2 Recursive deployment

In order to investigate the effects of recursive deployment
for HR images of larger decimal scales. We mainly
demonstrate the comparison of recursive deployment and

direct deployment on scales ×2, ×3, ×4We trained VDSR-
Conv, EDSR-Conv, RDN-Conv, and ASDN with 11 evenly
distributed upscale decimal ratios in (1, 2] as the recursive
models and the HR images are twice upscaled with
the upscale ratios ×√

2, ×√
3, ×√

4. To form the fair
comparisons, we trained VDSR-Conv, EDSR-Conv, RDN-
Conv, and ASDN with ×2, ×3, ×4 SR images as the
direct deployment models. Table 3 illustrates the PSNR
of recursive deployment and direct deployment. It is

Bicubic
20.53/0.638

HR
PSNR/SSIM

Manga109(8X):
MutekiNoukenSyakuma

Manga109(8X):
RinToSiteSippuNoNaka

HR
PSNR/SSIM

Lapsrn
24.06/0.807

DBPN
25.30/0.811

RCAN
26.21/0.863

ASDN(ours)
25.77/0.850

Bicubic
20.60/0.752

Lapsrn
22.62/0.812

DBPN
23.14/0.832

RCAN
24.16/0.863

ASDN(ours)
23.91/0.851

FSDN(ours)
26.21/0.866

FSDN(ours)
24.31/0.863

Fig. 7 Qualitative comparisons of our models with other works on ×8 super-resolution. Red indicates the best performance, and blue indicates
the second best
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Fig. 8 Study of Laplacian Frequency Representation

Table 3 PSNR of the recursive deployment and direct deployment on SR for ×2,×3, ×4

Methods Direct deployment Recursive deployment

×2 ×3 ×4 ×2 ×3 ×4

VDSR-Conv 37.57 33.77 31.56 36.86 33.70 31.50

EDSR-Conv 38.04 34.45 32.29 37.18 34.32 32.26

RDN-Conv 38.05 34.46 32.31 37.27 34.38 32.23

Ours 38.12 34.52 32.28 37.35 34.43 32.27

Table 4 PSNR of recursive
deployment and direct
deployment on SR for
×2,×3,×4. Black indicates
the best performance

Scale(R) Recursion(N) UpscaleRatio(r) PSNR

3× 2 1.732, 1.732 34.43

1.500, 2.000 34.19

2.000, 1.500 34.48

3 1.442, 1.442, 1.442 33.18

4× 2 2.000, 2.000 32.27

3

1.587, 1.587, 1.587 31.96

1.800, 1.800, 1.234 32.16

2.000, 1.800, 1.100 32.24

Fig. 9 Performance vs number
of parameters. The results are
evaluated with Set14 for 2×
enlargement. Red indicates the
best performance, and blue
indicates the best performance
among predefined upsampling
methods
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Table 5 Investigation of channel attention (CA), spatial attention (SA), and skip connection (SC). Black indicates the best performance

Module Different combination of CA, SA and SC

CA × × × √ √ √ × √
SA × × √ × √ × √ √
SC × √ × × × √ √ √
PSNR 37.92 37.96 37.93 37.95 37.97 37.99 37.97 38.01

obvious that recursive deployment generally leads to the
SR performance decline compared to the direct deployment.
But the difference between recursive deployment and direct
deployment goes down as the scale goes up. Since the
decline is still in an acceptable range and goes gentle as the
upscale ratios up, we adopt recursive deployment for SR in
higher upscale ratio ranges.

To determine the best solution of recursive times N

and upscale ratios r for recursive deployment. We also
explore various combinations of N and r to deploy any-
scale HR images with different strategies. Table 4 illustrates
the performance of the HR images deployed by different
strategies with ASDN on Set5. It is obvious that the
larger upscale ratio r combined with, the smaller recursive
time N will contribute to better performance. Furthermore,
choosing the larger upscale ratios in the early recursions
can produce better results than using the smaller scales.
For these reasons, we recommend choosing N = �log2 R�
with the largest upscale ratios r = 2 at the early N − 1th

recursions for large scale SR.

4.4 Model analysis

4.4.1 Number of parameters

To demonstrate the compactness of our model, we compare
the model performance and network parameters of our
model with the existing deep networks for image SR
in Fig. 9. Our model shows the trade-off between the
parameter demands and performance. Since VDSR, DRRN,
LapSRN, and MemNet are all light version networks,
they all visibly concede the performance for the model
parameter numbers. Therefore ASDN outperforms all the
other predefined upsampling methods over 0.5 dB on Set14
for 2× enlargement. Furthermore, FSDN achieves the best
results with a moderate number of parameters compared to
all the other upsampling methods.

4.4.2 Abviation study

In this section, we evaluate the influence of different
network modules, such as channel attention (CA) in FMB,
spatial attention (SA) in IRB, and skip connection (SC)

between input and output. To demonstrate the effect of CA
in the proposed network structure, we remove the CA from
the FMB. In Table 5, we can see when CA is removed, the
PSNR value on Set5 (×2) is relatively low compared to
the model having CA. To investigate the effect of SA, we
remove the SA from the ASDN to compare with the network
with SA. SA can improve performance by 0.02 dB or 0.01
dB with or without CA in the models. We further investigate
the contribution of SC to the network by comparing the
models with or without SC. Adding global skip connections
between the network input and output generally improves
0.04 dB on Set5. Generally combining attention modules
into the network design, helps the residual high-frequency
information reconstruction.

5 Conclusion

In this paper, we propose an any-scale deep network (ASDN)
to generate HR images of any scale with one unified
network by adopting our proposed any-scale SR method,
including Laplacian Frequency Representation for SR of
small continuous scale ranges and Recursive Deployment
for larger-scale SR. The any-scale SR method helps to
reduce the demands of training scale samples and accelerate
the network convergence. The extensive comparisons show
our ASDN is superior to the most state-of-the-art methods
on both fixed-scale and any-scale benchmarks.
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