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Abstract
Compared with common deep learning methods (e.g., convolutional neural networks), transfer learning is characterized by
simplicity, efficiency and its low training cost, breaking the curse of small datasets. Medical image analysis plays an indispens-
able role in both scientific research and clinical diagnosis. Common medical image acquisition methods include Computer
Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound (US), X-Ray, etc. Although these medical imaging
methods can be applied for non-invasive qualitative and quantitative analysis of patients—compared with image datasets in
other computer vision fields such like faces—medical images, especially its labeling, is still scarce and insufficient. Therefore,
more and more researchers adopted transfer learning for medical image processing. In this study, after reviewing one hundred
representative papers from IEEE, Elsevier, Google Scholar, Web of Science and various sources published from 2000 to 2020, a
comprehensive review is presented, including (i) structure of CNN, (ii) background knowledge of transfer learning, (iii) different
types of strategies performing transfer learning, (iv) application of transfer learning in various sub-fields of medical image
analysis, and (v) discussion on the future prospect of transfer learning in the field of medical image analysis. Through this
review paper, beginners could receive an overall and systematic knowledge of transfer learning application in medical image
analysis. And policymaker of related realm will benefit from the summary of the trend of transfer learning in medical imaging
field and may be encouraged to make policy positive to the future development of transfer learning in the field of medical image
analysis.
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1 Introduction

Medicine is a science that benefits all mankind, directly relat-
ed to everyone’s health and quality of life. As a result, medi-
cine has always been one of the most highly regarded disci-
plines in the world.

Medical research is inseparable from the support of medi-
cal image analysis. Both the cutting-edge medical research
conducted in the laboratory and the diagnosis made by clini-
cians require a large amount of evidence provided by medical
image analysis to make conjecture or diagnosis. With the con-
tinuous development of medical technology, a variety of med-
ical image means have emerged. The most widely applied
medical imaging techniques include Computer Tomography
(CT), Magnetic Resonance Imaging (MRI), Ultrasound (US)
and X-Rays. Among these medical imaging technologies, CT
has higher resolution on tissue of high density but relies on
doctor’s skill and exists probability of lost scans. X-Rays is
convenient and low-price, suitable for first medical examina-
tion but like CT, X-Rays do harm on human bodies thus
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patients cannot take it too many times. Unlike CT and X-
Rays, MRI does not have ionizing radiation and see more
clearly on soft tissue, but MRI usually take a long time which
some patients may not suffer, especially those wearing metal
medical instruments for example cardiac pacemaker. US has
advantage of detecting movements and enables doctors to
watch real-time pictures inside patients’ bodies. Although var-
ious medical imaging technologies have their own character-
istics and doctors should choose them carefully, deep
learning-based algorithms could match them well due to deep
learning methods have strong robustness in image’s scale and
resolution.

These non-invasive imaging techniques are relatively
harmless to the patient’s body and allow for a qualitative
and quantitative assessment of the symptoms at the site of
the lesion. They are used in vital parts of the body such as
brain, heart, chest, lung, kidney, liver, etc. However, artificial-
based medical image analysis relies on the expertise of an
experienced physician to identify the image with naked eyes.
The problem of this approach is that, first of all, the number of
doctors who can perform medical image analysis is extremely
limited. Compared with the massive demand of medical im-
age analysis, the number of professional doctors is far from
enough in either developed or developing countries all over
the world. Secondly, human eyes could be fatigued, and the
level of doctors is uneven. Therefore, misjudgment often oc-
curs, leading to wrong diagnosis and even delayed illness.
Because of these defects of medical image analysis based on
manual operation, scientists have been studying how to re-
place people through computer technology, so as to improve
the efficiency and accuracy of medical image analysis.

In this context, although computer-aided diagnosis technol-
ogy has a long history, it was not until the advent of
convolutional neural networks that the real explosion period
of automatic medical image analysis began. The
convolutional layer in convolutional neural networks can ex-
tract deep features from medical images. By further process-
ing these deep features, the convolutional neural network can
perform a series of medical image analysis tasks including
segmentation, detection, classification and disease prediction
[1–3]. The convolutional neural network has the advantages
of wide application range, high accuracy and fast analysis
speed. In recent years, more and more scholars have claimed
that in their experiments, the accuracy of medical image anal-
ysis system using convolutional neural network structure has
surpassed that of human beings in some medical imaging data
sets. But the structure of convolutional neural networks also
has its shortcomings [4]. Firstly, the convolutional neural net-
work needs to be trained before it can perform tasks. This
training process is often difficult and long, requiring many
skills, and the cost of the training process is relatively too high.
Secondly, most algorithms based on convolutional neural net-
work structure rely heavily on large number of labeled

samples for learning. And this is in contradiction with the
characteristics of medical image analysis itself. Medical im-
ages are generally difficult to collect, as well as expensive and
relatively rare. Moreover, medical image labeling can only be
done by professional doctors, so labeled data is even more
scarce. These factors have become obstacles to the expansion
of convolutional neural networks in medical image analysis.

In order to overcome these obstacles, the researchers intro-
duced the method of transfer learning into the field of medical
image analysis [5–8]. As a significant method in deep learn-
ing, transfer learning was derived from convolutional neural
networks. The basic idea of transfer learning is that if a
convolutional neural network is successful in solving a prob-
lem, it must have successfully learned something which could
be transferred to another similar problem finding a solution
faster. Compared with the common convolutional neural net-
work, transfer learning has established its own superiorities in
the field of medical image analysis. Transfer learning can take
advantage of the pre-trained network as the basis without
training from scratch, which greatly saves the training time
and reduces the difficulty of training. In the past, the training
of convolutional neural networks requires a large amount of
data with labels, otherwise the model is prone to overfitting.
Transfer learning only needs a small amount of labeled data to
fine-tune a pre-trained network structure, which is more suit-
able for medical image analysis [9]. At present, in the field of
medical image analysis, there are twomost common strategies
for applying transfer learning, fine-tuning and feature extrac-
tor. Fine-tuning is based on the pre-trained deep model, utiliz-
ing the tagged medical image data. Both the hidden layers
used to extract features and the final output layers of the pre-
trained networks are retrained. After fine-tuning, the network
not only has stronger classification performance for the target
task in the final output layer, but also has stronger and more
specific feature extraction ability for the target data domain in
the middle convolutional layers. The approach of feature ex-
tractor is to freeze all the other layers in pre-trained networks
except for the last few layers, and then splice its own classifier
reconstructing a new network model. The pre-trained net-
works adopted by the feature extractor strategy usually are
some universal and powerful deep learning models which
have been proved to be very reliable by numerous tests. It
enables the newly constructed networks to earn the powerful
feature extraction performance from the pre-trained network
with only low training cost. In general, if you have abundant
dataset of medical images labeled, you can try fine-tuning. If
the labeled medical image dataset is very scarce, then the
feature extractor method might be easier to avoid overfitting.
Fine-tuning and feature extractor determine how many layers
in the pre-trained networks participate in updating parameters
during retraining process, which is essentially a trade-off
problem [10]. Thus, which of the two strategies is better de-
pends on the detailed situation.
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Due to the advantages of transfer learning in the field of
medical image analysis, in recent years, more and more re-
searchers have adopted transfer learning (as the trend shown
in Fig. 1) to solve problems of medical image analysis and
achieved good results. These advances utilized a variety of
medical imaging techniques, including CT, MRI, US, and
X-Rays, covering important body parts such as brain, heart,
breast, lung and kidney [11]. It should be admitted that trans-
fer learning has been widely and deeply applied in medical
image analysis. Therefore, we provided this survey paper to
review, summarize and envision the development of transfer
learning in medical image analysis. In the following para-
graphs, we would first introduce the background knowledge
of convolutional neural networks, from where transfer learn-
ing originated. Then we introduced the formal definition and
categories of transfer learning. After that we reviewed the
application of transfer learning in the field of medical image
analysis by dividing several elemental parts of human body.
Finally, we also discussed the integration of transfer learning
with other deep learning technologies and the future trend,
including the shortcomings, and gave conclusion on this
paper.

2 Convolutional Neural Network

In recent years, the method of deep learning is more and more
widely applied in the field of medical image processing. One
of the most commonly used and classic methods of deep learn-
ing in medical image processing is Convolutional Neural
Network (CNN). CNN not only breaks through the previous
level of methods, making deep learning reach unprecedented
precision in image classification, but also serves as the corner-
stone of transfer learning in solving image processing

[12–16]. It can be said that without the development and ex-
pansion of CNN, there will be no great prospect of transfer
learning in the field of medical image processing [17, 18]. In
fact, a significant amount of transfer learning approaches are
based on CNN. In recent years, one of most common strate-
gies of applying transfer learning is to utilize a classic
convolutional neural network as pre-trained model, freeze
some layers and then retrain a few layers by data in target
domain. Another popular strategy is to cut off part of layers
in pre-trained model as feature extractor then add another
classifier such as Support Vector Machine (SVM). The pre-
trained model plays a crucial role in transfer learning. And
most of popular pre-trained models applied in transfer learn-
ing medical images analysis, such as AlexNet, VGGNet, and
ResNet, use convolutional neural network structure. If we do
not fully investigate convolutional neural network, it’s impos-
sible to really understand the whole aspects of modern transfer
learning strategies. Therefore, it is necessary for us to under-
stand the infrastructure of CNN, some commonly used opti-
mization tricks, and several classic and representative CNN
models that are still used on a large scale if we want to review
the application of transfer learning in the field of medical
images. This chapter is an introduction to this aspect.

2.1 Overall Structure

In general, when dealing with image classification tasks, CNN
generally includes convolutional layers, pooling, activation
and fully connected layers. The convolutional layer is mainly
used to extract the features of the input image. As a
downsampling operation, pooling layer is mainly used to re-
duce the resolution of features maps. The purpose of activa-
tion layer is to introduce nonlinear factors and improve the
expression ability of neural network. The full connection layer

Fig. 1 Trend of papers published
on transfer learning in medical
image analysis
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can reduce the dimension of feature maps and act as a classi-
fier. Faced with a multi-classification problem, we usually
need to use softmax as the output layer to map the probability
of the result between 0 and 1. Fig. 2 shows an overall basic
structure of convolutional neural networks. It is through the
stacking and improvement of these basic structures that CNN
continues to generate more complex and powerful neural
networks.

For example, it began from VGGNet that researchers ac-
knowledged that deeper structure brought better results. Since
then researchers have been putting effort into building deeper
and deeper neural network structure. As we mentioned before,
convolutional layers have ability to extract features from input
images. Through heaping up more and more convolutional
layers, it equips neural networks with capacity of extracting
deeper features from input images. During the process, the
conception of block was proposed. A block usually consists
of several convolutional layers with pooling layer and activa-
tion function. Blocks have become basic unit in modern
convolutional neural network structure. Besides normal se-
quential block, more innovative block structures were pro-
posed, including Inception and Residual Block. These blocks
utilized parallel or skip connection architectures which could
promote network’s performance in some conditions compared
to normal block and have been widely refered and applied in
up-to-date research.

2.2 Convolutional Layers

In CNN, convolution layer is generally followed by the input
layer to extract feature from the input layer. The convolutional
kernel in the traditional convolutional layer is similar to the
filter in signal processing. When the convolutional kernel
slides on the image, it is only sensitive to the image with a
specific feature. Therefore, different features can be extracted
from the image of the input layer through different
convolutional layers. Generally, CNN contains multiple

convolutional layers. The former convolutional layer extracts
some basic features, while the latter convolutional layer ex-
tracts advanced features from the basic features. For example,
if we need to judge a cat, the features extracted from the first
convolutional layer may be only some edges or lines, while
the features extracted from the second convolutional layer
may be some local organs, such as the cat’s eyes, nose and
ears. Through this layer-by-layer approach, CNN finally
learned it was a cat that matched these features. This is the
usual standard convolutional layer structure.

In order to discuss convolution structure conveniently, we
first give brief definition to most essential parameters of con-
volution then investigating several different kinds of convolu-
tions and their traits. Let us define k as kernel size, t as input
image’s size, p as zero-padding, s as stride and u as output
feature map’s size. Kernel is referred to feature extractor, usu-
ally represented by a k × k matrix. To make problem easy to
explain, we normally suppose that the input image is of t × t
pixels and the output image is of u × u pixels. Padding is often
utilized to supplement extra pixels of value zero around the
input image to ensure convolutional neural networks reaching
deeply as we need. The ordinary operation of convolution is to
perform kernel on input image one by one step, in which case
the stride s equals to one. But things would be different if we
acquire other performance and the stride could be other
values.

2.2.1 Standard Convolution

We investigate the simplest and most classic convolution
structure. In this condition, the output feature map’s size u
could be written as:

u ¼ t−k þ 1 ð1Þ

According to Fig. 3, in this simplest example, the convo-
lution does not have padding and set stride to one. That is to

Fig. 2 Basic structure of typical
convolutional neural networks
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say, t = 7, k = 3, thus u = 5. We consider a more complex sit-
uation that we add a circle of zero-padding around the input
image. Then the equation should be recorded in Eq. (2).

u ¼ t−k þ 2pþ 1 ð2Þ

According to Fig. 4, in this more complex situation, the
convolution has one zero-padding and still keep stride as
one. That is to say,

t ¼ 7
k ¼ 3
p ¼ 1
u ¼ 7

ð3Þ

Moreover, we could observe one of most important advan-
tage of zero-padding, to get output as same size as input im-
age’s without compressing pixels. Without zero-padding, it is
easily to imagine that after convolutional operations layer by
layer, the output feature map’s size gets smaller and smaller.
As a result, we could not apply deep convolutional architec-
ture in this circumstance. But with zero-padding, we keep
output with the same size of input image, which equips us
ability to design deep convolutional neural networks.

2.2.2 Strided Convolution

With the continuous development of CNN, more and
more new convolutional layer structures have been pro-
posed. Strided convolution is based on standard convo-
lution, and the strided convolutional kernel is shifted by
more than 2 pixels at a time. Using the definition
above, the equation should be summarized as:

u ¼ t−k þ 2P
s

� �
þ 1 ð4Þ

According to Fig. 5, the 3 × 3 filter stride three pixels
every move for next calculating. In this example, t = 7,
k = 3, p = 1, s = 3, thus u = 3. In this way, we can obtain
smaller feature maps and achieve the effect similar to
pooling to some extent.

There is another convolution aiming to reducing quantity
of parameters called grouped convolution. It was first pro-
posed in AlexNet . Grouped convolut ion divides
convolutional kernels into several groups by means of neural
network segmentation. The feature maps obtained are only
part of the original one, which can be processed in parallel
with multiple GPUs.

Fig. 3 A simple example of
convolution

Fig. 4 Convolution with zero-
padding
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2.2.3 Grouped Convolution

Figure 6 demonstrates how grouped convolution could de-
crease quantity of parameters. Let us first analyze standard
convolution. The size of input feature map is

SizeInput ¼ E � F � m ð5Þ
and the size of filter is

SizeFilter ¼ e� f � m ð6Þ

And in normal convolution operation, we need n filters to
achieve output feature map which size is

SizeOutput ¼ E � F � n ð7Þ

In this progress, we need to figure out

e� f � m� n ¼ Q ð8Þ
parameters.

Fig. 5 Strided convolution with
zero-padding

Fig. 6 Comparison between
normal convolution and grouped
convolution
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While in grouped convolution, we divided input feature
map into g groups bym channels. Each group of input feature
map is of

SizeGroupInput ¼ E � F � m
g

ð9Þ

with its corresponding filter of size

SizeGroupFilter ¼ e� f � m
g

ð10Þ

getting result of grouped output feature map which size is

SizeGroupFeatureMap ¼ E � F � n
g

ð11Þ

After concreting g groups of grouped output feature map,
we finally get ultimate output feature map which size is

SizeOutput ¼ E � F � n ð12Þ

It is easily to find that we only use

e� f � m
g
� n

g
� g ¼ ⅇ� f � m� n

g
¼ Q

g
ð13Þ

parameters which is largely less than parameter used in normal
convolution operation. Taking another aspect to think about
this problem, during normal convolution, every point in out-
put feature map is produced by filter which size is

SizeFilter ¼ e� f � m ð14Þ
while during grouped convolution every point in output fea-
ture map is produced by filter which size is only

SizeGroupFilter ¼ e� f � m
g

ð15Þ

That is why grouped convolution could reduce quantity of
parameters.

2.2.4 Dilated Convolution

Last, we introduce dilated convolution. The size of
convolutional kernel in dilated convolution is no longer cor-
responding to the pixel in the input image but corresponding
to a larger size of the input image for convolution operation.
The advantage of dilated convolution is to make convolution
have larger receptive field with low extra computational cost.
In dilated convolution, a key hyperparameter written as d is
proposed to represent dilation rate. For d = 1, that means nor-
mal convolution. For d = 2, that means there exists d − 1 in this
case one additional space between every point where kernel
performs convolution operation. We could observe its corre-
sponding relationship in Fig. 7. In dilated convolution, the
corresponding area of kernel is enlarged to a wider range.

Therefore, we could define the size of kernel’s actual corre-
sponding area as k′, and we give the equation of k′:

k
0 ¼ k þ k−1ð Þ d−1ð Þ ð16Þ

We applied k′ instead of k in Eq. (3) getting:

u ¼ t−k− k−1ð Þ d−1ð Þ þ 2P
s

� �
þ 1 ð17Þ

This is the equation refers to output size in dilated convo-
lution. In the example of Fig. 7, t = 7, k = 3, d = 2, p = 0, s = 1,
thus u = 3.

In the end, we summarized these various convolutions as
following Table 1.

2.3 Pooling

We know that the convolutional layer extracts enough features
from the input image. But in many cases, too many features
are not always a good thing. The extracted features may con-
tain information that we do not care much about, and this
redundant information can make the entire network slow and
bloated, so we want to remove the redundancy. Pooling layer
is designed to carry out down-sampling operation on extracted
feature maps, compress the resolution of feature maps, and
only retain important feature information. Pooling layer is also
a convolution operation mathematically. Unlike the convolu-
tion kernel of convolutional layer, the parameters of pooling
layer are usually fixed. The advantage of pooling layer is that,
firstly, it has translation invariance. Secondly, parameters of
pooling layer are fixed, so the quantity of parameters in entire
neural networks can be reduced.

In traditional CNN, there are usually two methods: max
pooling and average pooling. Max pooling is to select the
maximum value from a local domain of the image as the
representative, which can better preserve the texture features
of the image. Average pooling uses selection of the average
value as the representative from a local domain of the image,
which can better preserve the features of the overall image’s
data. Both max pooling and average pooling could be
regarded as convolution which stride the same quantity pixels
as its kernel’s. But another pooling method strides less pixels
than its convolution kernel’s size, called overlapping pooling.
It’s easy to understand that overlapping pooling could store
more information in feature maps compared to max pooling
and average pooling. What’s more, scientists proposed spatial
pyramid pooling which adopts different scale pooling kernels
and strides. With spatial pyramid pooling, feature maps of
different sizes could be handled. And because of spatial pyr-
amid pooling using different sclaes of pooling kernel then
converging the results, it helps promote network structure’s
accuracy and robustness.
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Last, we provided Table 2 to compare these variety of
pooling methods.

2.4 Activation

The function of activation is to introduce nonlinearity into
CNN. In a practical problem, the data is often not separable
linearly.Without activation, it is difficult for CNN to achieve a
good effect on linearly indivisible data. Sigmoid and Tanh are
two of earliest proposed activation functions.

The equation of Sigmoid could be written as:

sigmoid xð Þ ¼ 1

1þ ⅇ−x
ð18Þ

The equation of Tanh could be written as:

tanh xð Þ ¼ ⅇx−ⅇ−x

ⅇx þ ⅇ−x
ð19Þ

At present, in the field of image and vision, the most com-
monly used activation function is ReLU. Compared with
Sigmoid or Tanh, ReLU can converge more quickly and ef-
fectively alleviate the problem of gradient vanishing. The
equation of ReLU could be written as:

ReLU xð Þ ¼ x; x > 0
0; x≤0

�
ð20Þ

On the basis of ReLU, a series of improved activation
functions are derived as well. Leaky ReLU, compared to
ReLU, when x < 0, y did not equal to 0 but a very small
negative, letting the line of function continue declining at a
small gradient. The equation of Leaky ReLU could be written
as:

LReLU xð Þ ¼ x; x > 0
0:01x; x≤0

�
ð21Þ

In practice, the slope of the x < 0 part of Leaky ReLUmight
not be easy to determine, so PReLU was designed. PReLU
can adaptively learn the slope parameters for the part of x < 0
from the data. The equation of PReLU could be represented
as:

PReLU xð Þ ¼ x; x > 0
ax; x≤0

�
ð22Þ

where a is a very small value not fixed and determined by
other parameters in specific neural networks.

Another way is to take the slope of x < 0 as a random
parameter to sample from a given range, which is called
Randomized ReLU (RReLU). The difference between
RReLU and PReLU (shown in Fig. 8) is that the slope param-
eter a is not fixed during every training process but changed
into a random value of the given range when next epoch of
training begins. The equation of RReLU could be recorded as:

Fig. 7 Dilated convolution

Table 1 Variety of convolution

Convolution Zero-padding Stride Groups Dilation rate Benefits

Normal convolution 0 1 0 1 Basic and Simple

Convolution with padding Usually more than 1 1 1 1 Ensure networks reach deep

Strided convolution Flexible Usually more than 2 1 1 Like pooling

Grouped convolution Flexible Flexible Usually more than 2 1 Reduce quantity of parameters

Dilated convolution Flexible Flexible 1 Usually more than 2 Expand receptive field
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RReLU xð Þ ¼ x; x > 0
a

0
x; x≤0

�
ð23Þ

where a~U(l, u), l < u and l, u ∈ [0, 1)
Besides family of ReLUs, exponential linear units (ELU)

was proposed to make the average value of activation function
closer to zero by introducing exponential equation instead of
linear equation when x < 0. Due to ELU’s mean value closer
to zero, it is believed that ELU has faster learning speed than
ReLUs in some conditions. The equation of ELU could be
noted as:

ELU xð Þ ¼ x; x > 0
β ⅇx−1ð Þ; x≤0

�
ð24Þ

And if adding a scale parameter λ infront of ELU, we could
get scaled exponential linear units (SELU). The equation of
SELU could be written as:

SELU xð Þ ¼ λ
x; x > 0

β ⅇx−1ð Þ; x≤0
�

ð25Þ

In short, it depends which activation function should be
applied in convolutional neural networks. We need to choose
appropriate ReLU function (summarized in Table 3) accord-
ing to the actual problems to be solved.

2.5 Fully Connected Layer

Fully connected layer plays the role of “classifier” in the
whole convolutional neural network. If operations such as
convolutional layer, pooling layer and activation function lay-
er map the original data to the hidden feature space, fully
connected layer maps the learned ‘distributed feature repre-
sentation’ to the sample space. Fully connected layer is also
achieved by convolution operation, based on feature maps
after convolutional layer, pooling and activation function.
Fully connected layer uses a corresponding convolution ker-
nels executing convolution on feature maps to get a one-
dimensional vector. The purpose is weighting all the charac-
teristics from neural networks and at the same time reducing
spatial dimension of these characteristics, making it conve-
nient for following softmax layer to output classification
probability.

In traditional CNN, usually more than one fully connected
layers are used to construct fully connected network.
Parameters of fully connected layers take up a large proportion
of the total Convolutional Neural Network. Too many param-
eters in fully connected layer tend to make the model appear
bloated and lead to overfitting. Fully connected layer is not
irreplaceable. Global average pooling can directly apply aver-
age pooling operation on the whole feature space, and directly
output one-dimensional vector as the result, greatly reducing
the number of parameters in the model. However, global av-
erage pooling is not always superior to fully connected layer,
especially in transfer learning. Because most of parameters are
included in fully connected layer, which has more room for
adjustment. So, models with fully connected layers often per-
form better in transfer learning than those without fully con-
nected layers.

3 Advanced Techniques of CNN

Since convolutional neural networks faced the world, scien-
tists have been always searching new methods and exploring
novel techniques to improve CNN. In this section, we intro-
duced some of most popular and useful techniques that have
been widely applied in modern CNN architecture. In general,
these advanced techniques of CNN aim to elevate the

Table 2 Comparison of pooling methods

Pooling Size Stride Strategy Benefits

Max pooling Fixed = Size Fetch max pixel of local region Preserve texture feature

Average pooling Fixed = Size Calculate mean of local pixels Preserve background information

Overlapping pooling Fixed < Size Usually fetch max pixel of local region Better representative ability

Spatial pyramid pooling Flexible = Size Usually fetch max pixel of local region Overcome various scales and higher accuracy

Fig. 8 Randomized ReLU
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accuracy of neural networks and make training process easier
and faster. Also, we discussed some classic pre-trained
models. These advanced techniques and classic pre-trained
models have been the backbone in modern transfer learning
technology which we should pay attention to.

3.1 Batch Normalization

Because practical problems are challenging, there is a tenden-
cy to use deeper and deeper network structure. Deep neural
network tuning is very difficult and often causes internal co-
variate shift. Internal covariate shift refers to the phenomenon
that when parameters change in the network, the data distri-
bution of internal nodes also changes. There are two main
problems brought by it. One is that the upper network needs
to adjust constantly to adapt to the change of input data distri-
bution, which slows down the learning speed of the network.
The second is to make the activation function easily fall into
the gradient saturation zone and reduce the speed of network
convergence.

A very efficient way is to use batch normalization, an op-
eration that normalizes the output signal into an ideal range.
Given the input of a batch belonging to one layer of neural
networks is

X ¼ x1; x2; x3;⋯; xn
� � ð26Þ

in which xi means a sample and n means batch size.
First, calculate the mean of the elements from the mini-

batch,

φB ¼ 1

n
∑
n

i¼1
xi ð27Þ

Second, calculate the variance the mini-batch,

ω2
B ¼ 1

n
∑
n

i¼1
xi−φBð Þ2 ð28Þ

Then, we could perform normalization on each element
from the mini-batch,

x
0
i ¼

xi−φBffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
B þ ε

p ð29Þ

Last step, to compensate for the non-linear expression of
the network, we need to scale and shift the original output,

yi ¼ αi � x0
i þ βi ð30Þ

The advantage of batch normalization lies in that, firstly,
the data input into each layer of network is within a certain
range through normalization. Thus, the latter layer network
does not need to constantly accommodate the changes of input
in the underlying layer of network, realizing the decoupling
between layers of network, which is conducive to improve
speed of learning the whole neural network. Secondly, batch
normalization makes the model less sensitive to parameters in
the network, increasing the network’s adaptability to parame-
ter’s range and making network’s learning more stable. At the
same time, batch normalization can alleviate the problem of
gradient vanishing because it can suppress the impact of
changes in the underlying network accumulating into the up-
per network and avoid activation function from falling into the
gradient saturation zone during training. Finally, batch nor-
malization adds random noise to the network’s learning pro-
cess, which bring regularization effect on some level.

3.2 Dropout

In deep learning, we often encounter overfitting. Especially
when our training data samples are relatively small, while the
network adopted is relatively complex and the parameters are
relatively large, it is easy to lead to overfitting, and only a very
bad model can be obtained. So, we usually use dropout when
training deep neural networks. During each training, we ran-
domly set half of the nodes in the hidden layer of the neural

Table 3 Various activation function

Activation Saturability Symmetry about the origin Speed of convergence Output range Characteristics

Sigmoid Saturated No low (0, 1) Gradient vanishing

Tanh Saturated Symmetrical Relatively low (−1, 1) Mean value equals to zero, faster than sigmoid
but still with gradient vanishing

ReLU No No Fast [0, +∞) Relieve gradient vanishing but with dead neurons
and excursion

Leaky ReLU No No Restricted fast (−∞, +∞) Mitigate dead neurons

PReLU No No Relatively fast (−∞, +∞) Faster than Leaky ReLU

RReLU No No Relatively fast (−∞, +∞) More flexible

ELU No No Fast usually(−1, +
∞)

Faster than ReLU

SELU No No Fast usually(−1, +
∞)

More flexible
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network to 0, which is equivalent to randomly ignoring half of
the feature detectors, and the overfitting problem can be sig-
nificantly alleviated. The contribution of dropout is to weaken
the interaction between nodes in the hidden layer of neural
network, punish some neurons that are too prominent, and
reduce the dependence of the whole network on these prom-
inent neurons. Therefore, dropout has become a common
means to solve overfitting problem.

3.3 Regularization

To solve the problem of overfitting, in addition to dropout,
another common method is regularization. Generally,
overfitting occurs due to some parameters of the nodes in
hidden layer are over-trained, so that these parameters can
have a great impact on the prediction results of the whole
model. As a result, the network is very close to truth within
the training data but has a large error within the testing data. In
other words, the whole network is so dependent on some part
of parameters in hidden layers that it is almost kidnapped by
these parameters. The idea of Regularization is to punish these
parameters which are prone to being over-trained by adding
the influence factors of hidden layer parameters’ distribution
into loss function. So that the previously over-dependent pa-
rameters can be suppressed in training, which can effectively
alleviate the problem of overfitting.

3.4 Weight Initialization

3.4.1 Zeros and Constant

The simplest initialization method is to initialize all the weight
parameters to 0 or a constant but using this method will cause all
the neurons in the network to learn the same characteristics. The
reason is that no matter how many iterations of feed-forward
propagation and backpropagation are performed, the weight
values between any two connected hidden layers remain the
same and symmetric. We originally expect that different neurons
could learn different parameters, but because the parameters are
the same, different neurons could not learn different features at
all. Every layer seems to contain only one neuron. Therefore, it is
necessary to initialize weight values randomly.

3.4.2 Random Normal

Initializing weight values randomly following random normal
distribution has two potential issues: vanishing gradients or
exploding gradients. When initializing weights to a small ran-
dom number, the model can run well for a period of time, but
with the increase of time, the gradient starts to approach to
zero in propagation, which will lead to the vanishing gradients
and slow learning. When initializing weights to a large

random number, it can lead to exploding gradient problem
during training.

3.4.3 Random Uniform

Random uniform initialization draws weight values randomly
from a uniform distribution given lower and upper bound of
the range of random values. Every number within range has
equal probability to be picked. Its probability density function
at the two boundaries a and b is given by,

f wð Þ ¼
w−a
b−a

for a≤w≤b
0 for w < a or w > b

(
ð31Þ

The cumulative distribution function is given by,

F wð Þ ¼
0; for w < a

w−a
b−a

; for a≤w≤b
1; for w > b

8<
: ð32Þ

3.4.4 Truncated Normal

Truncated normal initialization is similar to random normal
initialization. The difference is that values more than two stan-
dard deviations from the mean would be discarded and re-
assigned. The benefit of using truncated normal distribution
is to prevent saturation of neurons. For example, if we use
sigmoid as the activation function, once the input of activation
function is too small or too large, it may cause activation value
to be too small or too large, and thus enter the saturation zone.
Once in the saturated zone, these neurons die and never renew.
Weight values from truncated normal distribution derive from
a normal distribution with mean μ and variance σ2 and lie
within the interval (a, b), with

a ¼ μ−2σ ð33Þ
b ¼ μþ 2σ ð34Þ

Its probability density function f is given by

f w;μ;σ; a; bð Þ

¼
1

σ

ϕ
w−μ
σ

� 	
Φ

b−μ
σ


 �
−Φ

a−μ
σ

� 	 for a≤w≤b

0 for w < a or w > b

8>>><
>>>:

ð35Þ

Here

ϕ ξð Þ ¼ 1ffiffiffiffiffiffi
2π

p exp −
1

2
ξ2


 �
ð36Þ

is the probability density function of the standard normal dis-
tribution and
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Φ xð Þ ¼ 1

2
1þ erf

xffiffiffi
2

p

 �� 


ð37Þ

is its cumulative distribution function.
The error function, donated by erf(x), is defined by

erf xð Þ ¼ 1

π
∫x−xe

−t2dt ð38Þ

3.4.5 Orthogonal

Initializing weights with orthogonal matrix is beneficial to
propagation of gradients in deep nonlinear networks.
Orthogonal matrixes are norm-preserving, which keeps the
norm of input constant throughout the network. Therefore, it
helps with the problem of exploding gradients and vanishing
gradients. Another property of orthogonal matrix that columns
are orthonormal to one another help weights to learn different
input features [19].

3.4.6 Identity

Weight values are initialized with identity matrixes as a square
tensor with 0’s everywhere except for 1’s along the diagonal.
In practice, multiplicative factor can be applied to the identity
matrix. This initialization method is only used to generate 2D
square tensors. Compared to zero and constant initialization,
identity weight tensors break the symmetry by adding 1’s at
the diagonal, which can help improve performance. However,
when each layer of the network is activated by a linear func-
tion, the activation values will either decrease or increase ex-
ponentially with layers, leading to either vanishing gradients
or exploding gradients.

3.4.7 Xavier Initialization

The core idea of Xavier Normal Initialization is that, to keep
information flowing efficiently in forward-propagation, the
deviations of every two connected layers’ output should be
the same [20]. Xavier’s deduction based on several hypothe-
ses before: 1) using symmetric activation function with unit
derivation at 0; 2) initializing weights independently; 3) the
same input features variances; 4) in a linear regime at the
initialization. From the property of uniform distribution vari-
ance in probability statistic, the final initialization distribution
of Xavier can be obtained as follows, with ni the size of layer i,

W∼U −
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
niþniþ1

p ;

ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
niþniþ1

p
� 


ð39Þ

Xavier initialization following normal distribution draws
samples from a truncated normal distribution centered on 0
with standard deviation = sqrt(2 / (ni + ni + 1)) where ni is the

number of input units in the weight tensor and ni + 1 is the
number of output units in the weight tensor.

stddev ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ni þ niþ1

s
ð40Þ

3.4.8 He Initialization

Xavier initialization is based on the hypothesis that the model
is using a linear activation function. This assumption is not
valid for the ReLU activation function. With the increasing
depth of network using ReLU as activation function, the net-
work with initialized weight values following simple normal
distribution and Xavier initialization has difficulty to con-
verge. He et al. proposed a novel initialization method that
works well with ReLU [21]. Compared to model using
Xavier initialization, using He initialization increases the rate
of convergence, although there is no clear superiority on ac-
curacy between two models. In this method, weight values
follow a zero-mean normal distribution with standard devia-
tion as follows, with ni the size of layer i,

stddev ¼
ffiffiffiffiffi
2

ni

r
ð41Þ

Similarly, He initialization following uniform distribution
draws weight values from a uniform distribution as follows,
only considering the size of input layer, with ni the size of
layer i,

W∼U −
ffiffiffi
6

p
ffiffiffiffi
ni

p ;

ffiffiffi
6

p
ffiffiffiffi
ni

p
� 


ð42Þ

3.4.9 Lecun Initialization

To prevent back-propagated gradients from vanishing or ex-
ploding so that learning can proceed and allow the network to
learn the linear part of the mapping, it is important make
weights range over the sigmoid’s linear region. Lecun, et al.
achieved this by normalizing training set and requiring that
every layer has a constant variance of the activations σ = 1
[22]. To ensure a standard deviation of approximately 1 at
the output of each layer, weights are set to values randomly
chosen from a distribution with mean zero and standard devi-
ation as follows, with ni the size of layer i,

stddev ¼
ffiffiffiffiffi
1

ni

r
ð43Þ

Lecun initialization following uniform distribution draws
weight values from a uniform distribution as follows, with ni
the size of layer i,
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ffiffiffi
3

p
ffiffiffiffi
ni

p ;

ffiffiffi
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p
ffiffiffiffi
ni

p
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ð44Þ

3.4.10 Positive Unitball Initialization

In this method, the sum of weight values of each layer is set to
1. This can be implemented by assigning values from a uni-
form distribution in [0, 1] and dividing these initialized values
by the sum of them. This method can avoid initial weight
values being too large to enter the saturation zone of activation
functions, such as sigmoid function.

Table 4 shows the summary of different weight initializa-
tion methods. For Xavier Initialization, He Initialization,
Lecun Initialization and Positive Unitball Initialization,
weight values could be drawn from either a normal distribu-
tion or a uniform distribution.

4 Transfer Learning

In the field of medical image, one situation is often
encountered. Database is very difficult and expensive
to establish, so that the sample data is usually scarce.
And the other situation is that we want to learn some-
thing new from a problem we solved in the past and
quickly move on to the next task. That is why we need
transfer learning. In general, we call existing knowledge
source domain and call new knowledge to be learned
target domain.

To give formal definition of transfer learning, we need
to define two underlying concepts first. A domain, written
as D, is defined to have two aspects, feature space X and

marginal distribution P(X). In this condition, we could
represent the domain as

D ¼ X ;P Xð Þf g ð45Þ

With the definition of domain, we could define a task T as

T ¼ γ;P Y jXð Þf g ð46Þ
in which γ represents label space and the function P(Y|X)
predicts corresponding label based on feature space and could
also be written as function η. Thus, we get the definition of a
task,

T ¼ γ; ηf g ð47Þ

Now, we introduce the definition of transfer learning.
There exists a source domain Ds with its matching task Ts
while there also exists a target domain DT with its relevant
task TT. If Ds ≠DT or Ts ≠ TT, transfer learning is a process
which aims to learn the target probability distribution predic-
tion function ηT inDT using the knowledge learnt fromDs and
Ts.

Transfer learning is an approach of how to transfer knowl-
edge from source domain to target domain (seeing Fig. 9).
There are fourmost commonly usedmethods of transfer learn-
ing: instance based transfer learning, feature based transfer
learning, parameter based transfer learning, and relation based
transfer learning.

4.1 Instance Based Transfer Learning

Instance based transfer learning is simple and easy to imple-
ment. What we need to do is comparing the source domain
and target domain, marking the data that is similar to those in
target domain of source domain, and increasing the weight of

Table 4 Various weight initialization methods

Initialization Normal
distribution

Uniform
distribution

Random
initialization

Characteristics

Zeros and Constant No No No Different neurons learn the same features

Random Normal Yes No Yes Potential issues: vanishing gradients or exploding gradients

Random Uniform No Yes Yes Every value within range has equal probability to be picked

Truncated Normal Yes No Yes Prevent saturation of neurons

Orthogonal No No Yes Beneficial to propagation of gradients

Identity No No No Break the symmetry of Zeros Initialization

Xavier Initialization Could be Could be Yes Keep information flowing efficiently in
forward-propagation

He Initialization Could be Could be Yes Works well with ReLU

Lecun Initialization Could be Could be Yes Prevent back-propagated gradients from vanishing or ex-
ploding

Positive Unitball
Initialization

Could be Could be Yes Prevent saturation of neurons
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this part of data. This operation is equivalent to extracting the
part of data closest to those of target domain’s from source
domain then to match target domain. The disadvantage of this
approach is that it is unstable, more empirical, and does not
always exist a subset of data in source domain that happens to
be very close to target domain’s.

4.2 Feature Based Transfer Learning

Feature based transfer learning is firstly based on the assump-
tion that target domain and source domain share some over-
lapping characteristics in common. Then we can transform
source domain and target domain into a same space through
feature transformation. When source domain and target do-
main are in the same space, data in source domain and target
domain will have a similar distribution as well. So, we can use
machine learning to solve the rest of work. The strong point of
feature based transfer learning is that it works well while the
its weak point is that it is often difficult to calculate.

4.3 Parameter Based Transfer Learning

Parameter based transfer learning is based on another assump-
tion that source domain and target domain share part of the
model’s parameters, provided that source problem and target
problem have some correlation. Let us say we have a CNN
model that has been trained to tell difference between cats and
dogs, and nowwe are going to move on to the new problem of
distinguishing different species of cats. So, we think that the
model for distinguishing between cats and dogs should have
the ability to learn some of the basic characteristics of cats
which can be used in new models. There are usually two
specific approaches. One is to initialize the new model with
the parameters of source model and then fine-tune it. Second,
we solidify source model or part of layers in source model as
feature extractors in the new model and then add the output
layer for target problems to learn from this basis, which can

effectively use the previous knowledge and reduce the cost of
training. These two are the most popular transfer learning
methods under the current trend of deep neural networks.

4.4 Relation Based Transfer Learning

Relation based transfer learning requires the assumption that
source and target domains are similar so that this time they
share some kind of logical relationship. Attempts to transfer
logical relationships from source domain to target domain
constitute the core idea of relation based transfer learning.

Finally, we provide a brief summary and comparison be-
tween these four methods of applying transfer learning
through Table 5.

4.5 Classic Pre-Trained Models

This section mainly introduces several classic pre-trained
models. On the one hand, these models were sensational at
that time and played a significant role in promoting the devel-
opment of deep neural network. On the other hand, many of
them are still widely used, especially as the prototype and
foundation of transfer models in transfer learning. Pre-
trained models are applied in transfer learning mainly in two
ways, fine-tuning and feature extractor. Fine-tuning adopts
pre-trained models but re-trains them with target datasets only
on last few layers of pre-trained networks, keeping parameters
of former layers fixed away from weights updating. Feature
extractor usually uses pre-trained models except for their
fully-connected layers extracting deep features from images
for further process. It is obvious that either fine-tuning or
feature extractor demands pre-trained models as basis. Even
we could say that in transfer learning better pre-trained models
almost mean better performance. Therefore, only by master-
ing these classical pre-trained convolutional neural networks
can we truly understand the development of transfer learning.

Fig. 9 How transfer learning
works from source domain to
target domain
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4.5.1 AlexNet

As it is shown by Fig. 10, AlexNet adopts three sizes
of convolutional kernel, 11 × 11, 5 × 5 and 3 × 3.
Features are continuously extracted via convolution
and the size of feature map is also concentrated with
maxpooling method. Finally, the final classification re-
sult is outputted through the combination of two fully
connected layers and one softmax layer. Other high-
lights in AlexNet include the use of ReLU as activation
function, the use of overlapping pooling in the first
layer, and the introduction of dropout method in fully
connected layers, which laid a good foundation for the
subsequent CNNs.

4.5.2 VGGNet

VGGNet shows the superiority of deep network’s structure.
VGG (showing in Fig. 11) utilizes smaller convolutional ker-
nel than AlexNet, only 3 × 3, but the network deepens to 16
even 19 layers. Starting from VGGNet, researchers gradually
moved toward the idea of small convolutional kernel but with
layers deeper and deeper to construct convolutional neural
networks.

4.5.3 GoogLeNet

GoogLeNet, as another representative CNN model, was in-
spired by network in network, especially the structure of

Table 5 Four methods to apply transfer learning

Transfer what Process Characteristics

Instance Use target data within instance of source domain Suitable for situation that cannot re-using data of source
domain directly

Feature representation Apply feature representation (e.g. feature extractor in CNN) of source
domain into target domain

Narrow the gap between source domain and target
domain but usually rely on labeled data

Parameter Adopt parameters in source domain as initialization and give extra
weight to supplement loss in target domain during re-training (e.g.
fine-tuning)

Compared to training from scratch, it is easy to train new
neural networks with fast speed based on pre-trained
model

Relational-knowledge Learn the relationship within data points of source domain Compatible for data with dependency and identical
distribution

Fig. 10 Structure of AlexNet
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networks named inception. GoogLeNet is innovative in
adopting the Inception structure (seeing Fig. 12) and the
GAP approach. Inception architecture can broaden the width
of single layer in network by using combination of 5 × 5, 3 × 3
and 1 × 1 three sizes of convolutional cores simultaneously in
one layer to extract features andmerge them into the next layer
of the network in parallel with maxpooling and ReLU. The
GAP approach is to overcome the problem of overfitting in
fully connected layers. These ideas had a great influence on
later CNN models.

4.5.4 ResNet

With the continuous development of deeper and deeper neural
network’s structure, CNN becomes more and more difficult to
train. Worse after reaching a certain depth, if the network
continues to increase its depth, the performance will not rise
but fall. ResNet’s first innovation was to solve the problem of
deep network’s structure. ResNet proposed a short-circuit-like

structure (showing in Fig. 13) of connections through which
multiple convolutional layers can be skipped at one time.
These connections, which enable learning process to skip
more than one convolutional layer at one time, can efficiently
transmit gradients to very deep layers, thus breaking bottle-
necks of performance in deep neural networks. ResNet’s sec-
ond innovation is the use of batch normalization techniques to
alleviate the problem of gradient vanishing. At last, we pro-
vide Table 6 to summarize these four classic pre-trained net-
works and their highlights.

5 Application in Medical Image Analysis

This paper is aimed at introducing the application and devel-
opment of transfer learning in the field of medical imaging.
This chapter will elaborate based on medical images accord-
ing to different body parts or organs.

Fig. 11 Architecture of VGGNet

Fig. 12 Inception structure
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5.1 Brain

At the beginning of this section, we provide Table 7 to list
some of most representative papers in the field of transfer
learning used in brain disease.

When transfer learning just had a great progress with the
popularity of Convolutional Neural Networks, medical re-
searchers have found its big potential in brain tumor field.
Among types of brain tumors, medulloblastoma is one ofmost
common types, about a quarter.

In [23], scientists proposed a method for medulloblastoma
tumor differentiation without large amounts of labeled data
using transfer learning and CNN. They noticed with transfer
learning they could represent images by features learned from
other different datasets. They applied VGG16 and IBCs-CNN
(a CNN trained previously for invasive breast cancer tumor
classification) as feature extractors and separately trained the
softmax function to differentiate between anaplastic and non-
anaplastic figure areas. Results told that transfer learning was
superior to other methods due to its higher accuracy and lower
training cost. Xu, et al. [24] took a further step proposing a
terse and effective approach based on transfer learning meth-
od. They trained CNN with a huge number of images from
ImageNet then transferred these extracted features (4096

neurons) in their network’s architecture. And it was claimed
that their approach achieved classification accuracy of 97.5%
and segmentation accuracy of 84%, beating other competitive
groups at that time. In addition, Ertosun and Rubin [25] also
tried updating for new models from former trained networks
to adapt new dataset of brain tumors. Their research showed
that transfer learning and fine tuning provided capacity quick-
ly creating new networks without beginning a new training
session which was highly time-consuming.

What’s more, Liu, et al. [26] succeeded in extracting fea-
tures from a small dataset of brain’s magnetic resonance im-
ages (MRI) using the pre-trained Convolutional Neural
Network from source domain. Their approach for predicting
survival time from MRI of brain tumor was based on transfer
learning. Due to sizes of tumors varied, they also proposed
types of image resizing methods. In this paper, they pointed
that transfer learning obtained better survival time prediction
with the highest accuracy of 95.4% compared to traditional
methods. Besides, Saha, et al. [27] provided their modified
transfer learning approach which was a model derived from
previous network’s construction via transferring knowledge
from source domain, tackling the challenge of lacking of
high-dimensional dataset when encountering survival predic-
tion of rare cancer including brain cancer.

With the development of deep neural network and transfer
learning, more and more researchers embraced transfer learn-
ing models in their schemes. Ahmed, et al. [28] pre-trained a
CNN originally on ImageNet and then fine-tuned this CNN,
transferring its feature learning ability to predict survival time
from brain tumor MRI. They demonstrated that intentional
fine-tuning could enable CNN adapt task domain where
dataset was small with limited time and achieve outstanding
accuracy. Lao, et al. [29] proposed a method based on transfer
learning which could obtain radiomics signatures. Their re-
search was aimed to predict overall survival of patients who
suffered from Glioblastoma Multiforme (GBM), one of the
most common brain tumors. They extracted 1403 handmade
features and 98,304 deep features via MRI before surgery and
then achieve a six-deep-feature signature, which is operated
by the least absolute shrinkage and selection operator
(LASSO) cox regression model. With combination of the
learned signature and clinical risk factors which had been

Fig. 13 Structure of residual block

Table 6 Summary of four classic pre-trained networks

Models AlexNet VGGNet GoogLeNet ResNet

Total number of layers(max) 8 19 22 152

Number of convolutional layers 5 16 21 151

Number of fully-connected layers 3 3 1 1

Kernel size 11 × 11, 5 × 5, 3 × 3 3 × 3 7 × 7, 1 × 1, 3 × 3, 5 × 5 7 × 7, 1 × 1, 3 × 3, 5 × 5

Top-5 error rate 16.4% 7.3% 6.7% 3.57%

Highlights ReLU, dropout Small kernel Inception structure Residual block
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proved to have better performance than conventional factors,
the article showed that overall survival prediction for
Glioblastoma Multiforme could be firmly supported by trans-
fer learning approach. Also focusing on prediction for overall
survival of brain tumor, Chato and Latifi [30] implemented
several methods including support vector machine (SVM), k-
nearest neighbors (KNN), linear discriminant, tree, ensemble
and logistic regression. They claimed that their classification
method based on transfer learning by extracting deep features
via a pre-trained CNN was the best according to experiment
results. Shen and Anderson [31] also pointed that it is encour-
aged to deploy pre-trained CNN model on brain tumor MRI
dataset when facing brain tumor MRI segmentation. If we
need to adapt a current model into a new task, how much
new data we should use and what portion of parameters we
need to re-train are two most commonly facing problems.
Trying answering these questions, Ghafoorian, et al. [32] con-
ducted experiments by using transfer learning for MRI in
brain lesion segmentation.

In 2018, Li, et al. [33] proposed their deep transfer learning
neural network (DTL-NN) which could muscle classification
of brain functional connection. In their work, the original task
was to train a stacked sparse autoencoder (SSAE) to under-
stand bran functional connection of healthy people and the
target domain was then to transfer this model to classify some
diseases or other conditions of brain functional connection
like autism spectrum disorder (ASD). Compared to

conventional deep neural network and SVM, their trial
achieved more advanced result, including accuracy, sensitivi-
ty and specificity. Puranik, et al. [34] utilized Inception V2
model with trained knowledge of ImageNet and constructed
an Alzheimer’s detector based on transfer learning which pre-
sented faster and more accurate. Rachmadi, et al. [35] created
a method on basis of UNet and UResNet processing output
from the Irregularity Age Map (IAM) to assess brain white
matter hyperintensities (WMH). It showed that transfer learn-
ing was also suitable for prediction and segmentation of brain
lesion progression and regression. Wong, et al. [36] proposed
a framework which used relevant data for pre-training only to
learn basic shape and structure features with segmentation
networks before facing real target medical classification tasks.
Compared to models directly transferred to target tasks after
pre-trained on ImageNet, their strategy turned to have better
performance with lower computational cost on a three-class
brain cancer classification problem. Yang, et al. [37] per-
formed AlexNet and GoogLeNet with or without pre-trained
on ImageNet for glioma grading and they found that transfer
learning and fine-tuning could substantially promote the per-
formance than traditional CNNs.

In the last year, the trend of transfer learning for brain
medical image realm showed no sign of descending. Cheng,
et al. [38] mentioned that transfer learning for early diagnosis
of Alzheimer’s disease usually adopted all data and annotation
from source domains without discriminability of part of

Table 7 Transfer learning application in brain disease

Authors Year Disease domain Transfer method

Cruz-Roa, et al. [23] 2015 Medulloblastoma tumor VGG-16 as feature extractor

Xu, et al. [24] 2015 Brain tumor Feature extractor

Ertosun and Rubin [25] 2015 Gliomas Fine-tuning

Liu, et al. [26] 2015 Brain tumor Feature extractor

Saha, et al. [27] 2016 Brain tumor Fine-tuning

Ahmed, et al. [28] 2017 Brain tumor Fine-tuning

Lao, et al. [29] 2017 Glioblastoma multiforme Feature extractor

Chato and Latifi [30] 2017 Brain tumor Fine-tuning

Shen and Anderson [31] 2017 Brain tumor Feature extractor

Ghafoorian, et al. [32] 2017 Brain lesion Feature extractor

Li, et al. [33] 2018 Brain functional connectomes Fine-tuning

Puranik, et al. [34] 2018 Alzheimer Fine-tuning on Inception-V2

Rachmadi, et al. [35] 2018 Brain lesion Fine-tuning on UNet and UResNet

Wong, et al. [36] 2018 Brain tumor Feature extractor

Yang, et al. [37] 2018 Glioma Fine-tuning on AlexNet and GoogLeNet

Cheng, et al. [38] 2019 Alzheimer Feature extractor

Lu, et al. [39] 2019 Pathological brain detection Fine-tuning on AlexNet

Talo, et al. [40] 2019 Brain abnormality classification Fine-tuning on ResNet

Dar, et al. [41] 2020 Brain tumor Fine-tuning

Saba, et al. [42] 2020 Brain tumor VGG-19 as feature extractor
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irrelevant source data and labels. To tackle unreliability of
source domains, their approach employed a multi-bit label
coding vector instead of original binary class labels from
source domains, acquiring a robust multi-label transfer feature
learning (rMLTFL) model with the ability of combining fea-
tures from multiple domains and kicking out those fuzzy and
interfering ones. Compared with commonmethods, the model
turned out to promote performance to significant extent. Lu,
et al. [39] overcame overfitting when training neural networks
to detect pathological brain on MRI images by employing
AlexNet with modification of parameters, obtaining better ex-
perimental results than state-of-the-art methods. Analogously,
Talo, et al. [40] trained their model based on ResNet34 with
fine-tuning and optimal learning rate finder to detect brain
tumors usingMRI. Dar, et al. [41] demonstrated that with only
tens of brain MR images, fine-tuned networks pre-trained on
natural images could achieve accuracy nearly equal to net-
works totally trained on brain MRI datasets. It indicated that
researchers could not necessarily prepare huge MRI datasets
before applying deep learning into brain images, making it
possible to accelerate MRI analysis. Saba, et al. [42] utilized
both transfer learning model based on VGG-19 and hand-
crafted features by serial method and claimed to obtain quite
good performance on several top brain image challenge data-
bases. Their research showed that transfer learning with other
supplementary methods [43, 44] would still have a broad
prospect on brain medical image processing realm.

5.2 Heart

Before discussion of this part in detail, we first give summary
of papers of transfer learning application in heart disease
which is showed below in Table 8.

Since researchers began to combine medical image analy-
sis with machine learning methods, transfer learning has al-
ways been one of hottest topics in cardiology, including car-
diac diagnostics, electrocardiographic examination and car-
diovascular magnetic resonance.

De Cooman, et al. [45] only used one night of patient-
specific ECG data with transfer learning approach proposing
a one-class support vector machine based algorithm (called
TLOC-SVM) to detect epileptic seizure. They compared their
method to traditional OC-SVM and concluded that with only
limited specific data could transfer learning make ML classi-
fier more accurate and robust to a certain degree. Margeta,
et al. [46] proposed a CNN structure on the basis of
CaffeNet which was originally trained on natural image
datasets ImageNet ILSVRC2012. Their approach called
CardioViewNet, aiming to recognize cardiac MRI acquisition
plane, fine-tuned on CaffeNet, transferring learnt feature rep-
resentatives into target domain. Compared to CNNs trained
from scratch, it is claimed that transfer learning based
CardioViewNet obtained better performance, promoting

average F1 score to 97.66%. Al Rahhal, et al. [47] applied
CNN pre-trained on ImageNet to detect Arrhythmia. After
performing continuous wavelet transform (CWT) on electro-
cardiogram datasets, they succeeded in utilizing ECG three
band images as input and making CNN completing classifica-
tion. And it is indicated that transferred knowledge of refer-
ence anatomy datasets could also enhance electrocardiograph-
ic imaging prediction [48].

Murugesan, et al. [49] proposed three deep learning
methods to classify cardiac arrhythmias. Among the three,
their approach called ECGNet combining convolutional neu-
ral network (CNN) with long short termmemory (LSTM) was
the best. Moreover they proved if fixing front layers,
deploying cross ECG databases and re-training on only last
three layers, ECGNet could even achieve higher performance
which presented promising potential of transfer learning in
ECG processing. Salem, et al. [50] transformed original
ECG signal data into spectrogram data which features could
be extracted by pre-trained DenseNet. Alquran, et al. [51]
introduced GoogLeNet and AlexNet on both bispectrum and
third-order cumulants gained by input ECG data and showed
that fine-tuned GoogLeNet classifier with third-order
cumulants beat other state-of-the-art algorithms in precision,
specificity and sensitivity when facing ECG classification.
Almost toward the same goal, Byeon, et al. [52] experimented
on (PTB)-ECG and their own made database, demonstrating
that ResNet had better results than GoogLeNet or AlexNet
when applying transfer learning strategy to ECG classifica-
tion. In addition to GoogLeNet [53], AlexNet and ResNet,
VGG was fine-tuned and adopted on ECG signal detection
too [54]. Further, Cao, et al. [55] assembled a multi-scale
advanced ResNet (MSResNet) based architecture by three fast
down-sampling residual convolutional neural networks
(FDResNets) independently trained of different scales. In their
approach, three individual FDResNets were parallel sharing
same network structure but separately trained by different
scales. Then transfer learning method was implemented to
inherit pre-trained weights from three source FDResNets to
target MSResNet. It was given that their approach gained
better performance than classic methods in atrial fibrillation
detection. Due to ballistocardiogram (BCG) having less ag-
gressiveness and being more convenient for daily monitoring
than electrocardiogram (ECG), Jiang, et al. [56] utilized BCG
database re-training a CNN pre-trained for ECG classification
and achieved success. Van Steenkiste, et al. [57] even proved
CNN structure for human ECG classification could be suc-
cessfully transferred into purpose for horse ECG classification
through re-training on equine electrocardiogram (eECG)
database.

Apart from electrocardiogram analysis, transfer learning
strategy was widely used in cardiovascular imaging field as
well. Mazo, et al. [58] applied most popular convolutional
neural networks including ResNet, VGG-19, VGG-16 and
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Inception as basis of transfer learning to classify cardiovascu-
lar tissues and turned to acquire remarkable results.
Dietlmeier, et al. [59] adopted VGG-16 as feature extractors
united with their specific designed classifier for mitochondria
segmentation in cardiac cells. Miyagawa, et al. [60] changed
their former work of lumen segmentation into transfer learn-
ing architecture of vascular bifurcation detection by freezing
front layers of previous convolutional neural network for lu-
men segmentation [61, 62]. Promising capacity of transfer
learning in cardiovascular imaging was pointed and re-
searchers would go further replacing with other famous
CNNs including VGG-19, GoogLeNet and ResNet according
to the paper.

5.3 Breast

At first, we list some of most valued papers on transfer learn-
ing application in breast disease via Table 9.

Breast cancer is one of the severest threats for women’s
health. Successful therapy of breast cancer relies on early di-
agnosis. Computer-aided diagnosis (CADx) has a huge ad-
vantage for its efficiency and accuracy in medical imaging
analysis. Transfer learning plays a significant role in CADx
for breast cancer due to its benefits of no need for heavy
annotation work and big database.

AlexNet was performed to extract features from digital
mammographic images and showed its potential of transfer-
ring its learning ability from natural images to medical images
[63]. Kandaswamy, et al. [64] applied transfer learning strat-
egy in training procedure of convolutional neural network
instead of initialization with random values. And they claimed

to elevate the performance of 30% in speed and 2% in accu-
racy when detecting breast cancer in single-cell scale. Samala,
et al. [65] utilized 2282 mammograms (source domain) to
train a deep convolutional neural network as basis then froze
front three layers and retrained network with 230 digital breast
tomosynthesis (target domain). It is demonstrated by their
experiment that transfer learning could transfer learnt related
knowledge from conversant field to target field and accelerate
learning process. To tackle the issue of deficient labeled data,
Dhungel, et al. [66] pre-trained a deep convolutional neural
network with hand-crafted features and then re-trained the
network’s classifier based on Inbreast database. Their fine-
tuning method was presented successful in breast mass clas-
sification compared to other state-of-the-art methods in 2016.
Kooi, et al. [67] also showed that training extractors on large
scale related database meanwhile training classifier on limited
target data could achieve comparable results compared to
methods in need of considerable annotation datasets in solitary
breast cysts discrimination. Samala, et al. [68] figured out a
multi-task transfer learning approach for computer-aided di-
agnosis of breast cancer. They designed a single-task transfer
learning approach as comparison as well. With single-task
transfer learning approach, they just re-trained the deep
convolutional neural network (DCNN) pretrained on
ImageNet with only digitized screen-film mammograms
(SFM) dataset. When coming for multi-task transfer learning
approach, they re-trained the DCNN with SFM dataset,
Digital Database for Screening Mammography (DDSM)
dataset and digital mammograms (DM) dataset. Through mul-
tiple learning task including assistant tasks’ learning, it is il-
lustrated that multi-task transfer learning method presented

Table 8 Transfer learning application in heart disease

Authors Year Disease domain Transfer method

De Cooman, et al. [45] 2017 Epileptic seizure Feature extractor

Margeta, et al. [46] 2017 Cardiopathy Fine-tuning on CaffeNet

Al Rahhal, et al. [47] 2018 Arrhythmia Feature extractor

Giffard-Roisin, et al. [48] 2018 Arrhythmia Feature extractor

Murugesan, et al. [49] 2018 Arrhythmia Fine-tuning

Salem, et al. [50] 2018 Arrhythmia DenseNet as feature extractor

Alquran, et al. [51] 2019 Arrhythmia Fine-tuning on GoogLeNet and AlexNet

Byeon, et al. [52] 2019 Arrhythmia Fine-tuning on ResNet

Tadesse, et al. [53] 2019 Cardiovascular Fine-tuning on GoogLeNet

Diker, et al. [54] 2019 Arrhythmia Fine-tuning on VGG

Cao, et al. [55] 2019 Atrial fibrillation Assembling Multi-scale-ResNet and Fast-downsampling-ResNets as feature extractor

Jiang, et al. [56] 2019 Atrial Fibrillation Fine-tuning

Van Steenkiste, et al. [57] 2020 Atrial Fibrillation Fine-tuning

Mazo, et al. [58] 2018 Cardiovascular Fine-tuning on VGG-19, VGG-16, Inception and ResNet

Dietlmeier, et al. [59] 2019 Cardiac mitochondria VGG-16 as feature extractor

Miyagawa, et al. [60] 2019 Vascular bifurcation Fine-tuning
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better performance in generalization and accuracy than single-
task transfer learning method. Yap, et al. [69] implemented
three independent deep convolutional neural networks to de-
tect breast lesions, containing a patch-based LeNet, a UNet
and an FCN-AlexNet which was pre-trained with transfer
learning technology. It was indicated that transfer learning
based approach obtained best scores on more than half of
datasets.

In 2018, Chougrad, et al. [70] proposed a deep
convolutional neural network to classify mammography mass
lesion. Further, they discussed several issues such as depth
and architecture of network, data, whether to perform transfer
learning and how these issues could affect network’s perfor-
mance. It is demonstrated that first rather than initializing the
deep convolutional network with random values, initialization
with pre-trained network’s values seems a better choice.
Second, it is not always getting better performance when do-
ing more fine-tuning jobs. Overfitting would increasing likely
occur if overusing fine-tuning especially for deep network
structure and insufficient data. Mohamed, et al. [71] designed
a deep convolutional neural network for classification of
breast mammogram density categories. Beside the proposed
CNN architecture, they also deployed a transfer learning ap-
proach using a modified AlexNet pre-trained on ImageNet
then fine-tuning it on breast mammographic images database
as comparison. Via their study, it was pointed that transfer
learning could achieve almost equivalent performance to del-
icately designed CNN structure but with largely reduction in

training cost. And another benefit of transfer learning is its
accuracy seems not to depend on the quantity of training sam-
ples in fine-tuning procedure, which means pre-trained CNN
has already sufficient capacity to extract and represent features
of breast mammograms even it was originally trained on nat-
ural images. Similarly, Samala, et al. [72] experimented on
transfer learning strategies for breast cancer detection. The
first transfer learning strategy was a one-stage transfer learn-
ing method, fixing first convolutional layer, first pooling layer
and first normalization layer then re-training other layers to-
gether using mammograms (SFM&DM) based on pre-trained
AlexNet. The second transfer learning method, which was
also called stage-two, was to freeze all layers except for last
fully connected layer of stage-one networks and then re-train
the networks on Digital breast tomosynthesis (DBT) datasets.
In this paper, they aimed to discover impact to transfer learn-
ing strategies on variant scale of training samples. It was con-
cluded that applying multi-stage transfer learning could
achieve prominent promotion, being a more efficient way
compared to simply increasing the quantity of training sam-
ples. Further, in another article [73], they performed nearly
same deep convolutional neural network structure and re-
vealed that using multi-stage transfer learning structure as fea-
ture extractors and deploying pathway evolution of feature
selection and random forest classification could significantly
decrease the numbers of neurons and parameters in networks,
making transfer learned deep convolutional neural network
more neat and effective [82, 83]. Moreover, transfer learning

Table 9 Transfer learning application in breast disease

Authors Year Disease domain Transfer method

Huynh, et al. [63] 2016 Mammographic Tumor AlexNet as Feature extractor

Kandaswamy, et al. [64] 2016 Breast Cancer Fine-tuning

Samala, et al. [65] 2016 Breast Tomosynthesis Fine-tuning

Dhungel, et al. [66] 2017 Masses in mammograms Fine-tuning

Kooi, et al. [67] 2017 Mammography Feature extractor

Samala, et al. [68] 2017 Mammograms Fine-tuning (Multi-task)

Yap, et al. [69] 2017 Breast Lesions Fine-tuning

Chougrad, et al. [70] 2018 Breast cancer Fine-tuning

Mohamed, et al. [71] 2018 Mammographic Fine-tuning on AlexNet

Samala, et al. [72] 2018 Digital breast tomosynthesis Fine-tuning

Samala, et al. [73] 2018 Digital breast tomosynthesis Feature extractor

Zhang, et al. [74] 2018 Breast cancer Feature extractor

Byra, et al. [75] 2019 Breast mass classification Feature extractor & Fine-tuning

Khan, et al. [76] 2019 Breast cancer Feature extractor

Mendel, et al. [77] 2019 Digital breast tomosynthesis Feature extractor

Xie, et al. [78] 2019 Breast histopathological images Inception_ResNet_V2 as Feature extractor

Yu, et al. [79] 2019 Mammographic breast lesions Feature extractor

Zhu, et al. [80] 2019 Radiogenomic associations in breast cancer Feature extractor

Zhu, et al. [81] 2019 Breast MRIs Feature extractor
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strategy was tested and verified in photoacoustic images of
breast cancer as well [74].

In 2019, Byra, et al. [75] went deeper in exploiting transfer
learning strategies for breast mass classification with sonog-
raphy images. They performed three different transfer learning
methods and compared each performance on two public
datasets. Beginning with the first approach, they applied
VGG-19 as feature extractors with aiding the classifier of sup-
port vector machine (SVM). As for the second method, they
fine-tuned the VGG-19 with fixing the first four convolutional
blocks only fine-tuning on the fifth convolutional block and
fully connected layers to acquire optimal performance. Last,
they proposed a novel transfer learning based deep
convolutional neural network method by introducing
matching layer. Matching layer was used between input raw
images and pre-trained VGG-19 convolutional blocks,
converting grayscale images to RGB ones making images
augmented to tap potential of DCNN feature extractors.
With the same purpose of maximizing the use of deep
convolutional feature extractors, Khan, et al. [76] introduced
data augmentation technology to transfer learning method in
breast cancer detection. Data augmentation is an approach to
perform image processing such as rotation, coloring, scaling
and transformation, in which datasets of target images could
be enlarged. With enriched samples of data, it could make
feature extractor more powerful and mitigate over-fitting

[84, 85]. Another novelty of this paper is to apply average
pooling instead of fully connected layers as classifier.

More researchers deployed kinds of experiments looking for
further possibilities of transfer learning technique on breast images
analysis in different aspects. Mendel, et al. [77] studied the effect
of different ways of breast cancer screening on the performance
when applying deep learning method with transfer learning strat-
egy. Based on their work, it is concluded that digital breast
tomosynthesis (DBT) excelled at enabling pre-trained
convolutional neural networks to maximize its strength as feature
extractors compared to traditional full-field digital mammography
(FFDM). Xie, et al. [78] not only demonstrated that based on
Inception_ResNet_V2, transfer learning method could achieve
best performance in breast histopathological images analysis with-
in supervised learning field, but also showed its superiority in
unsupervised learning of extracting features for their proposed
new autoencoder transforming these features to lower dimensional
space in purpose of clustering. And of course, scientists still tried
exploiting potentials of state-of-the-art convolutional neural net-
work architectures [79–81] as pre-trained models applied in trans-
fer learning to tackle the issues of breast images analysis.

5.4 Lung

Before discussion, we give summary of selected papers on
transfer learning application in lung disease through Table 10.

Table 10 Transfer learning application in lung disease

Authors Year Disease domain Transfer method

Sawada and Kozuka [86] 2015 Lung CT Fine-tuning

Shouno, et al. [87] 2015 Diffuse lung disease Fine-tuning

Christodoulidis, et al. [88] 2016 Lung CT Feature extractor

Paul, et al. [89] 2016 Survival prediction of lung adenocarcinoma VGG as Feature extractor

Seelan, et al. [90] 2016 Lung Lesion Feature extractor

Shen, et al. [91] 2016 lung cancer prediction Feature extractor

Nibali, et al. [92] 2017 Pulmonary nodule classification Fine-tuning on ResNet

Hussein, et al. [93] 2017 Lung nodule classification Feature extractor

Shan, et al. [94] 2017 Lung nodule classification Feature extractor

Wang, et al. [95] 2017 Lung nodule classification Feature extractor

da Nóbrega, et al. [96] 2018 Lung nodule classification Feature extractor

Hosny, et al. [97] 2018 Lung cancer prognostication Feature extractor

Dey, et al. [98] 2018 Lung nodule classification Fine-tuning on DenseNet

Fang [99] 2018 Lung nodule classification Fine-tuning on GoogLeNet

Nishio, et al. [100] 2018 Lung nodule classification VGG-16 as feature extractor

Hussein, et al. [101] 2019 Lung cancer Feature extractor

Lakshmi, et al. [102] 2019 Lung carcinoma VGG-16 & VGG-19 as feature extractor

Li, et al. [103] 2019 Lung nodule detection Fine-tuning

Shi, et al. [104] 2019 Lung nodule detection Fine-tuning on VGG-16

Zhang, et al. [105] 2019 Lung nodule detection Fine-tuning on LeNet-5

Huang, et al. [106] 2020 Lung nodule detection Feature extractor followed by extreme learning machine
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It has a long history since transfer learning was introduced
to analyzing medical images of lung for aiding doctors’ diag-
nosis and treatment. Sawada and Kozuka [86] trained multi-
prediction deep Boltzmann machine (MPDBM) on natural
image database to satisfy requirements in source domain.
Then they transferred this pre-trained networks and fine-
tuned it using X-ray CT images of lung in target domain to
solve classification. Shouno, et al. [87] demonstrated that it is
a more efficient way to apply deep convolutional neural net-
work as pre-trained network with training on non-medical
images for diffuse lung diseases (DLD) on high-resolution
computed tomography (HRCT) images. Compared to training
from scratch on DLD-HRCT images or on natural images
only, transfer learning strategy, which is to pre-train on natural
images first then transfer learnt knowledge to DLD-HRCT
domain, could achieve better performance. Christodoulidis,
et al. [88] adopted six public texture images databases to en-
hance CNN’s ability of extracting low-level features. After
pre-trained on texture databases, the convolutional neural net-
work architecture turned to increase accuracy by 2% in clas-
sification of lung CT scanning images. Paul, et al. [89] utilized
pre-trained convolutional neural networks to extract deep fea-
tures combining with conventional hand-crafted features.
They applied these features with kinds of classifiers and
claimed that the assembly of pre-trained VGG-f structure
and symmetric uncertainty feature ranking algorithm followed
by a random forests classifier could obtain best results in
predicting survival time of lung cancer patients. It is conclud-
ed that transfer learning could help doctors and researchers
extract deep features of lung scanning images from learnt
knowledge of source domain [90, 91].

Nibali, et al. [92] fine-tuned a pre-trained ResNet to adapt
pulmonary classification. Hussein, et al. [93] proposed a 3D
based convolutional neural networks architecture for lung
nodules recognition. In order to improve the ability of acquir-
ing deep features more representatively, they pre-train the
proposed 3D CNN architecture with non-medical images be-
fore applying it to lung nodules CT images. Using transfer
learning strategy that employing pre-trained convolutional
neural networks as feature extractors in lung radiography has
been a trend [94–97]. Dey, et al. [98] and Fang [99] separately
fine-tuned 3D DenseNet and GoogLeNet with chest three di-
mensional CT scans for lung nodules classification and both
of them claimed to achieved state-of-the-art results based on
transfer learning strategy. Nishio, et al. [100] adopted VGG-
16 as feature extractor in lung nodules classification and they
demonstrated that transfer learning method was superior to
hand-crafted features and traditional machine learningmethod
like SVM. And it is showed that input images of bigger scale
could elevate deep convolutional neural network structure’s
performance. Hussein, et al. [101] applied deep convolutional
neural networks with transfer learning method in risk stratifi-
cation of lung cancer. Apart from approval of pre-trained

DCNN in supervised learning, they also pointed its deficiency
compared to proportion-support vector machine in unsuper-
vised learning for transfer learning still cannot get rid of an-
notated training data. Lakshmi, et al. [102] demonstrated that
VGG-16 and VGG-19 could be applied with transfer learning
method to detect the lung carcinomas tissues in deficiency of
annotated images.

In spite of large efforts have been devoted to implementing
deep learning to detect lung nodule from CT images, it still
exists potential for deploying CNN based method on lungMR
images. Li, et al. [103] proposed a method using transfer
learning strategy to fine-tune a faster R-CNN targeting region
of interest of lung nodule and showed it could obtain good
accuracy compared to traditional machine learning method
with quick neural networks construction progress. As we
know that acquiring low false positive rate is challenging to
most of lung nodules detection method when processing tho-
racic computed tomography. Shi, et al. [104] contributed a
deep learning based method in their latest paper to reduce
FP rate of nodule detection. They fine-tuned VGG-16 with
transfer learning and modified parameters in fully connected
layers to make networks more efficient for nodule detection.
Then they utilized this fine-tuned networks as feature extrac-
tors to extract features of lung nodules and trained a support
vector machine (SVM) for nodule classification. Zhang, et al.
[105] performed their experiment along with this research
direction but using LeNet-5 as basic convolutional neural net-
works for fine-tuning rather than VGG structure. Further,
Huang, et al. [106] proposed a new method combining deep
transfer convolutional neural networks with extreme learning
machine to diagnose lung nodules based on CT images. They
applied deep transfer CNN extracting high level features of
lung nodules and then followed by an extreme learning ma-
chine classifier. It was showed to obtain result better than
other state-of-the-art methods.

5.5 Kidney

At the head of this part, we provide Table 11 to summarize
important papers on transfer learning application in kidney
disease.

As one of the most important organs in the human body,
kidney is very vulnerable to various diseases. Medical re-
search on kidney has been a hot topic since many years ago.
Back to 2013 when transfer learning began to be introduced to
public, researchers started using transfer learning technology
aiding kidney diagnosis [107]. Wankhade and Patey proposed
a bisecting k-means algorithm based on patients’ test report
aiming to predict several diseases including kidney. They
showed that knowledge of kidney research and diagnosis
was transferable and transfer learning could be applied in kid-
ney diagnosis with promising future. And it has been proved
correct. Since deep learning method has been most popular
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methods of transfer learning technology, more and more re-
searchers utilized transfer learning for the purpose of kidney
diagnosis and disease prediction. Marsh, et al. [108] applied
transfer learning strategy in classification of non-sclerosed and
sclerosed glomeruli of frozen section biopsies to help doctors
estimate whether the kidney is transplantable. Their research
has concluded that pre-trained Convolutional Neural Network
could obtain better performance than method directly trained
on small dataset of glomeruli. Zheng and his colleagues pro-
posed a transfer learning based method to classify ultrasound
images of kidneys in order to build aiding diagnosis system
for congenital abnormalities of the kidney and urinary tract
(CAKUT) in children [109, 110]. They compared different
strategies of transfer learning based on AlexNet and have
demonstrated that features extracted by AlexNet combined
with features of hand-crafted augmented with Support
Vector Machine (SVM) as classifier obtained most ideal per-
formance on their dataset, compared to both fine-tuning pure
transfer learning method and conventional SVM method.
Efremova, et al. [111] also experimented transfer learning
method on automatic segmentation of kidney and liver CT
images and achieved outstanding competition scores in the
2019 Kidney Tumor Segmentation (KiTS-2019) challenge.

Hao, et al. [112] proposed a novel transfer learning method
for screening of chronic kidney disease based on ultrasound
images. They applied the pre-trained deep CNN structure
extracting both texture features and deep features then using
these mixed features for classification and achieved convinc-
ing result on dataset consisting of 226 ultrasound images.
Kannan, et al. [113] embraced transfer learning method by
deploying a pre-trained convolutional neural network as basis
then retraining their networks on three categories of trichrome
images to perform glomeruli segmentation. Kuo, et al. [114]
proposed their transfer learning-based method blended with

several deep learning schemes for intelligently predicting the
estimated glomerular filtration rate (eGFR) and chronic kid-
ney disease (CKD) status. They first applied ResNet pre-
trained on ImageNet as feature extractors. And they utilized
data augmentation to enrich annotated information, applied
kidney length annotations to mark key region of kidney and
employed bootstrap aggregation to alleviate overfitting and
enhance capacity of generalization. It was demonstrated that
their deep transfer learning method had beaten human eyes by
obtaining accuracy 85.6% higher than experienced doctors.
Wu, et al. [115] proposed their novel merged deep framework
structure called PASnet for analysis of kidney ultrasound im-
ages. They combined pre-trained deep convolutional neural
network with Siamese network joint training and showed this
mixed structure could adopt advantages of both two networks
and achieved better performance than either of them. Yin,
Peng and their team [116, 117] contributed to renal ultrasound
images segmentation by introducing subsequent boundary
distance regression and pixel classification. They utilized
pre-trained deep convolutional neural network extracting fea-
tures then applied these features as input to calculate kidney
boundary distance maps through boundary distance regres-
sion network. Aided with pixel classification network to dis-
tinguish renal pixels from non-renal pixel and data augmented
scheme, they demonstrated that their method could obtain
encouraging performance for automatic kidney segmentation.

Other researchers also found transfer learning based meth-
od did not always result in reliable success in any condition.
Ayyar, et al. [118] adopted a novel medical image dataset
which had binary classes (normal and abnormal) of renal glo-
meruli images called Glomeruli Classification Database
(GCDB). They performed popular transfer learning algo-
rithms on the dataset to do binary classification of glomeruli.
It was demonstrated that not any transfer learning based

Table 11 Transfer learning application in kidney disease

Authors Year Disease domain Transfer method

Wankhade and Patey [107] 2013 Glomeruli classification Feature extractor

Marsh, et al. [108] 2018 Glomeruli classification Fine-tuning

Zheng, et al. [109] 2018 Glomeruli classification AlexNet as Feature extractor

Zheng, et al. [110] 2019 Glomeruli classification Comparison between Feature extractor and fine-tuning

Efremova, et al. [111] 2019 Kidney segmentation Feature extractor

Hao, et al. [112] 2019 Chronic kidney disease Feature extractor

Kannan, et al. [113] 2019 Glomeruli segmentation Fine-tuning

Kuo, et al. [114] 2019 Kidney function prediction ResNet as feature extractor

Wu, et al. [115] 2019 Kidney ultrasound pathology Feature extractor

Yin, et al. [116] 2018 Kidney segmentation Feature extractor

Yin, et al. [117] 2020 Renal ultrasound images analysis Feature extractor

Ayyar, et al. [118] 2019 Glomeruli classification Inception_ResNet_V2 as feature extractor

Mathur, et al. [119] 2020 Glomeruli classification Multi-Gaze Attention Networks as feature extractor

374 Mobile Netw Appl (2021) 26:351–380



method could achieve satisfied result. For example, ResNet50
and InceptionV3 even could not obtained good performance
compared to traditional pre-trained image classifier. The best
performance on this dataset was acquired by logistic regres-
sion model enhanced with feature extractors from
Inception_ResNet_V2. Further [119], they keep exploring
glomeruli classification by performing experiments on one
of the latest deep learning architectures, Multi-Gaze
Attention Networks, and claimed to obtain state-of-the-art
performance.

6 Discussion

It is obvious that transfer learning has achieved great progress
in medical image analysis within many fields and tasks.
However, some problems or difficulties would still be met
when facing real medical image analysis tasks. Among these
problems, some may have been overcome or mitigated with
solution while others have not. So, in next paragraphs we will
discuss on this topic.

6.1 Data

As we all know, medical images are always hard and expen-
sive to collect compared to other ordinary vision tasks. And
some kinds ofmedical image capturingmethods even do harm
to patients’ bodies, which means we cannot obtain large
amount of data naturally [120]. Thus, in most cases, when
we perform transfer learning in medical image analysis, we
are only equipped with very limited data in target domain. To
tackle with this problem, we mainly focus on two direction of
solutions. First, although the quantity of medical image
dataset is usually small, we may have method to enrich it,
which leads us to the technology called data augmentation.
Second, even with limited data, we need to make the best of
it, avoiding condition of pool quality of images. Another tech-
nique called smart imaging is aimed at enhancing quality of
required images, which is just what we need. Therefore, in this
section, we will give a brief discussion about data augmenta-
tion and smart imaging.

6.1.1 Data Augmentation

The comforting thing is that we have an easy but effective
approach called data augmentation. Basically, data augmenta-
tion is to perform photometric and geometric transformations
on original images such as scaling, rotation and reflection. In
this way, data augmentation dilates the amount of original
image datasets and enriches its distribution making it more
close to the distribution in the real world. Data augmentation
has been a common approach before adopting transfer learn-
ing and could been seen applied in more and more relevant

works [121]. It is admitted being one of the most effective and
practical ways for relieving the scarcity of data.

6.1.2 Smart Imaging

Besides, smart imaging is another direction we should pay
attention to. Smart imaging is applied for obtaining image data
with better quality. It could help increase images’ resolution,
detect shadow, and reduce noise and artifacts [122]. All these
impacts enable deep learning algorithms to result in higher
accuracy and faster procedure.

6.2 Labels

Handling medical image analysis, lacking data maybe not the
most intractable problem while lacking labels maybe. To get
rid of lacking labeled data, it is natural to consider bifurcate
two ways. The first way is admitting labeled data is limited;
thus, we shall find method to produce more labeled data, bet-
ter if the producing progress is automatic. The way of this is
called self-supervised learning. The second method we need
consider is that given limited labeled data, how to perform
transfer learning just with it. This method is equal to finding
a strategy which could relieve the dependency of labeled data
during transfer learning as much as possible. And that refers to
technique called unsupervised domain adaption. We will dis-
cuss self-supervised learning and unsupervised domain adap-
tion separately in following parts.

6.2.1 Self-Supervised Learning

Recently, a novel strategy named self-supervised learning
came out. Self-supervised learning could produce labels with
non-labeled original data from scratch without human anno-
tation by designing and performing some artificial tasks with
no actual use. For example, predicting rotation angle and rel-
ative position of patches in image are two of the most common
and intentional tasks designed in self-supervised learning
[123]. Through these contrived learning process, automatical-
ly generated labels without human intervention could be ac-
quired. We believe it will be a trend and seen in more and
more papers on medical images processing in future.

6.2.2 Unsupervised Domain Adaption

Self-supervised learning is suitable for condition with limited
or none labels in target domain while performing transfer
learning. But if labels in source domain are sufficient, we
could apply another method called unsupervised domain
adaption. Unlike self-supervised learning, unsupervised do-
main adaption does not produce labels but eliminate the de-
pendence on labels in target domain. The most popular unsu-
pervised domain adaption now is adversarial-based [124]. In
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general, the purpose of adversarial-based unsupervised do-
main adaption is to map data from source domain and target
domain into a same feature space, making the distance be-
tween two domains in feature space as close as possible.
Therefore, the task function originally trained on source do-
main will be easily transferred to target domain and achieves
ideal result. More specifically, adversarial-based unsupervised
domain adaption consists of three components, a feature ex-
tractor Gf, a label predictor Gy and a domain classifier Gd.
These three fuction each has its different role. Gf extracts
features from input images, mapping data to feature space so
that Gy can perform classification correctly based on labels in
source domain whileGd cannot differentiate if the feature data
comes from source domain or target domain. Gy aims at out-
putting labels of source domain as accurately as possible. Gd

needs to tell whether the data of the feature space is from
source domain or target domain. In the end, we hope to reach
the condition thatGd cannot differentiate feature source which
means data from source domain and data from target domain
nearly share same distribution in feature space. Thus,Gy could
be applied as effective classifier within target domain and the
problem of lacking labels in target domain is also overcome.

6.3 Models

Talking about transfer learning, it does not consist of data and
labels only. Models play the same important role in transfer
learning as data’s and label’s. During its development history,
transfer learning has turned to disclose a trend of interacting
with other cutting-edge concepts in deep learning and being
applied with combination of other deep learning based models
more and more often. Under this background, we will discuss
this trend in three aspects. First is how the theory of few shot
learning and meta learning impacts on transfer learning.
Second, we discuss transfer learning’s combination with other
popular deep learning models. And third, it is usual but indis-
pensable that we need to talk about model interpretability of
transfer learning, which maybe an existing pale aspect of
transfer learning.

6.3.1 Few Shot Learning and Meta Learning

As we have mentioned many times, medical image analysis is
always accompanied by a shortage of samples and labels. In
other words, most of medical image analysis tasks belong to
few shot learning realm.Meta learning has been recognized as
most successful and promising method to solve few shot
learning problems. Note that meta learning shares some sim-
ilarities in thoughts and procedure with transfer learning. In
typical transfer learning, researchers fine-tuned a pre-trained
convolutional neural network or regard it as feature extractor
followed by other classifiers. Meta learning could be divided
into three categories, learning to fine-tuning, RNN memory

based and metric learning. The first category also the most
common category of meta learning, learning to fine-tuning,
could be compared to fine-tuning in transfer learning in many
aspects. Learning to fine-tuning refers to learning a good ini-
tialization parameter and when facing new tasks, with only
few shot samples the learnt initialization parameter could
achieve ideal performance after few steps of gradient descent
procedure. Another method of learning to fine-tuning is to
train an optimizer based on like LSTM for assisting fine-
tuning. Therefore, it is convinced that fine-tuning is widely
applied in meta learning. Although articles of medical image
analysis on few shot learning or meta learning rarely come out
for now, we believe it is a trend and maybe in future the
concept of transfer learning would merge in the concept of
meta learning.

6.3.2 Combination with Other Deep Learning Models

Since scientists utilized pre-trained convolutional neural net-
work as feature extractor, transfer learning has been combined
with other deep learning approaches for a long time. For ex-
ample, as we addressed above, adversarial-based unsuper-
vised domain adaption applied adversarial network and train-
ing process which originated form generative adversarial net-
work (GAN). It is a representative example of transfer learn-
ing’s combination with other deep learning models. In fact,
some researchers have tried adopting transfer learning strategy
in reinforcement learning [125]. It is the same that though few
papers of medical image on this field have been published, we
believe they will be in near future.

6.3.3 Model Interpretability

Last but not the least, the problem that lack of impeccable
interpretation of transfer learning and its variety of pre-
trained models, still remains. Although some papers have ex-
plored in this field but few of them were addressed from the
view of medical image analysis. It has become a cliché, but we
think it deserves mentioning again. And we are looking for-
ward to seeingmore works and articles focusing on this realm.

7 Conclusion

In this survey article, we first introduce the main research
issues in the field of medical image analysis and the history
of transfer learning in it. Then we review the elemental theory
and development of convolutional neural network and transfer
learning. After that we select brain, heart, breast, lung and
kidney, five common fields of medical imaging research,
and list the representative papers in detail and summarize their
methods. Finally, we discuss the future development trend of
transfer learning in the field of medical imaging and some
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possible combination directions [126, 127]. We believe that in
the field of medical image research, transfer learning will
gradually develop towards meta learning in combination with
technologies such as data augmentation, self-supervised learn-
ing and domain adaptation. Or transfer learning will combine
with reinforcement learning and other models to produce
somemore effective and powerful models to comprehensively
improve the performance of neural networks at the current
level. The author’s knowledge is limited, perhaps some im-
portant works are not included in this article. However, we
hope that this survey paper will provide a positive and illumi-
nating perspective to review the development and trends of
transfer learning in the field of medical imaging.
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