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Abstract
As today’s Internet of Things (IoT) applications are becoming more complicated and intelligent, IoT devices alone can
no longer well support the ever-increasing demand for powerful computation and high energy efficiency. Mobile Edge
Computing (MEC) and 5G technology emerge as promising solutions, which enable IoT tasks to be offloaded to edge servers
for effective processing. Though desirable, there however exists a mismatch between the massive IoT task workloads and
limited wireless bandwidth, making it challenging to achieve an optimal offloading strategy at the mobile edge, e.g., the
base station (BS) server. In this paper, we aim to migrate the most suitable offloading tasks to fully obtain the benefits of
the MEC task offloading. We first formulate the task offloading model as an optimization problem, and theoretically prove
the NP-hardness in achieving the optimal solution. Thus, a Genetic algorithm, named M-COGA, is proposed to solve the
task offloading selection in both single and multiple BS scenarios. The algorithm focuses on offloading as many tasks as
possible with the maximum cost offloading. The proposed cost function takes into account both the computation overhead
and energy consumption. Besides, for the multi-BS coverage scenario, we also consider the approach flexibility as well
as link load balance. And an enhanced dynamic task offloading scenario is further discussed. We verify the efficiency of
our algorithm under the condition of both uniform and non-uniform distribution of covered nodes. Numerical experiments
demonstrate that our dynamic allocating scheme can effectively work in MEC offloading. Besides, it largely outperforms
the single BS scenarios and reduces the cost of edge devices.

Keywords Mobile edge computing · Task offloading · Genetic algorithm · Computing overhead · Allocating schedule

1 Introduction

1.1 Background andmotivation

The mobile Internet and Internet of Things (IoT) appli-
cations [1–4] are experiencing an explosive growth in
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recent years, calling for much higher computation capac-
ity for intelligent processing. Mobile Edge Computing
(MEC) emerging as a promising computing allocation
scheme [5] enables the interconnected devices to com-
plete many complicated and computation-intensive tasks.
Yet, on one hand, these devices mostly suffer from the
constrained power supply and limited processing capa-
bilities [6]. On the other hand, an arbitrary strategy to
upload local tasks to the cloud will not only increase
the burden of cloud but also consume much unnecessary
resource. The edge-cloud computing paradigm provides a
promising opportunity by offloading the computing tasks
of mobile devices to nearby servers (edge clouds) or Base
Stations (BSs), which can prominently reduce the com-
putation cost and energy [7]. The limitation of shared
wireless bandwidth however restricts the entire offload-
ing tasks, only allowing a portion of tasks to move to
the cloud servers [8]. Meanwhile, the limited bandwidth
and computation resources also cannot allow all mobile
tasks to be offloaded to resourceful BSs. Given that a
device is covered by overlapping communication range
of multiple BSs, a random task selection strategy will
result in inefficient channel utilization and link imbalance.
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Therefore, an efficient strategy is necessary to decide which
tasks should be offloaded to proper BSs to achieve higher
energy efficiency and more beneficiaries.

1.2 Limitation of prior work

The resource allocation in MEC offloading is one of
the key challenges, and there exists many studies for
offloading strategy design. In recent works, the formulated
problems and optimization objectives of task offloading are
different. There are several representative works for further
discussion. In the literature of Zhi et al. [9], it focused on the
optimization problem of minimizing user task completion
time under limited bandwidth resources. And the system
model was formulated by Users Devices (UD) and a
single BS. Chen at al. [10] formulated several computation
decision-making behaviors for devices as a game in MEC.
Though they considered the task computation cost between
local devices, BS and remote cloud, the selection of BS
under the coverage of multiple BSs was ignored. Hao
et al. [11] proposed a relatively low-complexity algorithm
for energy saving, and the energy efficiency is compared
with both local computation and offloading situations. In
the paper of Tran et al. [12], it took into account the
optimization of energy and time, and it also discussed
the resource allocation problem with multi-BSs scenario.
But the BS selection strategy and number of uploading
tasks are not involved. Other existing researches [13, 14]
also proposed a variety of scheduling algorithms that
mainly focused on energy efficiency and computation delay.
However, these prior works usually ignored the number
of migration tasks, which are actually highly dependent
on the channel capacity and the task transmission rate. In
general, the computation task is offloaded, which indicates
that a requirement of an application has been satisfied.
To some extent, the higher number of offloading tasks,
the more requests will be completed in the network.
Hence, the amount of offloading tasks is related to the
user’s experience. At the same time, most of them also
ignored considering the multi-BS selection scenario, which
can render imbalanced task loads for different BSs. In
particular, we are also interested in the problem of Multi-
BS offloading scenarios and BS load balance in the case of
unevenly distributed terminals. In order to further explain
the differences in current solutions, we compare state-of-
the-art solutions as presented in Table 1.

Therefore, the multi-BS selection methods with limited
channel capacity are valuable to discuss in MEC.

1.3 Contributions and organization

There are several key challenges in our task offloading
selection scenario. First, mobile devices are usually densely

distributed and covered by more than one BS. An improper
BS selecting scheme will result in imbalanced workload and
poor offloading performance for the whole system. Besides,
given the massive number of terminal devices in practical
applications, a model with exceptional scalability and
versatility is required. Moreover, a practical task offloading
system needs to consider multiple optimization objectives
such as efficiency and energy. It is getting even more
complicated to simultaneously integrate multiple objectives
together to achieve a terrific offloading selection strategy.

In this paper, we formulate the task offloading model as
an optimization problem, and theoretically prove the NP-
hardness to achieve the optimal solution. Besides, a BS
selection scheme is taken into account to expand the data
capability in the overlapping coverage scenarios. A Multi-
BS based Genetic Algorithm named M-COGA is proposed
to solve the task offloading selection in both single and
multiple BS scenarios. The algorithm focuses on offloading
as many tasks as possible with the maximum cost. And
this cost includes energy consumption and computation time
for local computing tasks. The number of offloading tasks
is jointly considered in our design purpose. Furthermore,
the proposed M-COGA algorithm is optimized in mutation
operation according to the modeling characteristics of task
offloading. From the simulation results, the optimized M-
COGA algorithm has fewer iterations. Besides, for the
multi-BS coverage scenario, we also consider the approach
flexibility as well as link load balance. And an enhanced
dynamic tasks offloading algorithm is further proposed.
We verify the efficiency of our algorithm under the
condition of both uniform and non-uniform distribution of
covered nodes. In general, our algorithm achieves superior
performance in task selection, computation cost offloading,
BS load balancing, and energy efficiency. Besides, the
algorithm in the dynamic task offloading model also
greatly improves the task migration efficiency in the ultra
density networks. Numerical evaluations demonstrate the
superiority of our solution.

The rest of this paper is organized as follows. The
computation offloading system model is presented in Section 2.
Section 3 introduces the multiple BS system model. Then,
we propose a genetic algorithm and the application under
dynamic task offloading scenario in Section 4. In Section 5,
we present the numerical experiments and analyze the
results to evaluate the performance. We finally discuss the
related work in Section 6, and conclude paper in Section 7.

2 Computation offloading systemmodel

Computation offloading is usually discussed in different
scenarios, and the considered factors are inconsistent in
different system models [5, 10]. Given that those devices
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Table 1 The comparison of several task offloading algorithms

Literature Two layer Three layer Time/Energy Single BS Multi-BSs Number of

topology topology resource scenario scenario uploading tasks

Zhi et al. [9] Y - Y Y - -

Chen et al. [10] - Y Y Y - -

Tran et al. [12] Y - Y - Y -

M-COGA Y - Y Y Y Y

are all communicable to one or more BSs, carrying out
the offloading strategy at BSs is a simple way to reduce
the terminal cost. In most cases, the terminal is covered
by multiple BS. We also consider a terminal set U =
{u(B)

1 , u
(B)
2 , ..., u(B)

i , ..., u(B)
k } as the covered terminals by

BS set B, which B = {B1,B2, ...,Bj }. Generally, the j

usually is a smaller number, it means that these devices are
covered by one or small number of BSs, which can provide
the wireless channel to the set U . We assume that the set
U will not be changed during the offloading period T , and
each device has one task offloading requirement. Generally,
the number of devices and channel gain may be changed
due to the mobility of users covered by the base station.
Each device may be owns more than one task, which needs
offloading to the remote side. This mode of task generating
task is not discussed in this paper, and it will be further
discussed in future works. Therefore, the task set Ttask =
{L1, L2, ..., Li, ..., Lk}, where L

(Bj )

i ∈ ui,B. Each covered
device only has one task in the model and the task of the
device is required to offload to a near BS by centralized
control of itself. In some scenarios, we need to sort these
multiple tasks due to bandwidth constraints or task priority.
And the simplest strategy is only uploading one task to the
MEC server at the moment. As shown in Fig. 1, the task
offloading scenario has four important parts, including the
offloading tasks, the wireless channel, the local users, and
the remote edge cloud. In this proposed system model, we
focus on the computation task between terminal and BSs.

The task offloading schedule can reduce the computing
overhead and energy consumption of terminals. Therefore,
the communication mode, mobile device and cloud play as
pivotal roles in the MEC. These models are introduced in
detail as follows.

2.1 Communicationmodel

In the OFDMA communication system, the total bandwidth
is partitioned into several sub-channels. And the OFDMA-
based cellular network usually adopts the full-duplex (FD)
ratio technology and FD based BS supports multiple half-
duplex (HD) users [15]. The numerous sub-carriers of each

sub-channel can be assigned to a user in a centralized model.
Assume that U means the uploaded bandwidth, and the
g(U) represents the channel gain for a mobile, the channel
bandwidth is B, and the transmission power is SU . The N0

presents the average noise power, it is usually considered
as Gaussian channel noise. Then maximum transmission bit
rate CU can be calculated by equation (1)

CU = B ∗ log2(1 + gUSU

N0
), (1)

whereCU represents the maximum data rate. It means the
maximum data transfer rate can be provided to BS covered
users. But it is restrained by some specific parameters of BS.
In actual situations, the data transfer rate CS(U) is largely
below the theoretical value of CU . Although there is data
conflicting in the same spectrum, it can be improved by
the physic layer channel access schedule such as CS-MUD
and SCMA [16, 17]. From the equation (1), the limited
transfer data rate may not satisfy the unlimited number of
mobile devices to offload to the BS. For the reason of task
processing efficiency, the more tasks benefited from the
remote cloud, the better in MEC scenarios.

Fig. 1 The task offloading in multi-user MEC system

238 Mobile Netw Appl  (2022) 27:236–248



2.2 Mobile device computationmodel in task
computation offloading

The energy consumption and computing time in local device
are frequently discussed [10, 18], we assume that device
i has only one task Li � (di, f

l
i ), the f l

i denotes the
CPU cycles of mobile devices per second. Then the local
computing time can be described as (2)

t li = di

f l
i

, (2)

where t li can also be understood as execution time or
the execution cost of a terminal user. Then, the energy
consumption can be described as (3)

el
i = Jidi , (3)

where Ji denotes the coefficient consumed energy per
CPU cycle. If we transform this problem as the energy
consumed per bit of CPU processing, we can describe the
energy consumption as equation (4)

ηl
i = Pi t

l
i

Di

, (4)

where Pi represents the CPU power consumption. Let ti
denotes the processing time of task Li . From equation (3)
and (4), the processed amount of data or the number of
CPU cycles for the task are proportional to the energy
consumption. Note that the CPU keeps the computing
frequency in the processing period and it is difficult to
accurately calculate the energy consumption per cycle due
to the complicated work model of a CPU. Hence, Ji

can be understood as a coefficient of energy computing.
As mentioned above, the task is offloaded to the nearby
BS to obtain relatively abundant computing resources.
The offloading purpose is meeting a requirement of an
application, and the partial offloading of a task can not
return the computation results of the users. And we consider
the data that a task needs to upload as a whole. After
we establish the computing time and energy consumption
model with (2) and (3), then task cost of the local user ui

can be defined as (5)

Cl
i = λt t

l
i + λe(e

l
i + Pr), (5)

where λt and λe denote the weight parameters that
influence the optimization target for the concerned network
indicators. Pr denotes the task priority value. Because the

value of el
i is an assumed value in the validation protocol,

and Pr is positively correlated to the task cost of local user.
Then, we will not set the value in the next simulations.
From equation (5), if the system cares about the energy
consumption, then it can set λt < λe and λt , λe ∈ [0, 1]. It
is the common processing way in the weight method.

2.3 Cloud computingmodel

The remote cloud is considered to have sufficient computing
ability, and the computing energy has no constraint due
to the power supply. Some studies focus on the overall
operation to reach a reasonable balanced state. For instance,
the task offloading needs to satisfy Cl

i < Cc
i , where the Cc

i

denotes the task computing cost in the cloud [10]. Some
other studies do not only consider the computing capability
of the remote cloud, but they also consider the capacity
of the wireless channel. As shown in subsection 2.1,
the channel capacity is limited by CU and there are M
sub-channels. Their respective bandwidths make up the
available bandwidth B. To get the benefits of the cloud
servers through the limited bandwidth is a challenging
question. However, we focus on the transmission bandwidth
between terminals and BSs, and the bandwidth between the
BS and the cloud is sufficient. Therefore, the paper does not
consider the computing power and cost of the cloud.

3 Distributed computation offloading
inmultiple BSs

The proposed computation offloading has been discussed
in this section. As represented in the prior section, a sub-
channel is used by user i. Therefore, the channel capacity of
the optional B can reach the maximum data rate (6):

C
(B)
s̄ (i) = λγ B̄ ∗ log2(1 + giSi

N0
). (6)

The B̄ represents the bandwidth of a sub-channel and
λγ can be understood as channel utilization ratio. Then
we can formulated the channel data rate CU as CU ≥∑n

m=1 LmCs̄(m). The Lm ∈ {0, 1} denotes whether it
is the determined offloading tasks, and Cs̄(m) represents
the channel ratio of task m. In the MEC scenarios, the
bandwidth allocated to offloading tasks is limited. Thus, it
determines that the uploaded data rate cannot be greater than
the data rate under the total allocated bandwidth in a time
period. Therefore, under the condition ofCU , we want to get
the number of uploaded tasks as much as possible. Besides,
we want to reduce the most energy cost and computation
cost of tasks. So the resource allocation problem under the
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constraints on the channel data rate can be formulated as
follows:

ZNm,Vc
=

⎛

⎝
max
Nm

f (Nm)

max
Vc

f (Vc)

⎞

⎠

=
⎛

⎝
max
Nm

∑n
m=1 Lm ∗ Cs̄(m)

max
Vc

∑n
m=1 Lm ∗ Cl

i (m)

⎞

⎠

s.t . CU ≥
n∑

m=1

LmCs̄(m)

Li ≤ Nt, i ∈ Nt, Ci ≤ Cs̄(i)

(7)

Equation (7) describes the demand of task offloading.
The purpose of the scenario requires that maximum tasks
Nm which need to offload to the cloud. Unfortunately,
it should face the limited bandwidth. And the compute
offloading still needs to consider the energy efficiency∑m

i=1 el
i and the compute time

∑m
i=1 t li . In the model, cloud

computing capabilities are considered to be sufficient. Both
the energy cost and computing time require maximum value
Vc to reduce the burden. Obviously, this is a multi-objective
optimization problem. And unfortunately, it is extremely
challenging to obtain an optimal solution.

Theorem 1: The problem of finding the maximum
number of offloading tasks as presented in (7) is NP-hard.

Proof: It is well known that the classical knapsack
problem is defined as follows. There is a set of n items,
where each item i has a value pi and a weight wi . The
capacity of the bag is represented as c. The problem can
be formulated as finding the maximum profit with a set of
items. This model can be described as

max
n∑

i=1
pixi

s.t .
n∑

i=1
wixi ≤ c

xi ∈ 0, 1, j = 0, 1, ..., n.

(8)

where xi means whether the item is in the knapsack or
not. And it is well known as an NP-hard problem [19].
Turning back to our task offloading problem, the CU ≥∑n

m=1 Lm(m)Cs̄(m). If we consider the cost Cl
i as the value

of item and the Cs̄(m) is thought as the weight, the capacity
of bags can be considered as the limited channel bandwidth.
The formulated resource allocation problem also takes into
account the maximization of the number of offloading tasks.
Thus, if the number of uploading tasks is ignored, this
problem can be reduced to a case of the knapsack problem.
We therefore prove that our problem is NP-hard.

Then, we need to make the decision of computation
offloading to decide which tasks should be offloaded. In a

similar way, the selected tasks should have the maximum
cost. In this way, this strategy will minimize the overall
burden of the terminals.

4 The genetic algorithm for tasks offloading

In this section, the proposed optimization problem is
formulated as the equation (7), and the offloading schedule
is designed with a heuristic search method. To solve this
NP-hard problem, this proposed genetic algorithm focuses
on closing the optimal performance.

4.1 Initializationmodel

First, a matrix In is given to express the decision of
computation offloading. The number of rows in the matrix
represents the number of offloading decision combinations.

In =

⎡

⎢
⎢
⎣

δ1,1 δ1,2 ... δ1,k
δ2,1 δ2,2 ... δ2,k
... ... ... ...

δm,1 δm,2 ... δm,k

⎤

⎥
⎥
⎦ , (9)

where the δij means the task number j , and each matrix
row represents the offloading task order form set Ttask . The
matrix is established by a randomway at the beginning, each
task index is unique and δij ∈ [1, k]. Besides, the initial
matrix is executed in each period tp. The size of the row
is n = k, which denotes the number of pending offloading
tasks in the BS. And the fitness function ψf (N̄t , Cl

i ) needs
to be given according to the optimized object

ψf (N̄t , Cl
i ) = λ

f

N̄t
M(N̄t ) + λ

f

CM(Cl
i ), (10)

where the λ
f

N̄t
and λ

f

C denotes the coefficient separately.
The M function is a mapping function, which can solve
the problem of adding non-similar physical dimensions.
They are mapped in [0, δ], then it can be compared within
a quantified range. And N̄t represents the determined
offloading tasks, and it takes values from matrix row δi,....
Besides, Cl

i means the cost value of determined offloading
tasks, which has been described in the equation (5).

4.2 The tasks selection processing byM-COGA

First of all, a terminal needs to determine the set B which
the terminal can communicate with. Then, this terminal will
request the remaining bandwidth C̃

(B)
s̄ with the BS set B .

And the BS with the maximum value of channel capacity
C̃

(i)
s̄ will be selected. Then, M-COGA establishes the matrix

with random values. Then, the M-COGA conducts the
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following four phases of operation: roulette algorithm, elite
retention strategy, cross operation, and mutation operation.

Roulette Algorithm (RA): RA can be described as
roulette wheel selection strategy in GA. In RA, there are
three steps for matrix reorganization. First, the fitness value
of matrix In should be calculated as the set f v(i =
1, 2, 3..., m). Second, the survival probability pr(ri) is
calculated by equation (11)

pr(ri) = f v(ri)
∑m

j=1 f v(rj )
, (11)

After we calculated the pr(ri), we can get a vector
of one column m rows. It represents the probability that
each row of tasks can be selected for the next step. Third,
pr(ri) is used to select rows based on a virtual roulette.
The row with a relatively high survival probability will be
selected multiple times, and the selection processing ends
after the vector pr(ri) traversal is complete. Then the m

times selecting operations will establish a new matrix Inr .
Elite Retention Strategy (ERS): The ERS just selects a

maximum fitness value of a row in Inr , the best row is kept
at the row m + 1. Thus, a new matrix Ine is established.

Cross Operation (CO): M-COGA randomly selects two
rows of Ine (except the m + 1 row) for crossing operation.
And it generates an index p, and p ∈ {p ∈ N |1 ≤ p ≤
Nt }, then the two rows will change the values before δp,...

between the two rows with distance one or two position.
Besides, a crossing probability Pc, which is introduced in
[20], can be described as (12)

Pc =
{
max(Pc) − max(Pc)−min(Pc)∗(α−β)

δ′−β
, α > β,

max(Pc) , α ≤ β
(12)

where max(Pc) denotes the the maximum cross probability,
and the min(Pc) means the minimum cross probability. α

represents the maximum fitness value of the two selected
rows (the two orders of offloading decisions). The β denotes
the average of calculated fitness value for the whole matrix,
and the δ′ denotes the maximum calculated fitness value for
the matrix Ine. If a randomly variable seed Sd < Pc, after
CO, the new matrix Inc is established. It should be noted
here that the task index is unique in each row after CO. It
can be achieved by traversing the task index.

Mutation Operation (MO): After the CO, we can get the
new matrix Inc. The M-COGA operates the MO for each
row of matrix Inc. First of all, the mutation probability [20]
Pm can be described as (13)

Pm =
{
max(Pm) − max(Pm)−min(Pm)∗(α′−β)

δ′−β
, α′ > β,

max(Pm) , α′ ≤ β

(13)

The variables are similar to the equation (12). The
max(Pm) represents the maximummutation probability and
the min(Pm) represents the minimum mutation probability.
The α′ represents the fitness value of current MO row.
The max(Pc), min(Pc) are set as 0.9 percent and 0.6
percent, respectively. Besides, max(Pm), min(Pm) are
set as 0.9 percent and 0.6 percent, respectively. Each
row of Inc will process the MO by the probability Pm.
If a row is determined to be mutated, randomly swap
the positions of the two index in the row. Such a MO
iterates through the first m rows of the entire matrix
Inc.

After the MO, the row with the lowest fitness value will
be deleted. Then, the new matrix Inm becomes m ∗ k. The
COGA will iterate until the fitness value is stable.

In the CO stage, for the dramatic changes of each row,
the cross operation does not just run once and it is related
to the number of initial tasks. Hence, the CO times φ(m) is
designed as (14)

φ(m) = m

λb + λgδ
, (14)

Fig. 2 The mutation distance
and the range division for a task
row
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where λb and λg are constant coefficients, and the value of
φ(m) is positively related to m. We present δ as a random
seed. Then, the more dramatic CO operation will lead to less
convergence consumption times.

4.3 AnMO approach based onmutation intensity
control

In the MO stage, each offloading queue combination will
calculate the probability Pm according to equation (13)
to obtain a new offloading task queue. In other words,
the offloading queues with poor fitness values are more
likely to change into new offloading queues. In the MO
of Section 4, M-COGA randomly selects the two points of
the queue to exchange the task, when an offloading task
queue is determined to mutate. The values in the individual
queue, which represent the arrangement offloading tasks.

And the offloading tasks at the back of the queue can not
be uploaded due to resource constraints. New offloading
queues, which are generated by mutations in two near
positions, are not conducive to obtain better offloading
task sequences. Therefore, we design a strategy during the
mutation operation to generate a new task queue. We define
the mutation distance Di , which represents the distance
between two swapped positions. Besides, the offloading
task queue, which is represented as a row, is divided into
three ranges, which is shown as Fig. 2.

Then, we can describe our strategy as follows:
It is assumed that the row i is determined to execute MO

with probability Pm , the two interchanged tasks xi , xj will
be selected at the different ranges. The selection strategy is
depended on the equation (15).


(i) = α′(i) − ζ

δ′ − ζ
, (15)

where the α′(i) represents the fitness value of row i, the
ζ and δ′ mean the minimum and maximum fitness value
of Inc, respectively. If the 
(i) ∈ (0, 1/3], the two tasks
will be randomly selected in the first range and the third
range. If the 
(i) ∈ (1/3, 2/3], the two tasks will be
randomly selected in the first range and the second range.
If the 
(i) ∈ (2/3, 1], both of two tasks will be randomly
selected in the first range. In this way, an offloading
task queue with a lower fitness value will have a higher
Di . It means that MO will facilitate the generation task
queue with better fitness value. To observe the convergence
performance with the new strategy, we give the convergence
times as Table 2 under different device densities according
to the parameter setting in Section 5.

The algorithm is set to exit the calculation when the
fitness is unchanged for 250 times. We found that the
strategy effectively reduced the number of iterations except
in the 30 devices scenario.

4.4 The dynamic task offloading strategy
with M-COGA

As it is shown in equation (6), the computation task
offloading depends on the bandwidth B̄ of a BS. However,
in the actual task offloading scenario, the transmission time
is different due to various size of tasks. In the case of

Table 2 The iteration count at different node densities

Algorithm

Devices
30 40 50 60

M-COGA with
random MO

431 541 628 892

M-COGA with
optimized MO

566 528 537 656
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constraint value B̄, M-COGA will be restarted after the
offloaded all pending tasks are complete. Therefore, M-
COGA periodically checks the available channel capability
C̄

(B)
a , which can be described as equation (16)

C̄(B)
a = C

(B)
s̄ −

n∑

i=1

T r(i), (16)

where T r(i) is the transmission rate of task i. And n

represents the total number of tasks being transmitting.
Then, the rest of the pending tasks will process byM-COGA
based on C̄

(B)
a .

5 Evaluation results

We implemented the proposed scenario and the M-COGA
algorithm. Then, several simulation results are presented for
evaluating the performance of the M-COGA strategy. We
have considered a variety of scenarios, mainly observed in
the performance of three aspects: The M-COGA in single
BS scenario, The M-COGA in multiple BSs scenario with
random BS selection and with BS selection strategy. In the
multiple BSs scenario, we also consider the uniform and
non-uniform distribution of terminals in each BSs’ coverage
area.

The parameters of different types of base stations are
also different. For instance, Huawei BBU5900 supports
up to 400 users in a single cell. A single cell covers an
area of about 400 meters or more, which depends on the
building block and the terrain. And the coverage can be
flexibly adjusted for users [21]. However, not all of the
terminals covered by a BS will have the requirement of
task offloading, and the distribution of nodes is uneven in
the city areas. Therefore, the offloading terminals will be
less than 400 devices in a cell. Generally speaking, the

uploading task size is related to the application of offloading
tasks in practice. There are up to 120 mobile devices in
a 1000m*1000m square area. Three BSs are distributed in
this scenario, and the cover radius of each BS is 400m. The
channel gain is not considered in this scenario due to the
principle of the algorithm. The BS bandwidth is generally
limited by radio management, and only part of the BS’s
bandwidth is allowed for the purpose of task uploading.
Therefore, the parameter of channel bandwidth is assumed
asCŪ = 5MHz [22]. The transmission power Si = 100mw

and the noise N0 = −100dbm [10]. In this scenario, each
device owns a task for offloading computing requirements,
the Ji = 8.9 ∗ 10−12J/cycle. The amount of offloading data
size is randomly generated in the range of (0.175∗105, 0.5∗
105) bit/s. The coefficient λt and λe are set as 0.3, 0.7,
separately. Since the task data is randomly generated, then,
the M-COGA runs to select offloading tasks.

To verify the validity of the method, each experiment is
carried out five times. The performance should be tracked at
five aspects in different task density: the convergence status,
the remaining capacity of the channel, the offloading tasks,
offloading cost and the processing time with the proposed
algorithms.

The (a) of Fig. 3 displays the algorithm convergence for
a single BS scenario in different task density. It shows that
the fitness value can effective convergence with M-COGA.
And it works under smaller the number of tasks, the faster
the convergence. As it is shown in (b) of Fig. 3, the fitness
value also convergence under multiple BSs scenario. From
Fig. 4, we observed the remaining bandwidth for different
number of offloading tasks, there is more capacity left due
to the small data offloading requirements. Besides, when
ultra tasks require task offloading to BS, the remaining
capacity of channel maintains at a low level. It shows the full
utilization of the transmission ratio with M-COGA. In the
multiple BSs scenario, there are multiple base stations in the

Fig. 3 The convergency of
M-COGA in variety of scenarios
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Fig. 4 The channel capability withM-COGA under single BS scenario

node communication area, so the requirement of computing
task offloading is more complicated. The distribution of
devices in demand for task offloading may be uneven,
then we consider both uniform and non-uniform nodes
distribution to observe the remaining capability of BSs.

Figure 5(a) and (b) show that the M-COGA with BS
selection strategy can work better than without the BS
selection strategy under both non-uniform and uniform
distribution of devices in 3 BSs scenario. From the (c) and
(d) of Fig. 5, we found that the M-COGA with BS selection
strategy can achieve the load balancing of the BSs as well,
even if the nodes are not evenly distributed. In intensive task
scenarios, the remaining space is very small. Therefore, it
shows the effectiveness of residual capability control.

Both the terminal cost and the number of offloading
tasks are the optimization targets of the M-COGA,
then we respectively observed its performance in various
aspects. It includes Uniform Distribution (UD) with
BS Selection Strategy (SS), uniform distribution without
selection strategy, Non-uniform Distribution (ND) with BS
selection strategy and non-uniform distribution without BS
selection strategy. From the results, with the increase of the
density of pending tasks, the number of offloading tasks
and the total cost are increasing. In the case of limited
channel capacity, a relative balance is achieved. And the
results are stable in the relatively intensive task scenes,
which indicates that it near the best-optimized result in the
current bandwidth situation. In general, M-COGA with the
BS selection strategy is better than random BS selection
strategy under the ultra density of pending tasks, therefore,
the BS selection strategy is effective with M-COGA.

When M-COGA selects offloading tasks under fixed
channel capacity, the selected task has a different transmis-
sion time. Therefore, we chose a dynamic task offloading

Fig. 5 The channel capability with M-COGA under multiple BS
scenarios
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strategy. If a task finished offloading, then it will release
the occupied channel capacity in ultra density of pending
task. We established the scenario of Fixed Channel Capacity
(FCC) with or without BS selection strategy and Dynamic
Offloading (DO) policy with or without BS selection strat-
egy.

Figure 6 shows the performance of the M-COGA in
four scenarios. We can see that the BS selection strategy
can get better performance to some extent. Since the
allocated bandwidth may be different by task offloading,
we also observe the M-COGA effect under different
bandwidth conditions. We have compared the M-COGA
with the random and the Greedy offloading algorithm.

Fig. 6 The total number and the cost of offloading tasks in four
scenarios

Fig. 7 The number of task offloading tasks of the three algorithms
under various bandwidths

Figure 7 indicates that the performance of M-COGA is still
better than random and Greedy under different bandwidth
scenarios.

From Fig. 8, the dynamic offloading strategy with
M-COGA takes minimal time to process the computing
offloading tasks for the same requirements. In the fixed
channel capacity scenario, the algorithm with BS selection
is also acceptable. In addition, the BS selection strategy still
keeps relative low processing time under ultra task density
circumstance. Therefore, dynamic unloading strategy and
BS selection strategy promote the time efficiency of M-
COGA in computing task offloading.

We also observed the performance of M-COGA on the
number and cost of computing offloading tasks in a dynamic
offloading scenario. From Fig. 9(a), The M-COGA with BS
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Fig. 8 The cost of offloading tasks in different task density

selection strategy is much better than M-COGA without the
BS selection strategy. The same as the cost of offloading in
Fig. (9) (b), M-COGA can get to a better solution as quickly
as possible.

Therefore, from the above comparison results, M-COGA
can effectively reduce the terminal computation load. And
it also achieves the design purpose of the most offloading
tasks under the limited channel capacity. The BS selection
strategy comes out superior performance in both static
and dynamic task offloading schemes under multiple BSs
scenario.

6 Related work

In the research areas of computation offloading, the
proposed approaches aim to energy, latency, and joint
consideration, and most of them consider the offloading
processing between the terminal and the cloud [23–25].
Zhao et al. [26] discussed the task scheduling based on the
consideration of computing limitation in the edge cloud.
The task offloading strategy aims to reduce task latency by
coordinating the heterogeneous cloud model. Li et al. [27]
aim to optimize the formulated cost model in multi-users
scenarios by Deep Reinforcement Learning (DRL) method
[28]. The results also achieve the proposed design purpose.
The resource allocation approach in MEC is one of the key
questions, and there are more studies for whole network
performance progress. Changsheng et al. [18] concentrate
on energy consumption and computation latency at multi-
user scenarios. The proposed algorithm was designed based
on priority policy to reduce the search cost. In similar
task offloading scenarios, Xu et al. [10] formulate the

Fig. 9 The total number and the cost of offloading tasks over time in
dynamic offloading scenarios

several computation decision making among devices as a
game in MEC. Min et al. [29] proposed an offloading
schedule to optimize the delay and battery life of users. This
approach can reduce the task duration and energy cost in
the software-defined ultra-dense network. This formulated
problem aims to allocated resources between cloud and edge
cloud. Bi et al. [14] also consider the computing mode
which includes offloading and local computing. And the
transmission time is also considered in the enumeration-
based optimal method. Zhiguo et al. [30] proposed a hybrid
NOMA strategy which can permit partial task offloading
by using a time slot. It jointly considers the power and
time allocation in NOMA scenarios. These existing studies
looked at both latency, energy efficiency, or physical layer.
However, in the actual application scenarios, the number of
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tasks and the above factors will affect the MEC computation
experience. In addition†, under the multi-BS coverage,
there are more flexible selection strategies to improve the
offloading performance.

From some of the recent researches above, the com-
putation offloading is a complex problem. Each method
focuses on the different aspects of MEC systems. The opti-
mized problem ignores the task numbers and decreases the
maximum cost of terminal devices which are covered in
the communication area of BS. Then we proposed the M-
COGA to optimize the number of offloading tasks and
computing cost in MEC.

7 Conclusion

With the rapid expansion of mobile applications or smart
vehicle networks, more and more computing tasks will
appear in the future [31]. It is reasonably prophesied that
the task computation offloading will become more and
more important in IoT, due to the satisfaction of a task
offloading requirement can probably satisfy the needs of
an intelligent application. Therefore, we proposed an M-
COGA computation offloading approach based on the
genetic algorithm, which decides the task offloading and
adjusts the mobile terminal cost for energy efficiency,
the number of offloading tasks and computing resources
under limited channel capacity. Then, we not only consider
the intensive tasks in one BS scenario but also proposed
the BS selection strategy under multiple BSs scenario.
After plenty of simulations, several results indicated that
the proposed algorithm and BS selection strategy can
effectively determine the offloading tasks. Besides, we also
have finished the dynamic task selection scheme, which
can improve the time efficiency of offloading processing.
The method has the flexibility for optimized targets, it still
has some aspects that have not yet been discussed. For
some instances, we have not considered the CPU computing
power of BSs, or some tasks with a large amount of data
can not be treated fairly. And the traces of the real world
should be considered to evaluate algorithms. The valuable
problems deserve further discussions in the future work.
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