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Abstract
Federated learning is a recently proposed paradigm that presents significant advantages in privacy-preserving machine
learning services. It enables the deep learning applications on mobile devices, where a deep neural network (DNN) is
trained in a decentralized manner among thousands of edge clients. However, directly apply the federated learning algorithm
to the mobile edge computing environment will incur unacceptable computation costs in mobile edge devices. Moreover,
among the training process, frequent model parameters exchanging between participants and the central server will increase
the leakage possibility of the users’ sensitive training data. Aiming at reducing the heavy computation cost of DNN
training on edge devices while providing strong privacy guarantees, we propose a mobile edge computing enabled federated
learning framework, called FedMEC, which integrating model partition technique and differential privacy simultaneously.
In FedMEC, the most complex computations can be outsourced to the edge servers by splitting a DNN model into two
parts. Furthermore, we apply the differentially private data perturbation method to prevent the privacy leakage from the local
model parameters, in which the updates from an edge device to the edge server is perturbed by the Laplace noise. To validate
the proposed FedMEC, we conduct a series of experiments on an image classification task under the settings of federated
learning. The results demonstrate the effectiveness and practicality of our FedMEC scheme.

Keywords Federated learning · Mobile edge computing · Deep neural network · Model partition · Differential privacy

1 Introduction

With the explosive growth of the smart Internet of Things
(IoT) devices, intelligent mobile networking applications
have become ubiquitous, which triggers the high demands
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for the on-device big data analytics. Meanwhile, the cloud-
based deep learning services [1], including recommendation
systems, health monitoring, language translation, and
many others [2–4], call for the efficiency improvement
of performing the deep neural networks (DNN) on the
mobile devices. However, such a centralized deep learning
framework requires the users to outsource their sensitive
data to the remote cloud in order to train the corresponding
learning models, which arises the significant concerns on
privacy as well as the on-device computation resources
[5]. To this end, mobile edge computing (MEC) [6] is
proposed as a novel distributed computation architecture to
provide powerful and real-time data storage and processing
capabilities at the edge of the network [7], which can be seen
as a cornerstone to bridge the cloud-based learning services
and mobile devices [8].

As a deep learning model in mobile edge computing,
Federated learning (FL) [9, 10] has gradually arisen
concerns from academia and industry by considering the
data privacy issues in a decentralized learning manner,
which can be widely used in numerous emerging scenarios,
such as crowdsourced system [12]. The main purpose of
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federated learning is to build a joint machine learning model
upon localized datasets while providing privacy guarantee
[11]. Participants in federated learning act as the data
providers to train a local learning model, meanwhile, the
server maintains a global model by averaging all the local
model parameters (i.e., gradients) generated by randomly
selected participants until convergence [13]. The privacy is
guaranteed due to the shares between server and participants
are only model parameters, which prevent the server from
direct access to the private training data.

Although federated learning has several advantages such
as privacy-preserving and on-device learning, the scalability
and privacy issues are still fatal for this novel paradigm,
especially when encounter heavy local training consumes
(DNN model) and the possible insider attackers. In this
paper, we mainly consider the following two practical
issues when applying the federated learning protocol to
mobile edge computing architecture: 1) executing whole
DNN training phase on the resource-constraint mobile
edge devices will introduce incredible computation costs,
which means the smart devices cannot afford such a heavy
computation requirement in the federated learning protocol;
2) the shares, i.e., local model updates and global model
parameters, among central server and participants could
directly leak a proportion of private training datasets,
meaning that the standard federated learning protocol
cannot provide strong privacy guarantee against malicious
entities, such as edge and cloud servers.

First of all, there are a very large number of parameters
(sometimes hundreds of millions) in a common deep
neural network [14, 15], even the forwarding operation
of such a huge deep neural network requires significant
processing and storage resources. However, the resource-
constraint nature of mobile devices implies that the
computation capability will soon reach the bottleneck and
makes deep learning applications tend to invalidation [16,
17]. Furthermore, the shares (i.e., gradients) in federated
learning could leak the sensitive information of users’
training data to the untrusted third parties [18, 19]. For
example, according to [20], the server in federated learning
can easily launch the model inversion attack to obtain parts
of training data distributions, and the gradient backward
inference described in [21] also enables an adversary to get a
fraction of private data from the participants’ local updates.

For solving the efficiency problem of DNN computation,
model partition technique [22] has been presented to offload
the large parts of loosely coupled hidden layers [23] in a
DNN model to the third party, which can be used to enable
federated learning applications on mobile edge computing
environment. On the other hand, aiming at preventing user-
side information leakage to the untrusted server, several
works have been done from different perspectives [24].
Abadi et al. [25] proposed a privacy-preserving deep

learning method to protect user’s data privacy by adding
the Gaussian perturbation [26] to the clipped gradient.
Geyer et al. introduced a user-side differential private
federated learning mechanism [27] to protect the shared
learning model from revealing each participant’s updates.
Furthermore, Bonawitz et al. proposed a sum aggregation
protocol for high-dimensional data using the secret-sharing
method [28]. However, these privacy solutions rely on
the presence of a trusted aggregator to perturb the global
model parameters and publish the noised parameters to each
participant securely. That means the aggregator is able to
see each individual’s model parameters. Therefore, it is
necessary to design a practical mechanism to protect the
privacy of each participant against the untrusted third parties
in federated learning.

In this paper, we propose an efficient private federated
learning scheme in mobile edge computing, named Fed-
MEC, by integrating the model partition technique to the
standard federated learning mechanism. Basically, FedMEC
can partition the underlying DNN model across the edge
server and the mobile edge devices. On the client-side DNN,
the users’ private training data is fed into the low-level neu-
ral network to extract features. On the edge-side DNN, the
local model updates are generated by executing the forward
and backward propagations on these features. At last, the
cloud server in our FedMEC framework aggregates all the
received local model updates to improve the current global
model until it tends to convergence. In order to preserve
training data privacy, we further present a differentially pri-
vate data perturbation mechanism on the local side, which
adds the deliberate perturbations into the features before
transmitting to the edge server. In other word, the clients,
edge server and the cloud server run the different portion of
a federated learning protocol, and the shares among these
entities are perturbed by Laplace noise to achieve differen-
tial privacy. Our main contribution can be summarized as
follows:

– A framework enabling federated learning in mobile
edge computing: Instead of outsourcing user’s training
data to the cloud in the conventional cloud-centric
machine learning systems, we apply federated learning
to mobile edge computing to realize the localized
training property. Meanwhile, we design a partitioned
learning framework to split the deep neural network into
two parts: client-side DNN and edge-side DNN, where
the former one maintains a consistent convolutional
layer to extracting training data features and the
latter one equips the remaining layers to update each
participant’s parameters.

– A differentially private data perturbation mech-
anism: To protect user-side data privacy against
untrusted third parties, we present a differentially
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private data perturbation mechanism to perturb the
Laplacian random noises to the local training data fea-
tures extracted by the partitioned convolutional layer, so
as to achieve differential privacy and provide rigorous
privacy guarantee.

– Exhaustive experimental evaluation: We evaluate
the proposed FedMEC scheme through a standard
image classification task under the settings of federated
learning and compare the result with several related
methods to demonstrate effectiveness. Further, we also
deploy FedMEC on an Android device to test the
overhead.

The remainder of this paper is organized as follows.
We briefly introduce the basic knowledge of federated
learning and differential privacy in Section 2 and the system
framework is presented in Section 3. Section 4 provides
the detailed construction of the proposed FedMEC scheme
and Section 5 discusses the effectiveness of FedMEC by
conducting the extensive experimental evaluations. Finally,
Section 6 gives the conclusion and future work. The
notations used in this paper are listed in the Table 1.

2 Preliminaries

2.1 Federated learning

Federated learning has been explored to provide a more
flexible distributed machine learning framework, whose

Table 1 Notations used in this paper

Notation Definition

i ∈ n Total number of participants

xr Users’ sensitive raw data

F(xr ) Deep neural network

L(wt ,xr ) Objective loss function

σ Noisy scale

ΔF(Δf ) Global sensitive

B Norm bounding

l Partitioned layer

xl l-th layer output of DNN

In Nullification matrix

x′
r Nullification result for xr

x′
l Nullification result xl

E Local epoch

B Local mini-batch size

η Local learning rate

t ∈ T Current communication round

g
(i)
t Gradient for user i at t

Δw
(i)
t Local model update at t

w
(global)
t Global model parameters at t

main purpose is to perform joint machine learning model
training across multiple mobile devices with private training
data respectively. All the participants locally train the global
model on their private training data and upload only the
model parameters instead of the raw data. Such a localized
model training method presents significant advantages in
privacy-preserving because the clients do not need to share
their private data with any third party. Figure 1 demonstrates
the federated learning framework with model average.

The standard federated learning protocol [13] assumes
that all the clients agree on a common learning objective and
global model structure. In a certain communication round
t , all the sampled participants mt first download the global
model parameters from the central server to update the local
model, then the local model is trained locally to generate the
local model update Δw

(i)
t on the private training datasets.

After that, the central model collects all the local model
updates and aggregates them to improve the current global
model until it tends to convergence. The model average step
in the central server can be formulated as follow.

w
(global)

t+1 = w
(global)
t + 1

mt

mt∑

i=1

Δw
(i)
t+1, (1)

where w
(global)
t indicates the global model parameters at

the t-th communication round, and Δw
(i)
t denotes the local

model update from the i-th participant at communication
round t + 1.

2.2 Differential privacy

Differential privacy [29] is a rigorous concept that has been
widely used in data publication systems by adding randomly
noise (e.g., Laplace or Gaussian noises) into datasets,
concealing the real results of any data query operation. It is
defined in terms of the data query on two adjacent databases
D and D′ where the query results are statistically similar
but differing in one data item. In the context of federated
learning, differential privacy could be used as the local-
side privacy solution to protect the privacy of users’ training
datasets. The formal definition of ε-differential privacy can
be described as follow:

Definition 1 (ε-differential privacy:) A randomized mech-
anism M : D → R fulfills ε-differential privacy for certain
non-negative number ε, iff for any adjacent input d ∈ D and
d ′ ∈ D′, and any output S ⊆ R, it holds that

Pr[M(d ∈ D) ∈ S] ≤ eε · Pr[M(d ′ ∈ D′) ∈ S], (2)

where ε is defined as the privacy budget, which measures
the level of privacy guarantee of the randomized mechanism
M: the smaller ε, the stronger privacy guarantee.
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Fig. 1 Federated learning
framework
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Typically, a deterministic query f : D → R can simply
achieve ε-differential privacy approximately by adding the
deliberated perturbation to its result. The added perturbation
is calibrated to f ’s global sensitivityΔf , which is defined as
the maximal value of ||f (d)−f (d ′)|| on the adjacent inputs
d and d ′. In this paper, we use the Laplace mechanism [26]
to perturb the output data on the client side as follows:

M(d) = f (d) + Lap(λ), λ = Δf

ε
(3)

where Lap(λ) is a random variable sampled from the
Laplace distribution, and the scale parameter λ is set to Δf

ε
.

3 System framework

3.1 Federated learning with MEC

In this paper, we consider a MEC framework that can
partition the federated learning protocol across the cloud
central server, the edge servers, and the edge devices.
Assuming all the users voluntarily participate in the
federated learning protocol provided by a cloud central
server, so as to obtain the desired machine learning services.
Meanwhile, these participants try to prevent the training
data privacy from being leaked by the malicious entities
involved in the whole learning procedure, such as the
untrusted cloud central and edge servers. Therefore, we
present a three-layer mobile edge computing framework
that provides the perfect architecture supportive of federated
learning protocol with multiple participants. Specifically,

the overall framework is shown in Fig. 2 and the involved
entities are as follows.

– Edge devices: represent a set of devices (such as
smartphones, laptops, smart meters, and so on) owned
by the participants. Each edge device is equipped
with computation and communication modules, which
enable to execute the local training procedure and
transfer its local update to the edge server.

– Edge servers: are core entities for mobile edge
computing architecture. They own more storage and
computation resources compared to the edge devices,
which usually be deployed at the edge of the network
and serves as the computation unit between cloud
central and edge devices.

– Cloud server: acts as a control center to collect all
users’ local model updates and execute the federated
average algorithm to update the global shared model.
After the model average, it assigns the shared model to
the edge device, who participates the federated learning
protocol.

Among these entities, the edge devices were assumed
as the trusted entities, whose goal is to benefit from the
intelligent learning services by collaboratively executing
the training phases with other participants. However, the
third parties, e.g., edge server and cloud server, are honest-
but-curious [30]. Specifically, they faithfully execute the
federated learning process to compute correctly and send
results truthfully. However, they are curious about the
privacy contained in the data and attempt to disclose
private data [31]. Except with the privacy issues, directly
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Fig. 2 Federated learning with
mobile edge computing
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implementing the federated learning protocol in mobile
edge computing framework could also face practical
concern. That is, the resource-constraint edge devices
cannot easily afford the whole local model updating
consumes because the heavy computation cost is needed
to execute the DNN training procedure. Thus, the main
challenge of applying federated learning with mobile edge
computing is how to design a valid scheme to reduce the
computation overhead on edge devices without broke the
federated learning mechanism, while protecting user-side
data privacy contained in the original data.

3.2 Overview of FedMEC

To solve the aforementioned challenges, we propose an
efficiently private federated learning framework in mobile
edge computing, named FedMEC, by considering both
performance and privacy issues, where the local DNN
model is divided into the client-side part and the edge -
side part, so as to reduce the computation cost on the
edge devices. The effectiveness of the partition mechanism

in DNN architecture lies in the loosely coupled property
among multiple insider layers. That is, each hidden layer
in DNN can be executed separately by taking the previous
layer’s output as its input. According to this practical
property of DNN, we can simply divide the DNN structure
in federated learning across the edge devices and the edge
server. In this paper, we consider partitioning the neural
network along with the last layer of convolutional layers and
all the intermediate results generated by the user-side DNN
are hidden from the other entities (i.e., edge server and cloud
server).

Figure 3 gives a high-level description of our proposed
FedMEC framework. FedMEC relies on the mobile edge
computing architecture and splits the whole federated
learning protocol across the involved entities. Particularly,
the local neural network training phase is divided into
two parts: client-side DNN and edge-side DNN. According
to the partition mechanism, the convolutional layers of
the local DNN are deployed on the client-side while the
remaining part (i.e., dense layers or fully-connected layers)
will be assigned to the edge server. In this situation, edge

Fig. 3 Overview of proposed
FedMEC framework Client-Side Edge-Side
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devices merely undertake the simple and lightweight feature
extraction and perturbation. Similar to the settings in [14],
the network structure and parameters of the client-side DNN
model are frozen and the edge-side DNN can be fine-
turned. Besides, the cloud central server in our FedMEC
scheme is designed to execute the aggregate and average
steps according to the standard federated learning protocol.

Here, the frozen local-side neural network is pre-trained
on an auxiliary dataset which shares the same distribution
with the localized private training datasets. Accordingly, the
global model in the cloud server is initialed by a replica of
this well-trained local model. Then the pre-trained global
neural network will be partitioned along with the last layer
of the convolution layer and the well-trained convolution
layer will send to each client for feature extraction. Based
on our designed FedMEC framework, the major parts of
a whole DNN training procedure can be offloaded to the
edge and cloud servers, while mobile edge devices are
only needing to execute the simple feature extraction part
through a frozen network model. Furthermore, to provide
a rigorous privacy guarantee, we apply the differential
privacy mechanism in our FedMEC scheme, where the
extracted features are perturbed by the deliberated Laplace
noise before being transmitted to the edge server. Note
that, we do not consider the privacy contained in the label
of the contributed training data since we assume that the
participant willingly contributes the labeled data to perform
supervised learning and should have no expectation on the
privacy contained in the labels.

4 Construction of proposed FedMEC

4.1 Deep neural network partition

In this paper, we choose the most popular learning method,
i.e., DNN, as the learning framework to construction our
federated learning protocol in mobile edge computing
scenario. A complete deep neural network structure consists
of many loosely coupled hidden layers, which can be

partitioned as multiple parts to embed in our mobile
edge computing entities, such as the edge devices and
the edge server. Thus, partitioning large DNN across
mobile devices and edge server is one of the solutions to
reduce complex computations on resource-constraint edge
devices. Following this property, we can design an efficient
deep learning framework which enables federated learning
applications on mobile edge computing environments.
Here, we apply DNN model with convolutional layers,
i.e., convolutional neural network, as our baseline model
architecture.

Figure 4 shows a high-level description of our designed
DNN partition method. As we know, the convolutional
processes in a DNN training procedure take the most
complex computation overheads, which will consume
plenty of resources of mobile devices. To solve this
shortcoming, we split a complete DNN model into two
parts: client-side DNN and edge-side DNN, along with the
last layer of the convolutional network. In the client-side
part, the front portions of a DNN structure (i.e., convolution
layers) are deployed to extract features from the raw data.
To protect the privacy of the sensitive training data, we add
the deliberated perturbations to the outputs of the client-
side DNN, so as to guarantee the differential privacy. The
edge-side DNN model consists of the remaining portions
of the DNN structure (i.e., dense layers) to update the
model parameters by executing the forward and backward
propagation procedures. Based on our designed DNN
partition method, the client-side resource-hungry operations
required in the standard federated learning protocol can be
significantly reduced [32]. Especially for the computation
resources and energy considerations, partitioning solution
is attractive to many machine learning service providers,
paving the way for federated learning applications on
mobile edge devices.

4.2 Differentially private data perturbation

Federated learning protocol is designed for providing basic
privacy guarantee for each participants’ raw data due

Fig. 4 Partition process on the
deep neural network Client-Side DNN
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to its local training property. However, a participant’s
sensitive data is still possibly leaked to the untrusted third
parties, such as edge server and cloud server, even with
a small portion of updated parameters (i.e., features and
gradients). For examples, according to [20], the server in
federated learning can easily launch the model inversion
attack to obtain parts of training data distributions, and
the gradient backward inference described in [21] also
enables an adversary to get a fraction of private data from
the participants’ local updates. Therefore, it is necessary
to design a practical preserving mechanism to protect the
privacy of each participant against the untrusted third parties
in federated learning.

Differential privacy [26] is a great solution to provide the
rigorous privacy guarantee by adding deliberate perturb on
the sensitive datasets. However, adding the perturb to the
original data directly may lead to significant negative effects
about learning performance [33]. Thus, we can perturb the
features generated by the convolutional layers of partitioned
DNN, so as to preserve the privacy contained in the raw
data. In this paper, we solve the aforementioned problem
by considering a differentially private data perturbation
mechanism which can protect the privacy information
contained in the extracted features after executing the client-
side DNN.

Following by the work from [14], we consider the deep
neural network as a deterministic function xl = F(xr),
where xr represents the private raw data and xl stands
for the l-th layer output of a neural network [34]. For
the privacy concern, we applying the differential privacy
method to the DNN and further construct our private
federated learning protocol in mobile edge computing
paradigm. One efficient way to realize the ε-differential
privacy is to add controlled Laplace noise which is sampled
from the Laplace distribution with scale ΔF/ε into the
output xl . According to the definition of differential privacy
described in Section 2.2, the global sensitivity for a query
f : D → R can be defined as follow:

Δf = max
d∈D,d ′∈D′ ||f (d) − f (d ′)|| (4)

However, the biggest challenge here is that the global
sensitivity ΔF is difficult to quantification in the deep
neural network. Directly adding the Laplace perturbations
into the output features will destroy the utility of the
representations for the future predictions.

To address this problem, we employ the nullification
and norm bounding methods to enhance the availability of
differential privacy in deep neural networks. Specifically,
before a participant starting to extract the features from
his sensitive raw data xr using the pretrained client-side
DNN, he firstly performs the nullification operation to mask
the high sensitive data items as x′

r = xr � In, where �

is the multiplication operation and In is the nullification
matrix with the same dimension as input sensitive raw data.
Besides, the nullification matrix In is a random binary
matrix (i.e., consisted of 0 and 1) and its structure is
determined by a nullification rate μ, meaning that the
number of zeros is the supremum of Sup(n ·μ). Apparently,
μ has a significant impact on the prediction accuracy which
will be discussed in Section 5.

After the nullification operation on the sensitive raw data,
each participant needs to run the client-side DNN on x′

r

to extract the features as xl = F(x′
r ). Then, we consider

the norm bounding method to enforce a certain global
sensitivity as follow:

x′
l = xl/ max

(
1,

||xl ||∞
B

)
(5)

where ||xl ||∞ represents the infinite norm of the l-th layer
outputs. This formula indicates that x′

l is upper bounded by
S, meaning that the sensitivity of xl can be preserved as
long as ||xl ||∞ ≤ B, whereas it will be scaled by B when
||xl ||∞ > B. According to [25], the scaling factor B usually
be set as the median of ||xl ||∞. The Laplace perturbation
(scaled to B) now is added into the bounded features x′

l to
further preserve the privacy as follow:

x̃l = x′
l + Lap(B/σI) (6)

Note that the Laplace noise is added into the final output of
the convolutional layers and the parameter b ∈ B also has
high impacts of the model performance. Due to the same
network structure for each client-side DNN, we use the
same notation x̃l to represent the latest perturbed features
for all participants.

4.3 FedMEC algorithm

As aforementioned, federated learning allows the clients
locally train their model in a distributed manner, and upload
its local model update (i.e., gradient) instead of sharing their
private data samples to the central server. In our differential
private federated learning system, assuming their existing
N sampled users agree on a common learning objective and
model structure, each edge client owns its private dataset.
In each iteration, edge clients download the partitioned
deep neural network model to the local and fed their local
private dataset into the client-side DNN model to generate
the features. Then, they adding the deliberated Laplace
noise to the features. After that, all the clients send the
perturbed features to the edge server and the edge server
will train the edge-side DNN model using those features to
further generate the local model updates with the method
of stochastic gradient descent (SGD) [10]. At last, those
local model updates are aggregated and averaged to jointly
optimize the current global model in the cloud server side.
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The above steps will be iteratively executed until the global
model tends to convergence. The pseudo-code of our overall
FedMEC scheme was shown in Algorithm 1.

According to the standard federated learning protocol
[13], after adding the Laplace perturbation on the features
extracted from the client-side DNN, all the perturbed
features will be fed to the edge-side DNN to further
generate the local model update by running the SGD
algorithm. For simplicity, we use x̃i to represent the i-th
participant’s update (i.e., participant i’s perturbed features),
where i ∈ [1, n]. The SGD mechanism is an optimization
method to find the parameter w by minimizing the loss
function L(w, x̃i). In a certain communication round t , SGD
algorithm first compute the gradient gt (x̃i) for any input
features x̃i as follow:

g
(i)
t = ∇wtL(wt , x̃i) (7)

In terms of gradient descent process during the local
training procedure, we utilize the distributed selective SGD
(DSSGD) mechanism instead of the conventional SGD
algorithm to achieve distributed computation capability.
DSSGD splits the weight wt and the gradient gt into n parts,

namely wt = (w1
t , · · · , wn

t ) and gt = (g1
t , · · · , gn

t ), so the
local parameters update rule becomes as follow:

w
(i)
t+1 = w

(i)
t − η · g

(i)
t (8)

Then the conventional SGD algorithm was executed to
calculate the local model update as:

Δw
(i)
t+1 = w

(i)
t+1 − w

(i)
t (9)

At last, each edge server sends the local model updates
Δw

(i)
t+1 to the cloud server to further executing the federated

average procedure:

w
(global)

t+1 = w
(global)
t + 1

n

n∑

i=1

Δw
(i)
t+1, (10)

The whole federated learning procedure will be executed
iteratively until the global model tends to convergence.

5 Experimental evaluation

In this section, we conduct a series of experiments on
an image classification task and a real mobile application
system to evaluate the performance and applicability of
our proposed FedMEC. We first examine the effectiveness
of our differentially private data perturbation method
by applying the convolutional denoising autoencoder to
visualize the noise and the reconstruction. Then, we verify
the model accuracy under different perturbation strengths
(μ, b) in terms of a classification task, and evaluate the
mean accuracy trends of the global model by fixing one
of the perturbation parameters and changing the other one.
In addition, the comparison experiments are conducted to
estimate the performance of our scheme with other three
related works, including no-privacy [13], local-DP [25], and
central-DP [27]. At last, in order to verify the applicability
of FedMEC, we implement FedMEC on an Android system
in a real mobile device to monitor the CPU temperature and
CPU frequency.

In our experiments, we run the federated learning
protocol on an image classification task to estimate our
FedMEC mechanism. The classification task is conducted
on a handwritten digital image dataset MNIST, which
contains of 60000 training samples and 10000 testing
samples ranging from 0 to 9 (i.e., 10 classes) with the
same size of 28×28 pixels. For the experimental settings,
a general deep neural network is implemented in FedMEC,
which includes 3 convolutional layers and 2 dense layers.
The kernel size of all three convolutional layers is 3×3
and the stride for these convolutional layers is setting as 2.
The activation functions applied in the DNN structure are
LReLU. As aforementioned in Section 4, the perturbation
strength (μ, b) are the main parameters in our FedMEC
scheme, where μ is the nullification rate and b is the
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diversity of the Laplace mechanism. The evaluation indexes
are the model accuracy of the image classification task and
the CPU frequency and temperature of mobile devices.

5.1 Effectiveness of data perturbation

According to FedMEC, the perturbation strength (μ, b) are
two critical parameters in the designed differentially private
data perturbation method. Thus, we adopt the convolutional
denoising autoencoder [35] under the settings of federated
learning to visualize the noise and reconstruction, where the
perturbation strength is represented by (μ, b). We train our
model based on two perturbation strengths (μ = 1%, b =
1) and (μ = 10%, b = 5).

The visualizing noise and reconstruction results are
shown in Fig. 5. The three rows in this figure from the top
to the bottom represent the original samples, the perturbed
samples, and the constructed samples, respectively. Accord-
ing to the perturbation and reconstruction results, we can
see that the perturbed digits can be reconstructed to a certain
degree at the perturbation strengths of (μ = 1%, b = 1)

as shown in Fig. 5a. However, as shown in Fig. 5b, it is
hard to reconstruct the original digital when the perturba-
tion strength reaches (μ = 10%, b = 5), even the perturbed
data is public.

5.2 Performance under different data perturbations

The standard federated learning protocol allows each
participant to train their data locally and only updating the

model parameters. However, the edge device users may
not strictly adopt the perturbation strength specified by the
learning services provider, which means edge device users
could change their perturbation strength before sending to
the edge server. Thus, it is necessary to estimate the impact
of our differentially private data perturbation mechanism
under different perturbation strength in terms of the global
model accuracy. In our experiments, we set two scenarios
that the numbers of edge clients n are 100 and 300, and the
training is stopped when the communication round reaches
30 and 50 for n = 100 and n = 300, respectively. The goal of
this group of experiments is to estimate the changes of
accuracy under two different perturbation strengths (μ =
10%, b = 3) and (μ = 20%, b = 2). From the results
shown in Fig. 6, we can see that the model can get high
accuracy very quickly within several communication rounds
in both 100 and 300 clients settings, meaning our FedMEC
scheme works well in the settings of federated learning
while providing sufficient privacy guarantees. Besides,
since the perturbation strengths (μ, b) selected in our
experiments are small, the accuracy of the federated model
under multiple settings is not too much difference.

5.3 Impact of perturbation strength

We also design a group of experiments to evaluate the
model mean accuracy by changing one of the parameters
in perturbation strength (μ, b), while keeping another
parameter as a fixed value. Here, we consider the mean
accuracy for each parameter setting by averaging all the

Fig. 5 Visualization of Noise and Reconstruction
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Fig. 6 Classification accuracy on different perturbations

results with 30 and 50 communication rounds for 100 clients
and 300 clients. As shown in Fig. 7, our FedMEC scheme
can perform more than 85% classification accuracy for
all the parameter combinations. Besides, with the gradual
increase of perturbation strength, the model accuracy tends
to the decreasing trend due to the large perturbation on the
features will bring a negative impact in the prediction stage.
Moreover, the influence of parameter b is much worse than
μ since it is the key factor to determine the differential
privacy level. Despite this, the change range of classification
accuracy is less than 5%, which shows the stability and
validity of our FedMEC scheme.

5.4 Comparison evaluation

To further illustrate the effectiveness, we compare the
performance of our proposed FedMEC with other three
schemes on an image classification task. The comparison
schemes are as follows:

– No-privacy [13]: a standard federated learning
approach where all the participants train a com-
plete neural network at the local-side and upload
the corresponding model updates to the central
server.
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Fig. 7 Mean accuracy on μ and b
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Fig. 8 Accuracy comparison over communication rounds

– Central-DP [27]: a randomized mechanism at the
server-side to provide differential privacy in the fed-
erated learning approach, which a single client’s local
model updates can be hidden during the aggregation
phase.

– Local-DP [25]: each client adds enough noise during
the local SGD training procedure to protect the training
data from being discolored by the untrusted server.

All the four schemes are implemented under the same
federated learning settings as described previously. Besides,
we set the perturbation strength of our FedMEC scheme
as (μ = 20%, b = 2) and other three schemes
as their suggested noisy sizes. Figure 8 shows the

Fig. 9 CPU status during client
training procedure
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results of classification accuracy on 300 clients with 50
communication rounds. Note that “no-privacy” approach is
the baseline of standard federated learning approach and it
performs the highest classification accuracy (approximately
0.95) in our experiment. Our FedMEC scheme is able
to achieve a classification score of about 0.85, which is
much higher than the “local-DP” approach (0.75) but little
lower than the “central-DP” approach (0.9). The main
reason for this phenomenon is that the “central-DP” method
can only work in the context of a fully-trusted federated
learning scenario, while FedMEC can provide the local-side
differentially privacy guarantee even the edge and cloud
servers are not trusted.

5.5 Implementation on android

At last, to demonstrate the applicability of our proposed
FedMEC framework, we implement the whole scheme in
a demo system on HUAWEI MATE20 PRO and a laptop
DELL INSPIRON 15. The mobile device is equipped with
ARM Cortex-A76@2.6GHz, ARM Cortex-A76@1.92GHz,
and ARM Cortex-A55@1.8GHz, and the laptop is fitted
out with Intel Core i5-8250U@ 3.4GHz and AMD Radeon-
530 Graphics. For the local training samples, we randomly
chose 3000 images from MNIST dataset to investigate
the CPU status of the mobile device during the client-
side DNN training procedure, where all the images are
processed consecutively. Similar to [14], we use TensorFlow
to generate a deployable model for our Android system and
the experiments results are shown in Fig. 9. Specifically,
the CPU temperature increases when our demo system
executing because the local training procedure consumes
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the computation resources of the mobile device. However,
it keeps a stable highest temperature values in the interval
of 40◦C-45◦C, which indicates that our FedMEC scheme
has a fully acceptable performance in terms of resource
consumption. Besides, the trend of CPU frequency further
illustrates that the client-side DNN training process only
occupies approximately a little more than half of the CPU
frequency. Therefore, it is applicable to implement FedMEC
on multiple resource-constraint mobile devices.

6 Conclusion

In order to enable highly efficient federated learning
protocol and meanwhile protect users’ training data privacy,
we propose FedMEC in the mobile edge computing
environment which can achieve both efficiency and privacy
in this paper. The designed FedMEC framework splits a
complete deep neural network used in the local training
procedure into two parts: client-side DNN and edge-side
DNN. A large part of heavy computation works is offloaded
to the edge and cloud servers, while the mobile devices
merely undertake the lightweight feature extraction part,
so as to reduce the computation complexity on the mobile
edge devices. Furthermore, to minimize the client-side
privacy leakage during the training phase, we introduce
a differentially private data perturbation mechanism to
perturb the Laplacian random noises to the client-side
features before uploading to the edge server. The extensive
experimental results on a benchmark dataset demonstrate
that our proposed FedMEC scheme can not only achieve
high model accuracy but also providing sufficient privacy
guarantees. Finally, we also implement FedMEC on a real
Android application system to show its applicability and
verify the computation overhead. In regards to our further
work, we plan to explore the optimal perturbation strength
for the differentially private data perturbation mechanism.
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