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Abstract
In recent years, with the rapid development of Internet of Things (IoTs) and artificial intelligence, vehicular networks
have transformed from simple interactive systems to smart integrated networks. The accompanying intelligent connected
vehicles (ICVs) can communicate with each other and connect to the urban traffic information network, to support intelligent
applications, i.e., autonomous driving, intelligent navigation, and in-vehicle entertainment services. These applications are
usually delay-sensitive and compute-intensive, with the result that the computation resources of vehicles cannot meet the
quality requirements of service for vehicles. To solve this problem, vehicular edge computing networks (VECNs) that utilize
mobile edge computing offloading technology are seen as a promising paradigm. However, existing task offloading schemes
lack consideration of the highly dynamic feature of vehicular networks, which makes them unable to give time-varying
offloading decisions for dynamic changes in vehicular networks. Meanwhile, the current mobility model cannot truly reflect
the actual road traffic situation. Toward this end, we study the task offloading problem in VECNs with the synchronized
random walk model. Then, we propose a reinforcement learning-based scheme as our solution, and verify its superior
performance in processing delay reduction and dynamic scene adaptability.

Keywords Vehicular networks · Mobile edge computing · Reinforcement learning

1 Introduction

In the past, vehicular networks were only defined as
some massive interactive networks of information such as
vehicles’ location, speed, and route. However, with the rapid
development of 5th generation mobile networks, Internet
of Things (IoTs) and artificial intelligence, the explosion
of data and computing needs has made vehicular networks
begin to enter the intelligent era. Vehicular networks are
transforming into integrated networks that enable traffic
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management, dynamic information services, and vehicle
control with intelligence [1–3]. This trend of vehicular
networks has attracted the attention of automakers such
as Toyota, Volvo, and Mercedes-Benz. The accompanying
intelligent connected vehicles (ICVs) with high-intelligent
in-vehicle information systems can be connected to the
urban traffic information network and smart grid. All the
real-time information about road conditions, weather, and
emergencies can be obtained at any time, and then the
corresponding data can be provided. These features will
lead to a new lifestyle shift, such as smart inter-operable
ICVs that can improve road safety and traffic efficiency for
smoother traffic [4, 5].

In recent vehicular networks, one serious problem that
has been elicited is the contradiction between computing-
intensive, delay-sensitive applications (e.g., autonomous
driving, intelligent navigation, and in-vehicle entertainment
services) and resource-limited vehicles [6–8]. To overcome
this defect, the use of cloud computing in vehicular
networks has been adequately studied in recent years.
By offloading part of the computation tasks to the cloud
servers, the computing resource pressure of vehicles is
somewhat relieved [9]. However, the inherent drawback
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of cloud computing, i.e., the cloud servers are often
placed in a distance of several kilometers away from
users, so that cloud computing cannot solve the problem
fundamentally [10, 11]. In such a case, vehicular edge
computing networks (VECNs), which introduce mobile
edge computing offloading (MECO) technology has been
seen as a promising solution [12]. By deploying edge
servers at the road side units (RSUs), VECNs extend
computing resources from the cloud to the edge, and provide
MECO services to vehicles at the edge of the networks,
further reducing the processing delay of vehicles’ compute-
intensive applications [13–15].

In VECNs, one of the most critical issues is how to
obtain the optimal task offloading decisions configuration,
to minimize the processing delay of vehicles’ computation
tasks. In recent years, researchers have conducted extensive
research on task offloading techniques in VECNs. By
utilizing game theory, convex/non-convex optimization,
and other optimization techniques, many well-established
methods have been developed [16–18]. For example, Du
et al. [16] studied the problem of computing offloading and
resource allocation in VECNs, and proposed a Lyapunov
optimization-based online algorithm, to minimize the
average cost of smart vehicular terminals and MEC enabled
roadside units, respectively.

However, the optimization techniques such as tradi-
tional convex/non-convex optimization are insufficient for
decision-making problem in highly dynamic scenario of
vehicular networks. The network nodes of vehicular net-
works are mainly vehicles with highly dynamic charac-
teristics such as high moving speeds, and thus have a
network topology with frequent changes, resulting in a rel-
atively short communication path life. In such case, the
usual schemes cannot meet the requirements of the time-
changing offloading decisions in VECNs. In response to
this situation, we introduce machine learning as our solu-
tion. Machine learning, as an important research direction in
the field of artificial intelligence, has been applied to many
fields [19]. The use of machine learning in vehicular net-
works can proactively monitor and predict the status of all
network components and take appropriate offloading deci-
sions, enabling operators to meet variable requirements in
real time to achieve efficient resource utilization [20, 21].

Meanwhile, existing computing offloading research work
in VECNs usually only consider the simple assumption
of the mesoscopic mobility in which the vehicles move at
constant speeds on the road. However, in real life, vehicles
have different modes of movement and different speeds
due to their different types, road condition, and subjective
willingness of drivers. Therefore, this assumption cannot
truly reflect the real situation of road traffic. In this paper,
we adopted the synchronized random walk model (a widely
used traffic model in the highway) to simulate actual traffic

conditions [22, 23]. Then, we propose a reinforcement
learning-based task offloading scheme to solve the task
offloading problem in VECNs. In particular, the main
contributions of this paper are as follows:

– We design an SDN enabled vehicular edge computing
network architecture, which integrates the computing
resources of remote cloud servers and edge servers, to
alleviate the computing resources pressure of vehicles.

– In such a scenario, we adopt the synchronized random
walk model to simulate real traffic conditions, in which
the distribution of the vehicles follows homogeneous
Poisson spatial distribution, and the speeds of the
vehicles follow the Gaussian speed distribution.

– Given the above assumptions of architecture and system
model, we study the task offloading problem, and
propose a reinforcement learning-based scheme, to
minimize the processing delay of all the vehicles’
computation tasks.

The rest of the paper is organized as follows. First,
we give the related work in Section 2. Then, we present
the VECNs architecture and system model covered in this
paper in Section 3. In Section 4, the definition of the
task offloading problem and the corresponding solution
are explained in detail. After that, we present a series of
simulation experiments to verify the performance of our
scheme. Finally, we summarize the full paper in Section 6.

2 Related work

Mobile edge computing offloading has received widespread
attention in both academic and industrial fields over the past
decade [12, 24, 25], with the primary goal of reducing task
processing delay or energy consumption. For example, the
authors in [25] studied the problem of single/multiple user
computing offloading in MEC enabled Internet of Things,
and formulated it as a mixed-integer linear programming
problem. After that, they proposed an iterative heuristic
resource allocation algorithm as their solution, to reduce
task processing delay. You et al. [26] investigated the
resource allocation in a multi-user MEC offloading system,
and designed a threshold-based task offloading policy
structure. To reduce the energy consumption of mobile
devices’ computation tasks in multi-access edge computing
networks, Guo et al. [27] introduced Fiber-Wireless (FiWi)
technology, and further integrated the computing resources
of centralized cloud servers and MEC servers. After that,
they studied the problem of Cloud-MEC collaborative task
offloading in such a scenario, and a game theory-based
collaborative task offloading scheme was proposed to solve
the problem.
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Meanwhile, many researchers have extended MECO to
the vehicular networks, and further proposed vehicular
edge computing networks (VECNs) [7, 14]. In VECNs,
the primary research goal is to reduce tasks’ processing
delay, and for which there has been a lot of research
work. The authors in [7] proposed a FiWi enhanced
vehicular edge computing networks and studied the task
offloading problem in this scenario. Specifically, they
took into account both vehicle-to-vehicle communications
and vehicle-to-infrastructures communications to support
communication in a dynamic environment of the vehicular
networks. To reduce the processing delay of the tasks,
they proposed two collaborative task offloading schemes,
and the corresponding simulation experiments verified their
superior performance. Qiao et al. [14] collaborative task
offloading and output transmission mechanism in vehicular,
to reduce the processing delay of the tasks. Also, they
used 3D scene reconstruction as a research example to
demonstrate the performance of the proposed scheme.

However, the research work mentioned above are not
for the dynamics of the VECNs, resulting in their lack
of scalability. Toward this end, some researchers have
begun to pay attention to the applicability of machine
learning in VECNs, due to the significant advantages
of machine learning in a dynamic environment [20, 28,
29]. For example, Sun et al. [28] designed an adapting
learning task offloading scheme based on multi-armed
bandit theory, in which the vehicles can learn the offloading
delay performance of their neighboring vehicles. To verify
the performance of their scheme, they compared it to the

existing upper confidence bound based learning algorithm
and achieved a 30% average delay reduction. The authors in
[29] designed a knowledge-driven task offloading scheme,
and utilized reinforcement learning to extract optimal task
offloading strategy directly from the environment.

To the best of the authors’ knowledge, although the
above research work has solved the problem of task
offloading in VECNs, they only considered the mesoscopic
mobility model in which vehicles move at a constant speed.
This model cannot truly reflect the actual road traffic
situation, thus leading to the gap between theory and reality.
Moreover, existing research work are still insufficient for
the highly dynamic feature of vehicular networks, which
makes them unable to provide time-varying offloading
decisions for dynamic changes in vehicular networks.

3 Systemmodel

As shown in Fig. 1, there is a unidirectional straight road
with two traffic streams, and N vehicles are moving on the
road. For the distribution and the speeds of vehicles, we
assume that the vehicles follow a synchronized randomwalk
mobility model, which is a traffic model widely used in
highway [22, 23]. Specifically, the model has the following
assumptions:

– The vehicles in two traffic streams follow homogeneous
Poisson spatial distribution with densities ρ1 and ρ2 at
the beginning, respectively.

Fig. 1 SDN enabled vehicular edge computing network architecture
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– The speeds of the vehicles follow Gaussian speed
distribution, i.e., fs(v) N(μs, φ

2
s ), s ∈ {1, 2}, where

s, μs and φ2
s are the traffic streams, mean speed and

variance, respectively.
– We divide time into equally spaced time slots τ .

Meanwhile, at the beginning of each time slot, vehicles
are independently randomized to their speed, and there
is no correlation between the speeds of the vehicles.
This assumption is very suitable for free-flow traffic,
i.e., the highway scenario in this paper, due to the
generally low traffic density of highways [30].

Based on the above assumptions, all the vehicles on the road
follow a homogeneous Poisson spatial distribution accord-
ing to the superposition property of Poisson processes at any
time instant.

The characteristics of each vehicle can be described by
three variables: the traffic stream index of the vehicle si , the
initial position of the vehicle pi , and the speed of the vehicle
μi . In addition, we assume that only one computation task
needs to be accomplished for each vehicle within a period
of time, and its characteristics can be described by four
variables: the input data size din

i , the output data size dout
i ,

the required CPU cycles to accomplish the task ci , and the
maximum permissible processing delay of the task tmax

i . So
we denote the task of vehicle i as Ti = {din

i , dout
i , ci , t

max
i }.

Moreover, M road side units (RSUs) are placed next
to the road, and each RSU covers a certain range. The
main roles of RSUs are to enable vehicles to communicate
with the Internet, and to provide edge computing services
by equipping MEC servers on them. The computation
capacities of the MEC servers can be denoted by FME C =
{f MEC

1 , f MEC
2 , ..., f MEC

M }. It is worth noting that the
MEC servers we deployed on the RSUs are SDN enabled,
which allows us to manage the entire networks centrally.
The reason for this deployment is the SDN’s features
of programmability, separation of control plane and data
plane, as well as the centralized control model with
network transient state management. Meanwhile, the remote
cloud server thousands of miles away acts as a backup
server to provide more computation resources for the
vehicles, while neither the MEC servers nor the vehicles
themselves guarantee the processing delay requirements
of the computation tasks. In our scenario, there are two
modes for the data transmission, i.e., vehicle-to-vehicle
(V2V) communications and vehicle-to-infrastructure (V2I)
communications. We denote the communications mode
decision of vehicle-i as gi ∈ {0, 1}, where gi = 0 means
the decision of is vehicle-i to transmit its data through V2I
communications, and gi = 1 means the choice of vehicle-i
to is transmit its data through V2V communications.

According to the foregoing, there are M + 2 task
offloading decisions for each vehicle, i.e., executing its
computation task locally on the vehicle’s CPU, offloading
its task to the MEC server connected to RSU-j , and
offloading its task to the remote cloud server. The task
offloading decisions of vehicle-i can be denoted as ri ∈
{0, −1, 1, 2, 3, ..., M}, where ri = 0 means that vehicle-
i decides to execute its computation task locally on its
own CPU, ri = −1 is that vehicle i decides to offload
its computation task to the remote cloud server, and ri =
j (1 ≤ j ≤ M) means that vehicle i decides to offload
its computation task to the MEC server connected to
RSU-j . After that, for different task offloading decisions,
the specific system models are given by the following
subsections.

3.1 Executing locally

While ri = 0, vehicle-i decides to accomplish its
computation task locally on its CPU. In such a case, the
processing time of the computation task is only related to
the data size of the task and the computation capacity of
vehicle-i, which can be calculated by the following formula:

tLocal
i = ci/f

Local
i , (1)

where f Local
i is the computation capacity of vehicle-i.

3.2 Offloading to theMEC servers connected
to the RSUs

If vehicle-i decides to offload its computation task to the
MEC server connected to RSU-j , i.e., ri = j (1 ≤ j ≤ M),
the processing time of the computation task mainly consist
of the following parts: the execution time of the task on the
MEC server, and the data transmission time between the
vehicles and the MEC servers. Then the processing time in
such case can be given as

tMEC
i = ci/f

MEC
j + t trans

i . (2)

Here, the first item is the execution time of the
computation task on the MEC server, f MEC

j is the
computation capacity of the MEC server connected to RSU-
j , and t trans

i is the total transmitting time of both the input
data and output data.

For t trans
i , since the vehicle-i decides to offload its

computation task to theMEC server connected to RSU-j via
V2I communications (i.e., gi = 0), its value can be given by

tV 2I
i,j = din

i /rV 2I
i,j + dout

i /rV 2I
j,i + t ′, (3)
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where t ′ is the data transmitting time between RSUs via the
wireless backhaul [31]. rV 2I

i,j is the data transmitting rate
between vehicle i and RSU j , and it can be calculated as

rV 2I
i,j = ω1 · log2

(
1 + pi,j · gV 2I

i,j

σ 2 + Ii,j

)
. (4)

Here, ω1 is the channel bandwidth between vehicle i and
RSU j , pi,j is the transmit power of vehicle i, gV 2I

i,j is

the channel gain between vehicle i and RSU j , σ 2 is the
background noise power, and Ii,j denotes the interference
at RSU j . On the other hand, while vehicle-i decides to
offload its computation task to the MEC server connected to
RSU-j via V2V communications (gi = 1), its value can be
calculated by

tV 2V
i,j = din

i /rV 2V
i,k +din

i /rV 2I
k,j +dout

i /rV 2I
j,l +dout

i /rV 2V
l,i (5)

where rV 2V
i,k is the data transmitting rate between vehicle-i

and vehicle-k, which can be calculated as

rV 2V
i,k = ω2 · log2

(
1 + pi,k · gV 2V

i,k

σ 2 + A0 · L−2
i,k

)
. (6)

Here, ω2 and gV 2V
i,k are the channel bandwidth and channel

gain between vehicle i and vehicle k respectively, σ 2 is the
background power noise, A0 is a constant parameter, and
Li,k is the distance between vehicle i and vehicle k.

Therefore,the total transmitting time t trans
i can be

given as

t trans
i,j =

{
tV 2I
i,j , if gi = 0,

tV 2V
i,j , if gi = 1.

(7)

3.3 Offloading to the remote cloud server

If ri = −1, the vehicle-i’s computation task will be
transferred to the remote cloud server for execution. In such
case, the processing time of the computation task is mainly
composed of the following parts: the transmitting time of the
input data from vehicle-i to relay RSU-j , the transmitting
time of the input data from relay RSU-j to the remote cloud
server, the transmitting time of the output data from the
remote cloud server to relay RSU-k, and the transmitting
time of the output data from relay RSU-k to vehicle i.
Note that different relay RSUs may be used during the data
transfer process of the computation task. Also, we ignore the
execution time of the computation task, due to the powerful
computation capacity of the remote cloud server. After that,
the processing time of the task can be calculated as

tRCS
i = din

i /rV 2I
i,j + (din

i + dout
i )/c′ + dout

i /rV 2I
k,i , (8)

where c′ is the data transmission rate between the RSUs and
the remote cloud server.

According to the aforementioned system model, the pro-
cessing time of vehicle-i’s computation task can be given as

ti (λi) =

⎧⎪⎪⎨
⎪⎪⎩

tLocal
i , if ri = 0,

tMEC
i,j , if ri = j, 1 ≤ j ≤ M,

tRCS
i if ri = −1.

(9)

4 Problem formulation and solution

In this section, we describe the definition of the task
offloading problem, and present corresponding solution.

4.1 Problem formulation

In our SDN enabled vehicular edge computing network
architecture, the SDN enabled MEC servers can collect
the vehicles’ location, speeds, computation capacities, as
well as the information of the computation tasks. Also, the
information on the MEC servers’ computation capacities
and the communication environment can be collected by
the SDN. After that, the above information is sent to the
SDN controller for centralized management of the whole
network.

Furthermore, as discussed above, each vehicle can
choose to execute its computation task on its CPU, offload
to the MEC server connected to RSU-j (1 ≤ j ≤ M), or
offload to the remote cloud server thousands of kilometers
away, depending on the processing delay of its task in
different ways. Therefore, there are M + 2 task offloading
decisions for each vehicle, and different decisions will
lead to different data transmission consumption. While the
number of vehicles that choose to execute their tasks on a
certain RSU is increased, the communication environment
will deteriorate due to the wireless interference. Meanwhile,
the density of the vehicles also affects the quality of V2V
communications. Taking into account the above factors, the
task offloading decisions of the vehicles are crucial for the
improvement of system performance. In such a case, our
objective is to obtain an optimal task offloading decision
profile for all the vehicles, to achieve the minimum total
processing delay. Specifically, the problem can be defined
as follows:

Definition 1 task Offloading Optimization with Mini-
mal processing Delay (OOMD) : Given the information of
the vehicles, MEC servers, remote cloud server, and com-
munications environment obtained by SDN, the OOMD
problem is to find an optimal task offloading decisions
profile for all the vehicles, so as to minimize the total
processing delay of all the computation tasks.
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After that, the OOMD problem can be formulated as

P1 : min{ri ,gi }

N∑
i=1

ti (ri , gi)

s.t . C1 : tLocal
i · I{ri=0} + tMEC

i · I{ri=j} + tRCS
i · I{ri=−1}

≤ tmax
i , ∀ i ∈ N , j ∈ M,

C2 :
N∑

i=1

I{ri=j} ≤ K, ∀ i ∈ N , j ∈ M,

C3 : ri ∈ {0, −1, 1, 2, ..., M}, ∀ i ∈ N ,

C3 : gi ∈ {0, 1}, ∀ i ∈ N ,

where I{∗} is an indicator function, and I{∗} = 1 while ∗ is
true. K is the number constraint of the wireless channels in
RSU j , and the value of gi only affects the selection of the
communications modes.

4.2 Solution

To solve the above OOMD problem, we need to obtain an
optimal task offloading decision profile with the minimum
total processing delay for all the vehicles. However, the
OOMD problem is NP-hard since it can be transformed into
the traditional maximum cardinality bin packing problem.
Meanwhile, due to the highly dynamic nature of the
vehicular networks, our above OOMD problem requires a
dynamic time-varying solution, i.e., the system can adjust
the offloading decisions of the vehicles’ tasks according to
the number of vehicles and the load status of MEC servers.
Toward this end, we proposed a deep Q learning-based task
offloading scheme as our solution.

The basis of our deep Q learning scheme is the Q
learning algorithm, which is one of the reinforcement
learning algorithms that have received much attention in
recent years. Reinforcement learning is a learning method
of machine learning that emphasizes how to act based on the
environment, in order to maximize the expected benefits.
Take the game as an example; if we adopt a strategy
in the game to get a higher score, then we will further
strengthen this strategy to achieve consistently better results.
This pattern is very similar to the various “performance
rewards” in our lives. The core elements of Q learning are
environment state, action, and reward. For our scenario, they
can be defined as follows:

– state st = ∑
i

ti : the total processing delay of all

the computation tasks, related to the states of the
vehicles, MEC servers, and wireless communications
environment.

– action at : the set of vehicles’ offloading decisions and
communications decisions.

– reward Rt = (TLocal − T (at ))/TLocal : related to the
processing time TLocal while all vehicles decide to
execute their tasks locally and the processing time
T (at ) by taking action at .

In Q learning, different actions produce different rewards
under particular state values. The values of states and
actions are used as the rows and columns of a matrix called
Q table, and the corresponding value is Q value Q(s, a),
which measures how good action a will be under state s.

However, the representation and access of the Q table
lead to large consumption of storage and computation
resources, which results in a reduction in system efficiency.
Toward this end, we introduce deep neural networks to
estimate Q value, i.e., deep Q learning algorithm. In
such algorithm, there are two layers of networks for
different purposes: main Q network with the weight θ

for obtaining the current Q value Q(s, a, θ), and target
Q network with the weight θ∗ for getting target Q value
Q∗(s, a, θ∗). Moreover, there is a replay memory D for
for storing the obtained samples (st , at , Rt , st+1). At the
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beginning of the DQLTO algorithm, the main Q network
and target Q network are initialized with parameters θ and
θ∗, respectively. Then, we select action at according to
probability ρ in each cycle t , and the selection of the action
follows the following equation:

at (ρ) =
{

a , if ρ ≤ ε,

max
a

Q(s, a, θ), if ρ > ε,
(10)

where a is a randomly selected value. After that, the
corresponding sample (st , at , Rt , st+1) is stored to the
replay memory. Finally, we calculate the target Q value as:

Q∗
i = Ri + εQ(si+1, argmax

a∗ Q(si+1, a
∗; θ); θ∗), (11)

and update the main Q network by minimizing the loss:

Li(θ) = 1

U
·
∑

[Q∗
i − Q(si, ai; θ)]2. (12)

After repeating the above steps G times, the weight of
the target Q network is updated according to the following
equation.

θ∗ = αθ + (1 − θ)θ∗, (13)

The details of the DQLTO algorithm are shown in
Algorithm 1.

5 Performance evaluation

In order to verify the feasibility and performance of our
proposed scheme, we present some simulation experiments
in this section. To make the simulation close to reality,
we consider a road with two traffic streams, on which the
vehicles follow homogeneous Poisson spatial distribution,
and their speeds follow Gaussian speed distribution. For
each vehicle, only one computation task needs to be
accomplished, whose input data size and output data
size are randomly chosen from [500 KB, 1000 KB] and
[50KB, 300KB], respectively, and its maximum permissible
processing delay is between 0.5 s and 2 s. Meanwhile, the
range of CPU cycles required to complete a task is [200
Mc, 1500Mc], and the CPU cycle frequency of MEC servers
and vehicles are set to 4 GHz and 2 GHz, respectively.
Furthermore, the wireless bandwidth of vehicles and RSUs
are 20 MHz and 40 MHz, and the background noise power
is -100 dBm. Table 1 lists the parameter settings in our
simulation experiments.

First, we compared the total processing delay of all
the vehicles’ computation tasks by adopting three different
schemes, to verify that our proposed DQLTO scheme is
valid for solving the OOMD problem, i.e., an optimal or
suboptimal solution can be obtained. The first two schemes
we adopted are the enumeration algorithm that can obtain
the optimal solution and the game theory-based algorithm

Table 1 Parameter settings

notation description value

din
i input data size [500 KB, 1000 KB]

dout
i output data size [50KB, 300KB]

tmax
i maximum permissible [0.5 s, 2 s]

processing delay

ci CPU cycles required to [200 Mc, 1500 Mc]

complete a task

f MEC
j CPU cycle frequency 4 GHz

of MEC servers

f Local
j CPU cycle frequency 2 GHz

of vehicles

ω1 wireless bandwidth 20 MHz

of vehicles

ω2 wireless bandwidth of RSUs 40 MHz

σ background noise power -100 dBm

[7]. Note that game theory is a technology that is widely
used to solve the decision-making problems in vehicular
networks and shows great applicability. Fig. 2 shows the
total processing delay obtained by these two schemes and
our DQLTO scheme. From the figure, we can see that our
DQLTO scheme can achieve results approximate to the
game theory-based scheme, which shows that our DQLTO
scheme can effectively solve the OOMD problem. Also, we
compared the running time of these three schemes, and the
corresponding results are shown in Fig. 3. One undeniable
fact is that the overall running time of our DQLTO algorithm
is much less than the enumeration algorithm, slightly more
than the game theory-based algorithm, and does not grow
sharply as the number of vehicles increases. The above

Fig. 2 Comparisons of processing delay of all the vehicles’
computation tasks with three different offloading schemes, i.e.,
enumeration scheme, game theory based scheme, and our DQLTO
scheme
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Fig. 3 Comparisons of the running time with three different offloading
schemes, i.e., enumeration scheme, game theory-based scheme, and
our DQLTO scheme (same coordinate titles for both small and large
figure)

experimental results undoubtedly validate that our DQLTO
scheme is extremely efficient.

After that, we set up an experiment in order to verify
the role of MEC servers and remote cloud servers in
reducing the processing delay of vehicles’ computation
tasks. Accordingly, a comparison of the total processing
delay obtained by three different offloading schemes (i.e.,
DQLTO scheme, DQLTO scheme without the cloud, and
local execution only scheme) is shown in Fig. 4. From the
figure, we can see that the processing delay obtained by
the DQLTO scheme and DQLTO scheme without cloud
are smaller than those obtained by local execution only
scheme, and the results show that MECO has a significant
impact on reducing the processing time of vehicles’ tasks.
Furthermore, the processing delay obtained by the DQLTO
scheme are smaller than that obtained by the DQLTO
scheme without the cloud, so it is necessary to introduce the
remote cloud server as a backup server for MECO.

In order to investigate the impact of the computation
capacities of the MEC servers on the tasks’ offloading
decision profile, we studied the total processing delay at
different CPU cycle frequency of MEC servers, and the
corresponding experiment results are shown in Fig. 5.
From the figure, one observed phenomenon is that the
computation capacities of the MEC servers have a decisive
influence on the offloading decisions of the vehicles’
computation tasks. Specifically, the total processing time of
the tasks did not change with the CPU cycle frequency of
the MEC servers, while we adopted local execution only
scheme. However, the total processing delay of the DQLTO
scheme and DQLTO scheme without cloud decrease with
the increasing CPU cycle frequency of the MEC servers.
The reason for this phenomenon is that the vehicles prefer

Fig. 4 Comparisons of the total processing delay with three different
offloading schemes, i.e., DQLTO scheme, DQLTO scheme without the
cloud, and local execution only scheme

to offloading their computation tasks to MEC servers or
remote cloud servers to reduce the processing delay, as
the computation capacities of the MEC servers increase.
Also, we can see that the rate of decrease in the total
processing time increases first and then decreases because
the impact of the MEC servers on the tasks’ offloading
decisions is reduced while their computation capacities are
large enough.

Moreover, we studied the selection of the communica-
tions modes (i.e., V2I communications and V2V communi-
cations) in the task offloading process. The numerical results
in Fig. 6 show the comparisons of the number of V2I or
V2V communications selection, as the number of vehicles
changes from 20 to 120. We can see that both the number
of V2I communications selection and V2V communications

Fig. 5 Comparisons of the total processing time obtained by three
schemes, i.e., DQLTO scheme, DQLTO scheme without the cloud, and
local execution only scheme, as the computation capacity of the MEC
servers changes
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Fig. 6 Comparisons of the number of V2I and V2V communications
selection, as the number of vehicles changes from 20 to 120

selection increase with increasing vehicles. Meanwhile, the
growth rate of the V2V communications selection is more
significant than that of the V2I communications selection,
which indicates that the number of vehicles has a more
significant influence on V2V communications.

6 Conclusions

In this paper, we studied the task offloading decision opti-
mization problem in VECNs with the goal of minimizing
the total processing delay of all the vehicles’ tasks. In our
scenario, we consider a synchronized random walk model
to simulate real traffic conditions. To solve the problem,
a reinforcement learning-based task offloading scheme is
proposed. Final numerical results corroborated the superior
performance of our algorithm in processing delay reduction
and dynamic scene adaptability. For future work, it should
be meaningful to study the mobile edge computing offload-
ing problems in a complex urban vehicular networking
environment.
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