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Abstract
Cloud computing is recently getting increasingly popular for supporting scientific applications and complex business
processes. Clouds are highly potent for executing workflow-based tasks due to the fact that they provide elastic resource
provisioning styles through which computational-intensive workflows can obtain requested resources according to their
elastic demand and establish execution environment over virtual machines (VMs). However, it remains a challenge to
guarantee cost-effectiveness and quality of service of workflow deployed upon clouds due to the fact that real-world cloud
infrastructures are usually with fluctuating and time-varying performance. Existing researches mainly consider that cloud
infrastructures are with fixed, random, or bounded quality of service (QoS). In this work, however, we consider that scientific
computing processes to be supported by decentralized cloud infrastructures with fluctuating QoS and aim at managing the
monetary cost of workflows with the completion-time constraint to be satisfied. We address the performance-variation-aware
workflow scheduling problem by leveraging a time-series-based prediction model and a Critical-Path-Duration-Estimation-
based (CPDE for short) VM Selection strategy. The proposed method is capable of exploiting real-time trends of performance
changes of cloud infrastructures and generating dynamic workflow scheduling plans. To prove the effectiveness of our
proposed method, we perform extensive experimental case analysis over real-world third-party commercial clouds and show
that our method clearly beats existing approaches.
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1 Introduction

The cloud paradigm is becoming increasingly popular
in supporting versatile types of industrial, scientific, and
social applications [1–4]. It provides tools and techniques
for designing computational-intensive applications that are
more cost-effective than traditional parallel computing tech-
niques. The cloud management process only distributes
demanded resources to resource requesters and in such a
way the resource utilization and monetary cost of invoked
cloud resources can be optimized. According to the pro-
visioning styles and architectural patterns, main-stream
cloud computing systems can fall into the following cate-
gories: infrastructure clouds (IaaS), platform clouds (PaaS),
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and software clouds (SaaS). The IaaS model provisions
resources through instances of virtual machine (VM) cre-
ated in data centers or server nodes. It is shown [5–9]
that IaaS clouds are highly potent and effective in support-
ing workflow-based applications. Workflows are usually
instantiated by carrying out the following steps [10–12]
:1) VMs instances are invoked to execute specific work-
flow tasks; 2) a schedule is yielded and then the decided
task-resource mapping is performed.

In recent years, the optimal scheduling issues of
workflows attracted wide attention [13–18]. A major
obstacle for ensuring user-end QoS of cloud workflows is
that real-time cloud infrastructures and VMs are subject
to performance fluctuations and variations. Schad et al.
[19] showed that virtual machine (VM) performance in
the Amazon EC2 could degrade by 23% when cloud
nodes are under stress. Jakson et al. [20] observed that
cloud performance can vary by 30-65% when inter-cloud-
node transfer were under stress. Run-time changes of
the QoS of cloud infrastructures potentially impact the

Mobile Networks and Applications (2020) 25:690–700

16 January 2020
  

Published online:

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-019-01450-0&domain=pdf
http://orcid.org/0000-0003-3347-8046
mailto: wulei@uestc.edu.cn


user-experienced QoS of workflow-oriented applications
executed upon cloud infrastructures and further leads to
violations to Service-Level-Agreement (SLA) [21]. Note
that performance fluctuations of cloud infrastructures
may bring in extra operational cost due to the fact
that migrations or fault-handling activities are needed
to counter such performance degradations when SLA
constraints are breached. However, a careful literature
review shows that most existing works ignored such real-
time performance fluctuations and addressed the scheduling
problem by considering static, stochastic, or bounded QoS
data. However, our work suggests that, these traditional
scheduling methods can show unsatisfactory performance
of scheduled workflows when the supporting clouds are
with time-varying performance.

To address the above concern, we proposes a novel
method that combines the ability of a time-series-based
prediction model and a critical-path-duration-estimation-
based VM selection strategy. Our method is able to
exploit real-time performance variations of VMs and
appropriately schedule workflow tasks by considering and
optimizing the execution durations of the critical-path. The
proposed method aims at reducing the monetary cost of
workflows with the constraint of workflow completion time.
Extensive experimental studies up on real-world public
clouds, i.e., Huawei, Baidu, and Tencent cloud services and
multiple workflow templates clearly show that our method
outperform its peers in terms of workflow completion times,
cost, and SLA violation rates (Fig. 1).

2 Related work

It is generally accepted that the problem of scheduling
multi-task workflows upon multiple distributed resources
is NP-hard [22]. In this view, heuristic and meta-heuristic
methods can be used to generated high-quality and
approximate solutions with polynomial time-complexity.

For example, Casas et al. [23] considered an bio-inspired
framework with the Efficient Tune-In (GA-ETI) mech-
anism for scientific processes executed over cloud plat-
forms. It optimizes both workflow performance and cost.
Verma et al. [24] presented a non-dominated-sorting-based
Hybrid Particle-Swarm-Optimization (HPSO) approach. It
optimizes both cost and performance. Zhou et al. [25]
developed a fuzzy-dominance-sort-based earliest-finish-
time (FDHEFT) algorithm. It minimizes both cost and
response time of applications over heterogeneous cloud
infrastructures. Wang et al. [26] developed a multi-objective
game-theoretic scheduling framework. The scheduling
scheme is generated by multi-stage dynamic game to
achieve the approximate optimal solution under multi-
objective constraints. A major limitation of these works
lies in that they consider time-invariant and non-fluctuating
performance of cloud services and infrastructures. These
methods can be ineffective when supporting cloud services
and infrastructures are with time-varying performance.

Recently, many dynamic workflow scheduling methods
are proposed, where performance of cloud services and
infrastructures are no longer considered to be invariant. For

Fig. 1 Notaion and meaning
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example, Sahni et al. [27] proposed a cost minimization
method for dynamic multi-workflow scheduling with the
constraint of completion time. Considering the fluctuation
of performance, the timely scheduling scheme is generated
dynamically in the process of task execution. However,
it generates the scheduling scheme dynamically according
to the current state, and does not consider the future
performance fluctuation when making the decision, so it
cannot avoid choosing the virtual machine with declining
trend of performance.

Mao et al. [28] developed a VM-consolidation-based
algorithm for cloud-oriented workflows. It finds optimal
scheduling plans to consolidate distributed VMs and
assumes a given bound of response time variations.
Calheiros et al. [29] considered soft deadlines and proposed
a critical path identification method that utilizes idle time-
slots for the improvement of resource utilization. They
considered a given bound of performance variations of
VMs. Poola et al. [30] considered a fault-tolerant and
performance-variation-aware workflow scheduling method.
Ghosh et al. [31, 32] assumed VM response time to
be with given stochastic distribution, i.e., an exponential
distribution. While Zheng et al. [33] assumed a Pareto
distribution as an approximation.

Assuming stochastic or bounded performance of cloud
services and infrastructures helps to reduce SLA violation
rate. Nevertheless, as discussed in [34], such assumption
may sometimes cause pessimistic estimation of system
status and further lead to low resource utilization due to
the fact that they tended to employ the lower bounds
of performance and higher bounds of as the inputs
of scheduling algorithms. Consider an inexpensive VM
with unstable QoS performance and with averaged/highest
response time of 14s/12s and another costly but stable one
with averaged/highest execution time of 6s/6.1s. If 12s is
assumed to be the threshold, the bound-based scheduling
strategy probably selects the expensive one to avoid SLA
violation. However, 12s occurs only in extreme cases and
a smart strategy should decide the future probability of
breaching the 12s constraint and choose the cheap VMwhen
such probability is low.

3Model description

A workflow W = (T , E) is described by a Directed-
Acyclic-Graph (DAG) where T = {t1, t2, . . . , tm} denotes
the set of tasks and E denotes the set of edges. The
edge eij ∈ E indicates the constraint between ti and
tj (i �= j). ti is the father node of tj and tj is the
child node of ti . This means that task tj can only be
started after ti is completed. D identifies the pre-specified
constraint.

3.1 Cloud resourcemodel

VMs are created in the provider resource pool and vary
in computing performance and price. If task ti and tj are
executed on different virtual machines, and eij ∈ E, a
transmission of data between these two VMs is inevitable.
If ti and tj are executed on the same VM, however such
transmission is unnecessary and thus the transmission time
xij = 0.

The pricing plan is based on the pay-as-you-go billing
style. Resource providers charge users according to the time
they spend for occupying VMs.

3.2Workflow computingmodel

The execution sequence of a workflow is usually expressed
by associating an index to every task. The index is usually
with the rage from 1 to m and the ith item identifies the
order of running ti . The above order relation can be decided
by the function l : T → N+ and encoded as a vector in terms
of a permutation of 1 to n. If i precedes k in the execution
sequence, it doesn’t necessarily mean that ti precedes tk
unless they belong to the the same virtual machine. A task
can be executed only when its supporting VM is ready and
all its preceding tasks are finished.

If tk follows ti through an edge ei,k and they belong
to different VMs, a transfer time xi,k is inevitable because
inter-VM communication is needed. Otherwise, xi,k = 0 in
case that both tasks belong to the same VM.

Workflow tasks supported by different types of VMs
show time-fluctuating performance. Moreover, a task
executed by the same VM at different time shows changing
performance as well. In order to well describe the dynamics
of such variations at real-time and make accurate prediction,
we incorporate a time-series-based prediction model as
described in the next section (Fig. 2).

4 ARIMAmodel

Time series refers to the sequence of the values of the same
statistical indicators in order of their occurrence. A time
series can usually be expressed as a series of data points
indexed (or listed or graphed) in time order. Time series data
essentially reflects the trend of a random variable or some
random variable changing with time, and the core of time
series prediction method is to mine this law from the data
and use it to estimate the future data. We incorporate an
ARIMA time series model [35] as the underlying prediction
method for processing time-fluctuating performance data of
cloud infrastructures.

A time series is mathematically stationary only when
its residuals are statistically independent of each other and
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Fig. 2 Deploying and executing
scientific task over cloud
infrastructures

are constant in terms of mean and variance. Non-stationary
time series can be described by an ARIMA model, provided
that it turns into a stationary one after a limited number of
differentiation operations.

For a non-stationary time series {xt }, its first-order
difference is:

∇xt = xt − xt−1 = xt − Bxt = (1 − B)xt (1)

where B is the backshift operator. If the new series of ∇xt

is still non-stationary, more differentiations are needed until
higher-order series of differences, i.e., ∇dxt is stationary:

∇dxt = ∇dxt − ∇dxt−1 == (1 − B)dxt (2)

Then, we feed ∇dxt into an ARIMA model with orders
p and q, denoted by ARIMA(p, q). An ARIMA model
combines an autoregressive (AR) component and a moving-
average one.

φ(B)xt = θ(B)zt (3)

{zt } indicates a series of errors, φ(B) the autoregressive
polynomial with order p and θ(B) the average moving
polynomial with order q:

φ(B) = (1 − φ1B − φ2B
2 − · · · − φpBp) (4)

θ(B) = (1 + θ1B + θ2B
2 + · · · + θqBq) (5)

The non-stationary characteristic of an ARIMA series
can thus be described by using a generalized autoregressive
operator ϕ(B):

ϕ(B) = φ(B)(1 − B)d (6)

The predicted future values can thus be defined as:

ϕ(B)xt = φ(B)(1 − B)dxt = θ(B)zt (7)

So

φ(B)ωt = θ(B)zt (8)

where

ωt = (1 − B)dxt = ∇dxt (9)

The predicted values will be input into the scheduling
algorithm to generate the scheduling scheme.

In this work, we use a benchmark tool to measure
the real-time performance, in terms of execution time,
and use the ARIMA model to obtain the predicted values
as shown in the Figs. 3, 4 and 5. Generating prime
numbers in the specified range is defined as an event in
the benchmark environment (from https://dev.mysql.com/
downloads/benchmarks.html).

5 Symbol definition and fomulation

Cost-effectiveness and performance are usually contradict-
ing objectives of cloud-oriented workflow scheduling. Our
proposed method aims at reconciling them and yield a
cost-effective schedule with minimal cost while satisfying
performance constraints. The underlying problem can there-
fore be formulated as below, where C denotes the cost of

Fig. 3 Measured and predicted events of generating prime numbers on
Baidu cloud
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Fig. 4 Measured and predicted events of generateing prime numbers
on Huawei cloud

executing a scientific workflow, D denotes the deadline
from SLA, h(j) denotes the cost-per-time for using the VM
vj .

minC =
|n|∑

i=1
((AFT (i, w(i)) − AST (i, w(i))) ∗ h(w(i)))

subject to maxAFT (i, w(i)) < D

(10)

The other formulas and explanations are as follows:
EST (i, j) is the estimated starting time of task ti if it is

scheduled into VM vj , calculated by the completion time of
the parent tasks, the transmission delay, and the estimated
idle time of the virtual machine. If the task has no parents,

Fig. 5 Measured and predicted events of generateing prime numbers
on Tencent cloud

it can start executing when the virtual machine and runtime
environment are available.

EST (i,m) =

⎧
⎪⎨

⎪⎩

max
tj ∈∗ ti
n �=m

(EFT (j, n) + xj i
, EFT (j,m),EIT (m)) if ∗ti �= ∅

EIT (m) if ∗ti = ∅
(11)

AST (i, j) indicates the actual starting time of task ti if
it is scheduled into VM vj . This means that vj accepts all
the dependent data of ti and and the task actually starts
executing.

AST (i, m) =

⎧
⎪⎨

⎪⎩

max
tj ∈∗ ti
n�=m

{AFT (j, n) + xj i
, AFT (j, m), AIT (m)} if ∗ti �= ∅

AIT (m) if ∗ti = ∅
(12)

EFT (i, j) indicates the expected finishing time of task ti
if ti is scheduled into VM vj . It is estimate by task’s starting
time and the performance of virtual machines.

EFT (i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

AST (i, j) + EET (i, j, AST (i, j))

if ti is in execution
EST (i, j) + EET (i, j, EST (i, j))

if ti is waiting for execution

(13)

EIT (j) is the estimated idle time of the virtual machine,
indicating that all tasks on the virtual machine have been
completed.

EIT (j) = max {EFT (i, j)} (14)

ETcp(i, m, θ) is the estimated duration of the critical path
from ti if it’s scheduled into VM vm on condition that its
execution begins at time θ . Its value is calculated by the
estimated execution time.

ETcp(i, m, EST (i, m)) = EET (i, m, EST (i, m))

+ max
tj ∈ti

∗{ETcp(j, m, EST (j, m))} if ti
∗ �= ∅ (15)

ETcp(i, m, EST (i, m)) = EET (i, m, EST (i, m))

if ti
∗ = ∅ (16)

EET (i, j, θ) denotes the expected duration of task ti if
it’s scheduled into VM vj on condition that its execution
begins at time θ . As discussed earlier, performance of
cloud infrastructures can be time-fluctuating. Thus, f (θ, k)

denote the historical performance of k type virtual machine
at time θ measured or obtained through system logles.
f 1(θ, k) denotes the predicted future value of performanc.

{
T askSize(i) = ∑x

θ=EST (i,j) f 1(θ, g(j))

EET (i, j, EST (i, j)) = x − EST (i, j)
(17)
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6 Critical-path-duration-estimation-based
VM selection

As mentioned earlier, in order to yield dynamic
workflow scheduling plans, we consider feeding predictive
performance results into a Critical-Path-Duration-Estima-
tion-based (CPDE for short) VM selection strategy. CPDE
is implemented by applying the following algorithms.

Algorithm 1 This is the main function of the scheduling
process. Parameter taskQueue is the queue of tasks that
can be currently scheduled. Parameter used V Ms is the
set of VMs that has been used in scheduling algorithm.
While a parent node of a task is running, if all of its
parent have been scheduled, the child nodes are added
to the schedulable queue, which is dynamically updated
with execution. During the workflow execution, a task will
adjust the scheduling scheme several times according to

the execution situation. The algorithm is mainly to find
the lowest cost case and generate scheduling plan and
virtual machine creation plan.Parameter schedules is the
scheduling plan. When a task is being scheduled, there are
three different possibilities:

– Using virtual machines in used V Ms can satisfies
the deadline constraint. Find the cheapest scheduling
scheme in this case and estimate the cost of the scheme
based on the predicted performance. When this case
happens, using a new virtual machine may also satisfy
the deadline constraint, so need to compare the two
cases.

– Createing a new irtual machine can satisfies the
deadline constraint, it may happen whether used V Ms

is empty or not. When this case happens, just using
a previously used virtual machine may also satisfy
the deadline constraint, so need to compare the two
cases.

– The deadline constraint is not expected to be satisfied.
If it is an task with no parents, prompt to reset
D. Otherwise, create the least time-consuming virtual
machine based on the predicted performance. Due to the
deviation of actual performance, as the task continues,
the predicted completion time may be possible to satisfy
the deadline constraint again.

Algorithms 2 This function is used to find the cheapest
solution that satisfies deadline in the used V Ms. Estimate
the completion time of the task by Eq. 11 Eq. 14. The
function evaluates Eqs. 15 and 16 to check if deadline is
satisfied. Due to the fact that the scheduling scheme is
generated dynamically and changes with time we calculate
the estimated cost of the current task only.
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Algorithms 3 Compute the case of scheduling a task to
a newly created virtual machine. The estimated starting
moment of the task deployed to a specific virtual machine
is obtained according to Eq. 13 and the data transfer time.
When calculating costs, we also only calculate the estimated
cost of the current task, not the estimated cost of all tasks. A
new virtual machine can be enabled directly at a specified
time, without waiting for the used virtual machine to go idle.

Algorithms 4 This is pseudo-code when the schedule is
executed. In the process of dynamic scheduling, the actual
execution time of tasks can usually be different to that
of predicted. The parent tasks may be completed earlier
than expected, so tasks can be executed earlier and new
virtual machine can be added earlier. As the task runs, much

of the expected data can be dynamically updated. At the
beginning of a task, its expected completion time is updated
by the specific start time of the task. At this stage, the
latest forecast data is updated and the list of tasks that can
be scheduled is updated to calculate the new scheduling
scheme.

Algorithms 5 This pseudo-code illustrates the process of
finding the critical path and calculating the estimated
execution time. This function starts with ti looking for the
path with the longest execution time, until it finds the task
without child task. We used the critical path execution time
to estimate the completion time of the entire workflow.
When multiple termination tasks occur, e.g., tj

∗ = ∅ and
tm

∗ = ∅, this function is also applicable.

7 Experiments

We consider different classical scientific workflow tem-
plates, namely Montage, CyberShake, and Epigenomics
as shown in Fig. 6 as the test cases. In these workflows, we
consider that a workflow task corresponds to a procedure of
repeatedly generating a given amount (4,000 times 100,000
or 2,000 times 100,000 in our case) of prime numbers.
Define generating 100,000 primes as one event in the bench-
mark tool and the task sizes of the workflow are shown in
Table 1.

We employ three industrial IaaS clouds, namely Baidu,
Huawei, and Tencent to provide supporting VMs for the
workflow tasks. VMs from Baidu, Huawei, and Tencent
clouds are with different resource configurations, i.e., 1g
RAM/1 core/50G storage for Baidu, 1g RAM/1 core/50G
storage for Huawei, and 1g RAM/1 core/50G storage
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Fig. 6 Overview of there
workflow templates for the case
study

(a) Montage (b) CyberShake (c) Epigenomics

for Tencent. The cost-per-second of these services are
0.34, 0.42, and 0.45 cents, according to their charging
plans, respectively. The deadline constraints of Montage,
CyberShake, and Epigenomics are 1010s, 340s, and 770s.

For the comparison reason, we consider PSO [36], GA
[37], andMDGT [27] as the baseline algorithms. To validate
the use of ARIMA-based prediction, we compare our
method with a simplified version of our proposed method
with pure CPDE but without ARIMA-based prediction.

As can be seen from Figs. 7, 8 and 9, our method clearly
outperforms PSO, GA, and MDGT in terms of average cost
for the three workflows (the averaged cost of our method for
case1/case2/case3 are 825.4/740.3/680.4 cents, while those
of GA for case1/case2/case3 are 826.1/741.1/681.9 cents,
those of PSO for case1 /case2 /case3 are 825.7/740.8/681.5
cents, those of MDGT for case1 /case2 /case3 are
825.6/740.3/680.9 cents). Our method beats the pure CPDE-
based one as well (the averaged cost of our method for
case1/case2/case3 are 825.4/740.3/680.4 cents, while those
of the pure CPDE-based one for case1/case2/case3 are
825.9/740.4/681.1 cents).

As can be seen from Figs. 10, 11 and 12 as well, our
method clearly achieves lower average completion times by
0.84%, 1.1%, and 0.5% for three workflows, respectively.

Table 1 Scale of task

Task number Event Aount of prime numbers

t1, t3, . . . , t2n+1 4000 400M(4,000*100,000)

(2i + 1 ≤ n)

t2, t4, . . . , t2n 2000 200M(2,000*100,000)

(2i ≤ n)

It’s worth noting that such reduced completion times
also lead to fewer violations to the deadline constraints.
(the violation rates of our method for case1/case2/case3
are 0%/3%/0%, while those of GA for case1/case2/case3
are 40%/20%/13%, those of PSO for case1/case2/case3
are 30%/10%/20%, those of MDGT for case1/case2/case3
are 23%/20%/7%). Our method beats the pure CPDE-
based one as well (the violation rates of our method
for case1/case2/case3 are 0%/3%/0%, while those of the
pure CPDE-based one for case1/case2/case3 are 3%/6%/
3%).

Last but not the least, our proposed method has a
lower time complexity than those of GA, PSO, and
MDGT.The ARIMA model needs O(φ1) time, where φ1

denotes the bounded number of historical samples. The
time to yield all predicted performance data for n tasks
supported by m1 types of VMs is O(m1nφ1) = O(m1n).
The time of function ETcp( ), Cheapest UsedV Ms( ),
andCheapest NewV M( ) areO(n),O(mn), andO(m1n),
where m indicates the number of VMs and m1 denotes the
number of virtual machine types. The time complexity for
Scheduling( ) is thus O((m + m1) ∗ n). Therefore, the
time complexity of scheduling all tasks using our method is
O(n ∗ (m + m1) ∗ n)+O(m1nφ1))=O((m + m1)n

2).
The time complexity of GA isO(ywn2), where y denotes

the size of initial population and w denotes the number
of generation.The time complexity of PSO is O(y1w1n

2)),
where y1 denotes the number of particle clusters and w1

denotes the number of iterations. The time complexity of
MDGT is O(kmn2), where k denotes the number stages
of the game. Note that y, w, y1, and w1 are usually large
integers and thus GA, PSO, and MDGT can be much slower
than our method.
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Fig. 7 Comparison of cost of Montage workflow

Fig. 8 Comparison of cost of CyberShake workflow

Fig. 9 Comparison of cost of Epigenomics workflow.

Fig. 10 Comparison of completion time of Montage workflow

Fig. 11 Comparison of completion time of CyberShake workflow

Fig. 12 Comparison of completion time of Epigenomics workflow
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8 Conclusion

In this work, we develop a novel method for scheduling
workflows upon IaaS clouds. Instead of assuming constant,
stochastic, or bounded performance of VMs as most
existing methods do, our proposed approach is capable
of modeling time-varying performance and yielding cost-
effective scheduling plans to reduce monetary cost while
following constraints of Service-Level-Agreement (SLA).
Our proposed approach leverages an ARIMA-time-series
prediction model and a Critical-Path-Duration-Estimation-
based VM Selection strategy which satisfies the constraint
conditions according to the prediction results. A case study
based on real-world third-party IaaS clouds and some
well-known scientific workflow templates show that our
proposed approach clearly outperforms traditional ones.
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