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Abstract
Many rate allocation algorithms for multipath flows which satisfy max-min fairness are centralized and not scalable. Upward
max-min fairness is a well-known relaxation of max-min fairness and can be achieved by an algorithm extended from water-
filling algorithm. In this paper, we propose a price-based multipath congestion control protocol whose equilibrium point
satisfies upward max-min fairness. Our protocol is derived from a network utility maximization model for multipath flows.
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1 Introduction

Max-min fairness for single-path flows has been long
studied [9]. The water-filling algorithm can achieve a max-
min fairness between the single-path flows. In the network
utility maximization (NUM) model, a certain kind of utility
function corresponds to a specific rate allocation for single-
path flows. A distributed algorithm to solve NUM with a
general strictly concave utility function in the single-path
environment is proposed, e.g., the primal-based algorithm
in [1] or the dual-based algorithm in [2]. With the alpha-

fair family, U(x) = x1−α

1−α
if α > 0, α �= 1 and log(x) if

α = 1, where x is the flow rate, the rate allocation satisfies
a specific kind of fairness with a certain value α, e.g.,
proportional fairness with α = 1, harmonic fairness with
α = 2, and max-min fairness with α = ∞ [10].
However, the max-min fairness cannot be achieved since α

must be infinity. The authors in [3] proposed MaxNet, a
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priced-based, distributed single-path flow control that
achieves a max-min fairness. Only the price of the most
congested link on the path is fed back to the source instead
of the aggregate price of all the links on the path as in
dual-based algorithms [2].

In the multipath environment where each flow can trans-
mit data on several subflows from the source to the desti-
nation, the multipath congestion control protocols in which
the congestion price is the aggregate price of all the links
on the path of each subflow have been extensively studied,
e.g., [5–7]. The algorithm achieving max-min fairness for
multipath flows, a.k.a. global max-min fairness (GMMF),
is much more difficult than the one for single-path flows.
A GMMF allocation for multipath flows is reached after
solving a series of linear programs. It is a centralized, off-
line, and high complexity computation, hence, the algorithm
is not scalable. (The readers can refer to [8] and refer-
ences therein for the works on max-min fairness routing.)
The work [11] relaxed GMMF to upward max-min fair-
ness (UMMF). A GMMF allocation is an UMMF, but not
vice verse. UMMF is shown a natural allocation and the
water-filling algorithm is extended to develop a distributed
algorithm for multipath allocation satisfying UMMF in [11].

In this paper, we apply the price-feedback mechanism as
in MaxNet to develop an algorithm that achieves UMMF
for multipath flows. The “bottleneck link” of a single-
path flow is generalized to “bottleneck link” of a multipath
subflow. Based on the fully coupled multipath protocol
which is designed from the multipath NUM [6], we propose
a distributed multipath protocol whose equilibrium point
satisfies UMMF.

The remain paper is organized as follows. Section 2
describes about UMMF. Section 3 proposes a multipath
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congestion control algorithm and proves the UMMF of
equilibrium point. Sections 4 and 5 present the numerical
results and conclude the work, respectively.

2 Upwardmax-minmultipath allocation

Let’s consider the network including set of links L and set
of flows S. The capacity of link l is denoted as cl . Each
flow s (which is also called source) can transmit data on
several subflows. The flow rate of source s is defined as
xs = ∑

i∈s xs,i , where xs,i is the rate allocated to subflow
(s, i). (Please see Table 1 for the main notations used in
the paper.) A rate allocation vector {x} is called feasible if
yl = ∑

xs,i l∈L(s,i) ≤ cl, ∀l ∈ L, where yl is the aggregate
rate of all subflows over link l.

Definition 1 An allocation {x1, x2, . . . , x|S|} is said satis-
fying GMMF if it is feasible and for any flow s ∈ S, we
cannot increase xs without decreasing the rate of some other
flows xs′ which has xs′ ≤ xs [9, Chap. 6].

In the single-path environment where each source only
has one subflow, we need the definition of bottleneck
link of a flow to verify the max-min fairness of a rate
allocation. A link l ∈ L(s), where L(s) is the path of
the single-path flow s, is called bottleneck link of s if l is
a saturated link, i.e., yl = cl , where yl = ∑

s:l∈L(s) xs

is the aggregate traffic on link l and cl is the capacity of
link l. Moreover, xs ≥ xs′ for any flow s′ crossing link
l. The reference [9, page 526] presents a concise result: In
the single-path environment, a feasible rate allocation is

Table 1 Main notations

Notations Descriptions

s a single-path / multipath flow s or
the set of subflows in flow s

(s, i) subflow i of the multipath flow s

S set of flows in the network
L set of links in the network
Ls,i set of link along the path of subflow (s, i)

cl capacity of link l

c vector {cl}l∈L

pl congestion price of link l

p vector {pl}l∈L

qs,i congestion prices of subflow (s, i)

q vector {qi}i∈s,s∈S

xs,i rate of subflow (s, i)

xs rate of flow s, xs = ∑
i∈s xs,i

xs vector {xs,i}i∈s

x vector {xs,i}i∈s,s∈S

max-min fair if and only if each flow has at least a bottleneck
link.

The bottleneck link’s definition is generalized for the
multipath flow as follows.

Definition 2 Link l is a bottleneck link of subflow (s, i) if
l is a saturated link, l ∈ L(s, i) and xs ≥ xs′ for any flow s′
which has a subflow going through l.

From [11], we has the following necessary and sufficient
condition for UMMF:

Theorem 1 In the multipath environment, a feasible rate
allocation is UMMF if and only if every subflow has at least
a bottleneck link.

In the next section, we will propose a distributed
multipath protocol and use the results in this section to prove
UMMF of the equilibrium point.

3 An upwardmax-min fair multipath flow
control protocol

The max-min multipath flow control protocol is derived
based on the fully coupled multipath protocol in [6] com-
bined with the price feedback mechanism of MaxNet [3].

The multipath network utility maximization (NUM) is
given by

Max.
∑

s∈S

U(xs) (1)

s.t.
∑

i∈s,s∈S:l∈L(s,i)

xs,i ≤ cl, ∀l ∈ L, (2)

where U(xs) = U
(∑

i∈s xs,i

)
is the utility function

associated with flow s. We assume that U() is an increase
and concave function of xs,i . In [6], we decompose the
function U(xs) by using Jensen’s inequality.

U

(
∑

i∈s

xs,i

)

≥
∑

i∈s

θs,iU

(
xs,i

θs,i

)

(3)

The equality holds if and only if

θ(s,i) = xs,i

xs

. (4)

The relaxed utility function Ũ (xs,i) = θs,iU
(

xs,i

θs,i

)

associated to each subflow (s, i). Given θ = {θs,i}i∈s,s∈S ,
we apply the MaxNet algorithm with utility function via
a series of dual updates as in MaxNet. θ is updated via
outer iterations by formula Eq. 4. In each (outer) iteration,
the multipath NUM is approximated to a basic single-path
NUM problem which is parametrized by auxiliary variables
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θs,i , ∀i ∈ s, s ∈ S. After a series of approximations, the
solution to the approximation problem converges to the
global optimum of the multipath NUM. The approximation
problem is solved efficiently by a dual-based algorithm as
described in [2]. In the dual-based algorithm, the source
updates the subflow rate using the price of subflow which
is the aggregate price of all the links of the path, i.e., qs,i =∑

l∈L(s,i) pl , where pl is the price of link l. The subflow
rate is calculated by xs,i = θs,iD(qs,i) where the demand
function is the inverse of the differentiation of the utility
function, i.e., D = Ũ ′−1. (Please see [6] for more details.)
In this paper, we assume that D is a positive and decreasing
function.

Using the feedbackmechanism ofMaxNet, only the price of
the most congested link on the path of subflow is fed back
to the source, i.e., qs,i = maxl∈(s,i) pl [3, 4]. Algorithm 1
presents the proposed multipath congestion protocol in
which only one iteration for the dual-based updates.

In Algorithm 1, both source and link compute their rate
and price based on the local information. Each subflow
needs the flow rate and the price of the most congested
link on its path to update the rate. Each link only needs the
aggregate traffic on the link to update its price.

At the equilibrium point of Algorithm 1, θs,i = xs,i

xs
and

xs,i = θs,iD(qs,i) for all s ∈ S and i ∈ s according to Eqs. 8
and 7. Hence,

xs,i

(

1 − D(qs,i)

xs

)

= 0, (9)

At the equilibrium point, we assume all the subflows
have positive rates by omitting the zero-allocated subflows.
Hence, xs = D(qs,i) for all i ∈ s with xs,i > 0, i.e.,
all the subflows from source s which are allocated with
positive rates have the same subflow prices. This means that
Algorithm 1 balances the congestion among the paths at the
equilibrium point. Denoting qs = qs,i for any i ∈ s with
xs,i > 0 yields xs = D(qs). We have the following property
of the equilibrium allocation.

Lemma 1 If link l has a maximum price of all the links on
a path of a subflow (s, i), i.e., pl = maxe∈L(s,i) pe, then
xs′ ≤ xs for any flow s′ that has a subflow going through l.

Proof For any flow s′ going through a control link l of a
subflow of s, we have pl = qs ≤ qs′ . Therefore, xs ≥ xs′
due to the decreasing of function D.

Lemma 1 means that at the equilibrium point, the link
with maximum price over the path is the bottleneck link
of the subflow on that path. Hence, we have the result
according to Theorem 1:

Theorem 2 The equilibrium point of the multipath protocol
given by Algorithm 1 satisfies UMMF.

The congestion window of subflow (s, i) can be estimated
by ws,i = xs,i

rt ts,i
, where rtts,i is the round-trip-time of the

Fig. 1 Multipath network
topologies
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Fig. 2 Convergence of
Algorithm 1 with the networks
given in a Fig. 1a and b Fig. 1b

path. Hence, instead of using rate update as in Eq. 7, the
congestion window can equivalently adjust the window size
by the formula ws,i = θs,i

D(qs,i )

rt ts,i
. In addition, we can use

the queue size of link l as the price pl in the update Eq. 5.
The queue size of the most congested link is used by the
source to allocate the rates. The maximum queue size value
can be stored in a field of datagram’s header, and this value
is replaced whenever the datagram go through a router that
has a larger buffer size.

4 Numerical results

The demand function used in the experiments is 1/q,
which corresponds to the logarithm utility function. The
step-size γl = 0.002, ∀l ∈ L. Consider the network
including four multipath flows as described in Fig. 1a.
Capacities of the links l1, . . . , l5 are 6, 9, 8, 4, and
5 Mbps, respectively. Algorithm 1 allocates 8 Mbps for
each flow with [x1,1, x1,2, x2,1, x2,2, x3,1, x3,2, x4,1, x4,2] =
[6, 2, 7, 1, 4, 4, 3, 5] Mbps. In second topology given in
Fig. 1b, the capacity of the links are 2, 5, 4, 3,
and 6 Mbps. The UMMF multipath flow rates are
[x1, x2, x3] = [5, 5, 7] Mbps and the subflow rates are
[x1,1, x1,2, x2,1, x2,2, x3,1, x3,2] = [2, 3, 2, 3, 1, 6] Mbps.
The convergence of Algorithm 1 in both two cases are
shown in Fig. 2.

5 Conclusions

We’ve developed a distributed, price-based multipath conges-
tion control protocol that achieves UMMF at the equilib-
rium point. The source uses the prices of its paths to adjust
the sending rates or congestion windows. The price of a
path is the maximum price of all the links that path going

through. The experiments have shown that our proposed
algorithm converges to the equilibrium point.
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