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The large-scale integration of electric vehicles (EVs) into modern power grid brings both challenges and opportunities to the
performance of the systems. This paper presents an optimal static (when EV is stationary) charging scheduling scheme of EVs to
minimize the charging cost while complying with the constraints related to the status of the charging station. The proposed
systematic charging scheme is based on “Particle Swarm Optimization (PSO)”. It is compared with well-established algorithms
such as “Arrival Time-Based priority (ATP) algorithm” and “SOC-Based Priority (SBP) algorithm”. In addition, a microgrid
scenario is further considered for reducing the consumption of energy from the grid and also, reducing the charging cost by
properly shifting the EV load. Based on the study carried out for a sample test cases considered, it is found that the proposed
scheme has better performance compared to the existing schemes.

Keywords Charging stations - Electric vehicles - Microgrid - Optimization - Priority algorithms

1 Introduction

Recently, much attention has been focused on replacement of
conventional fuel-powered vehicles by renewables -powered
vehicles in modern power system networks.
Energy generation from conventional fossil fuel resources
and transportation industry are responsible for about 70% of
the global carbon dioxide (CO,) production which adds to
global warming [1]. In this regard, EVs have introduced
a friendly transportation atmosphere compared to the tradi-
tional Internal Combustion Engine (ICE) vehicles as they
can decrease CO, emission and solve the problem of fossil
fuel resources depletion [2] because EVs use renewables in
charging [3]. Currently, steady EVs deployment is noticed
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across the world in response to their technical and environ-
mental merits.

However, some challenges have also arisen along with EV
Charging Stations (CSs). The mileage of an EV is determined
by the rated capacity of its battery. For a long range of driving, a
rapid charging mechanism and a high capacity battery are need-
ed. Fast CSs are able to charge the battery of EVs from its
energy level to 80% in less than 30 minutes. In contrary, medi-
um and slow charging stations take more time to charge a
battery. A public CS is a conformist charging choice for EV
drivers; particularly those who have not own chargers [4]. Also,
the rapid growth of CSs can result in non-desired peaks of
energy utilization, voltage deviations, overloading of the trans-
former and increased power loss, etc. Generally speaking, these
impacts adversely affect the stability and power quality perfor-
mance of power grids [5, 6]. Increasing the power generation
could be the solution for the above-mentioned problems, but at
a high investment cost. Instead, an EV can also deliver energy
to the power grid by discharging the battery, which is also
known as Vehicle to Grid (V2G) [7] technology.

An intelligent scheduling of EV's can reduce potential capital
costs. Intelligent scheduling of EVs becomes a vibrant step
towards the implementation of smart grid [8]. The importance
of intelligent scheduling is charging the EV when the demand is
low and as well as benefit the customer. In [9], the EV charging
is optimized during the low-cost off-peak period. The proposed
scheme achieves 28% of energy saving through optimizing the
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EV charging. In [10], a charging control algorithm is proposed
to schedule the charging for large number of EVs. It allows the
Plug-in-Hybrid EV (PHEV) to optimize the EV charging activ-
ities based on a price signal at the time of charging. A smart
charging control strategy for residential PHEVs to minimize the
peak load was presented in [11, 12]. In general, EV customers
are willing to charge the battery during low-off peak electricity
price at night. Moreover, 90% of EVs is parked at home ideal at
night times only. Zouet al. in [13] proposed a centralized EV
charging approach by considering the valley-filling effect of the
supply side. The proposed scheme minimizes the charging cost
of the users. The main idea of the centralized control is to use
the centralized communications to gather information from all
EVs considering the grid constraints. Yang et al. in [14] devel-
oped a centralized charging method for various optimization
goals including cost minimization, and power loss minimiza-
tion. Similarly, by considering the dynamics of EVs charging
systems, the works in [15—17] developed strategies to minimize
the charging cost. Cao et al. [18], a smart technique to manage
EV demands is proposed based on the Time-Of-Use (TOU)
price in a power market. It is observed from the results that
the optimized charging model is beneficial in minimizing the
price. Also, it is possible to avoid 70% of the necessary invest-
ment cost with a systematic charging as presented by Lopes
et al. in [19] as the systematic charging can permit the vehicles
to reach their maximum penetration level without violating the
constraints. Electric power consumption in buildings can be
increased by EVs charging. It can make double the average
household power consumption. Passenger vehicles stand idle
in the home or in the office, thusthe evening peak load coin-
cides with the EVs charging at home particularly at the evening
and night [20, 21]. The EV charging flexibility is limited by
various factors such as, the available charging power ratings,
battery SOC, and battery limitations. Besides, the integration
with renewable system,the coordination of EV charging has
been investigated on numerous scales in the existing studies
[22]. The focus of EV charging optimization on the residential
buildings mainly focuses on the technical (e.g., a peak shaving
objective) and/or economic objectives [23]. Studies [24, 25]
coordinate the EV charging in the buildings by minimizing
the cost. The cost of charging infrastructure is an important
parameter for widespread of charging coordination [26]. The
cost of EVSEs are comparatively high. The total cost for a
level-1 charging infrastructure has been reported as approxi-
mately $400 - $900. For a level-2 EVSE cost is more than
$75,000 and level-3 EVSEcost is higher than level-2 Electric
Vehicle Supply Equipment (EVSEs) depending on the quality
[27, 28].

In the literatures, a number of charging scheduling schemes
have been proposed. However,

* Many of the research articles it is assumed that the charg-
ing happens at the day time. In general, EV customers may
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be more willing to charge the battery during low-off peak
electricity price.

* These EV charging coordination strategies require the
knowledge (e.g., the EV behaviour the power consump-
tion of the buildings or private EV owners, and electricity
cost) during a particular optimization and also it requires
an extensive charging infrastructure which is not
economical.

+ Installing an individual EVSE for each vehiclein large size
apartments is not possible due to economic and space
constraint. Thus the existing schemes may not be suitable
for the static EV charging in apartments.

* A smart priority-based static charging scheme is not de-
veloped. At present, most of the researchers still empha-
size on the dynamic charging schemes which do not ac-
commodate the pragmatic situation of vehicles being shel-
tered after work.

* Also, most of the research articles stress on a single charg-
ing option wherein multiple charging options (i.e, combi-
nation of slow, medium and fast charging options) can be
more effective and advantageous.

*  Furthermore, much attention should be paid to study the
impacts of microgrid on the vehicle’s market.

As mentioned in the literatures, the EVs are being shel-
tered at home after work for over 90% of the time. So, this
time can be effectively utilized to charge the EV battery.
Another, problem identified from the literature articles is
the availability of charging infrastructure and the cost as-
sociated with the charging premises (i.e, apartment car
parking). Instead of buying individual EVSEs for all
EVs, investing in a few numbers of common EVSEs would
be cost beneficial. An operator can take the responsibility
to charge the EVs. It should be noted that, the available
EVSEs must be utilized effectively to minimize the charg-
ing time and cost. In order to overcome the problems stated
above, a static charging scheme is proposed. This scheme
will optimize the charging pattern (i.e.,allot different EVs
to different chargers located in a CS) to reduce the charging
cost and time.

The main contribution of this work is outlined as follows:

1. A smart priority-based static charging scheme is de-
veloped. Though the dynamic scenario may be more
realistic in smart grids, the solutions to the static prob-
lems can be used to show potential cost savings and
time minimization that can be brought by regulating
the charging pattern. Moreover, they can serve as a
benchmark for performance evaluation. The advan-
tage of static charging scheme is, the parameters such
as number of vehicles, available SOC in the battery,
required power to charge the battery will be known
before the EV charging starts.
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2. A multiple charging option (fast, medium and slow) is
considered for EV charging.

3. A mapping of EVs to charging points by applying sched-
uling algorithms is done. By doing so, EV’s are charged
faster, which will enhance the performance of the CS.
Arrival Time-Based Priority (ATP) and SOC-Based
Priority (SBP) algorithms are used for EV’s scheduling
and the results are compared with particle swarm optimi-
zation (PSO). Each algorithm has its own properties in
terms of scheduling, but the main task is to properly allo-
cate the charging points to each EV for a fast charging
process with a minimized price in the shortest possible
time. Therefore, the formulation of the EV’s scheduling
problem has been done.

4. A microgrid with the renewable resources scenario is con-
sidered for reducing the consumption of energy from the
grid. A competitive load reallocation is done with and
without the microgrid to enhance for the customers bene-
fits by reducing the electricity cost.

This paper is categorized into 6 sections. Section 1 gives an
overview of the EV charging systems with the literature re-
view. Section 2 deals with the problem formulation and its
framework. Section 3 presents the microgrid scenario used
in this research in details. Section 4 discusses the proposed
method and algorithm for the optimization problem. The de-
tailed results analysis of the cases are presented in Section 5,
where Case 1 gives the results of ATP algorithm, Case 2 ex-
plains the results of SBP algorithm, and the PSO results are
explained in Case 3. Further, results of load reallocation are
presented in Case 4. The impact of microgrid for cost reduc-
tion is explained in Case 5. Finally, the conclusions and a
preview of future works are presented in Section 6.

2 Objective function framework

Within the assumed system architecture, we propose a
framework consisting of twenty vehicles with various ca-
pacities and the common CS is located at charging pre-
mises (i.e, apartment car parking). The CS is equipped with
five chargers; a pair of a fast charger (FC), a pair of a
medium charger (MC) and a single slow charger (SC).
The maximum power of the fast charging mode is 50 kW
(125 A) with the maximum charging time up to 24-minutes
charging duration of a 20 kWh battery [29]. The EVs will
charge based on the schedule made by the operator. The
objective is to minimize the charging cost and time by
optimizing the charging pattern. It can be calculated as
follow as:

The power required to charge theEV battery is determined
in [30] is given in (1):

Required Power

= Capacity of the battery—Power left at the battery (1)

The time required to charge the EV battery is depend on the
rated output power of the charger. So, the charging time can be
calculated as given in (2)

_ Capacity of the battery—Power left at the battery

R
Rated output of the charger

(2)

where, R is the time required for charging in hours. By
using (2) the charging cost of an individual EV can be calcu-
lated. It is expressed in (3).

Charging Cost of a vehicle = Power required*Ecost(t) (3)

where, Ecost (t) is the energy cost at a particular hour. The
charging cost of all the vehicles can be calculated by (4). The
total charging cost C(#) in Euro cent (€ct) for all vehicles at
each time period (f) can be obtained as follows:

T [ NF NM NS

Clo) =2 | L CGR+ L GOR; + z Ck(t)Ri | (4)
=1 \i= j= =

where, NF is the number of FCs, NM is the number of MCs,

NS is the number of SCs, and 7'is the charging time to charge

all the EVs in hours. 7 can be obtained by using (5):

_ X (x vg—SOC(n)> N <vg—SOC(n)> NS (vg—soC(n)>
T ngl <i§1 < Py * jgl Pime N kzﬁ Py
(5)

where, N is the total number of vehicles, V., is the rated
capacity of a vehicle in kilowatt, SOC(n) is the SOC remain-
ing in the nth vehicle, Pjg, Pjye, Prse are the output powers in
kilowatts of the FC, MC and SC, respectively.

2.1 Constraints
* The SOC of the vehicle should be greater than the mini-

mum value specified by the manufacturer at any time pe-
riod, thus it is expressed in (6):

SOC in <SOC(1) (6)

*  While leaving the CS, the SOC of the nth vehicle
(SOCif“””g ) should be greater than or equal the requested

@ Springer



1838

Mobile Netw Appl (2019) 24:1835-1847

Residential Apartment load 1 1

Micro turbine

Residential Apartment
load 3

PV 1

Residential
Load

PV 2-5

Residential Apartment load 2

Fig. 1 Structure of the considered microgrid

SOC (SOC"ested ) bt should not be more than the max-
imum SOC (SOC'* ) which can be represented by (7).

SOC;equested < SOCi@aw’ng < SOC/:ax (7)

*  When the microgrid scenario is taken into account, its
output power (P,,) should be limited between the mini-
mum and maximum power limits, thus it can be expressed
as (8):

Pt <P, <PIe (8)

2.2 Assumptions
» The voltage of the battery is assumed to be constant.

* The battery will be at one mode at each time period, either
charging or discharging.

3 Microgrid data

One of the important keys to reducing the global CO, produc-
tion and adverse technical impacts on power grids is to

Table 1 Maximum and minimum power generation limits of the DG

sources

DG number  Type of DG Minimum Maximum
power limit (kW)  power limit (kW)

1 Micro turbine 6 30

2 Wind turbine 3 15

3 PV1 0 3

4 PV2 0 25

5 PV3 0 2.5

6 Pv4 0 2.5

7 PVs 0 2.5

@ Springer
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Fig. 2 Hourly microgrid output power

encourage EV charging using renewable energy sources
[29-31]. Microgrid in a LV network can determine its roles
depend on the energy requirement of the network [32]. In this
work, a micro turbine, wind turbine and five photovoltaic
(PV) sources are considered in the microgrid as shown in
Fig. 1. The maximum and minimum power generation limits
of the distributed generation (DG) units are given in Table 1.

The hourly output power from all sources in the microgrid
is illustrated in Fig. 2 and the same is represented as numerical
in Appendix 1.1. The bid coefficients assumed from the re-
newable sources are given in Table 2. The 24 hour microgrid
power price is calculated from the bid coefficients of the re-
newable sources. It can be seen that the microgrid power price
is cheaper than the grid power price.

The 24 hour microgrid price is shown in Fig. 3. The renew-
able sources data are taken from [33, 34].

The hourly grid cost is taken on a typical day from Epex
Spot [35] and is shown in Fig. 4. The battery capacities of all
the 20 vehicles taken from [36] with the available SOCs. It is
given in Table 3.

4 The proposed algorithm

According to the EV’s arrival time at the CS, number of the
available chargers and the charging rate limits, the CS operator

Table 2 Bid coefficients

of the renewable sources Type 3 b; G

(Ect/kWh)
Micro turbine 0.01 5.16 46.1
Wind turbine 0.01 7.8 1.1
PV 1 0.01 7.8 1
PV 2 0.01 7.8 1
PV3 0.01 7.8 1
PV 4 0.01 7.8 0.1
PV5 0.01 7.8 1.2
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Fig. 3 Hourly microgrid power price (Ect/kWh)

needs to decide which vehicle to be charged and at what time.
ATP, SBP algorithms and the PSO are used to minimize charg-
ing time and total charging cost of the twenty vehicles.

4.1 Arrival Time-based Priority (ATP) algorithm

ATP algorithm allows the vehicles into service once they
arrive and hence reduces the delay time and avoids the
charger to be idle. ATP algorithm lineups all vehicles to
charging points until all the charging points are engaged
based on the arriving time of the vehicles. Thus, the se-
lected vehicle is allotted to a point, which makes the
charging process easy and fast. Once a vehicle is allotted,
it updates the waiting time for the other vehicles. The
same procedure will be repeated until all the vehicles
are charged. The flowchart of the ATP-based charging
schedule algorithm is given in Fig. 5.

Fig.4 Grid price for a typical day 260
from [34] 240

220
200
180 -
160 |-

140

Price(Euro/MWh)

120 -

100 -

80 -

60
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Table 3  Battery capacity of each vehicle with available SOC
Vehicle number Capacity (kW) Available SOC (%)
1 10 8

2 23 25

3 16.5 10

4 24 14

5 27 19

6 16 23

7 24 28

8 30 12

9 17.3 30

10 32 35

11 24 29

12 27 38

13 16 40

14 17.6 33

15 23 30

16 16.5 27

17 30 16

18 17.3 18

19 32 34

20 16.5 25

4.2 SOC-Based Priority (SBP) algorithm

This algorithm is based on the charging of EVs with the
least possible charging time and cost. Unlike the ATP
algorithm, SBP algorithm takes the actual charging time
into consideration. It starts by assigning all EVs to the
charging points in order to complete the charging at the
earliest in ascending order. The same process is repeated
until all the EVs are charged. The flowchart of the
SBP-based charging schedule algorithm is given in
Fig. 6.

1

————
1

5 10 15 20 25
Time(h)
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Fig. 5 Flowchart of ATP-based
charging schedule algorithm
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Update the queue length ]

Allocate the vehicles |
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4.3 Particle Swarm Optimization (PSO)

In 1995, James Kennedy and Russell Eberhart developed an
intelligent iterative swarm optimization algorithm that is in-
spired by the swarming behavior of fish and birds, so-called
Particle Swarm Optimization (PSO) technique [37]. It con-
ducts a generic way on how a swarm searches for food within
a search space. It has gained a reputation in real-world engi-
neering applications due to its simplicity and high efficiency.
Briefly, a particle i represents a candidate in a swarm, where
Ns is the swarm size. Each particle moves in the search space
(modifying position) with an adaptable velocity that changes
according to the individual and its neighbor’s experience.
Hence, based on these values, local best values are obtained.
Further, out of them (by any particle in the population), the
global best value is achieved [38].

@ Springer

End

Whether all
EVs are
completed
charging?

Display the cost and time ]

Each particle can be represented as an object with some
characteristics. Mainly, four symbols are assigned for these
characteristics: X; as the existing position of the ith element,
V; as the velocity of the ith element with a distance in a unit
time, Pbest as the individual best position of the ith element
(local best) and Gbestas the global best value obtained.
Mathematically, the velocity and position of each particle are

updated respectively, as follows:
(w X Vf‘/) + ¢ (mndl X (Pbesti,j—X/.‘ ))

N

Then, X' f‘/“ can be calculated from (10)

k+1
Vi-,j

+ ¢ (randz X (Gbest,-_ X k

ij

k+1 _ vk k+1
Xij =X, +Vi;
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Fig. 6 Flowchart of SBP-based
charging schedule algorithm
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where Vi(k) and X;(k) are the velocity and position of the ith
particle at iteration k. They are given in the dimensional space
Jj as follows in (11) and (12):

V,‘_’j = (Vi,1’7 Vi’zf, Vl//) (1 1)

Xij= X, Xiz, ... Xij) (12)
rand, and rand, are random numbers regenerated every ve-
locity update and range between 0 and 1, ¢; and ¢, are the
cognitive and social acceleration coefficients that tradeoff the
impact of the local and global best solutions’ on the particle’s
velocity. They are set to 2 in this work. The inertia weight w
that manages the sway of the velocity is linearly decreased
from w4, to w,,;, With the iteration as given in (13). Finally,
the fitness value will be calculated and will be further as given
in (14).

Display Cost and Time )

- Wmax ~Wmin k
W = Wmax™—

k max

-
N

Gbest; j(k + 1)

Gbest,-’j(k) iff(Pbesti,j(k + 1))2](Gbest,7,(k)

Phest; (k) if f(Pbest; ;(k + 1)) < f(Gbest,-,_,-(k)
(14)

Algorithmically, the problem is addressed by the PSO al-
gorithm. The number of variables (chargers) is five, the pop-
ulation size is 100 and the number of iterations is 100. The
flowchart of the PSO-based charging schedule algorithm is
given in Fig. 7.

At each iteration, the charging strategy is updated as
follows:
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Fig. 7 Flowchart of PSO-based
charging schedule algorithm

[ Read the vehicles data ]
[ Initialize the number of population, iteration and variables ]

n=1
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!

[ Evaluate the total cost and time for complete charging of all the vehicles ]

Check if all the
vehicles are
charged?

=[ Update the velocity and position of all particles ]

!

[ Determine P e and G peg ]

Step 1:  Create a random population.

Step 2:  Assign the number of iteration, variables, velocity,
and position.

Step 3:  Schedule the charging and find the fitness value of
all population.

Step 4: Determine Pbest and Gbest from the initial

population.
Step 5:  Update the velocity and the particle position based

on equations (7) and (8).
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P best < G best
Yes
[ Update G best= P best
Check all the
iterations are
completed
Yes

End

Step 6:  Find the fitness value of the updated velocity and
position.

Step 7:  If the new Pbest is better than the previous Gbest
then go to Step 9.

Step 8:  In case the Pbest is not superior to the earlier Gbest,
keep Gbest as it is.

Step 9:  Update the global best.

Step 10:  Repeatthe procedure until the tolerance limit is reached
or the maximum number of iterations is completed.
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Table 4 EVs schedule using the ATP algorithm: Case 1

Vehicle Available Power Time  Typeof  Cost
Number  SOC (%) consumed (min)  charger (€ct)
(kW)

1 8 16.192 32.38 FC1 128.20
2 25 17.250 345 FC2 136.58
3 10 14.850 4455 MC1 117.58
4 14 20.640 61.92 MC2 168.22
5 19 21.870 114.10 SC 171.79
6 23 12.320 24.64 FCl 98.54
7 28 17.280 3456 FC2 13491
8 12 26.400 79.2  MCI1 197.56
9 30 12.110 2422 FCI 91.40
10 35 20.800 62.4 MC2 155.55
11 29 17.040 34.08 FC2 128.10
12 38 16.740 33.48 FCl 127.48
13 40 9.6000 192  FC2 71.64
14 33 11.792 61.52 SC 82.54
15 30 16.1 322 FC1 117.49
16 27 12.045 24.09 FC2 87.03
17 16 252 75.6  MCI 182.06
18 18 14.18 28.36 MC2 97.30
19 34 21.12 4224 FC2 151.26
20 25 12.375 24.75 FCl 86.45

The objective of the PSO is to minimise the charging cost
and time together.

5 Results and discussion

The study is carried out in five cases. Case 1 gives the
results of ATP algorithm, Case 2 gives the results of SBP
algorithm, the PSO results are explained in Case 3 and
the results of load reallocation is presented in Case 4.
Further, results of the microgrid scenario are presented
in Case 5.

5.1 Optimal EVs scheduling using ATP algorithm:
Case 1

Charging all the vehicles without scheduling is considered as
arrival time-based priority method. When the management
strategy is not performed, the total cost reached 2531.371 €ct,
and the average time to complete the charging is 3 hours. The
total energy consumed by all the vehicles is 335.91 kW. The
results of vehicle allocation using ATP algorithm are given in
Table 4. Result of the combination of the chargers for charging
the EVs and the vehicles number is given in Table 5.

As noted from these tables, the fast chargers consume
180 kW to charge 12 vehicles which represent 60% of the
total number of vehicles considered in this study. Six vehicles
are charged with the medium chargers that consume 66.4 kW
and 55.6 kW respectively. The slow charger charged two ve-
hicles only and consumed about 33.6 kW.

5.2 Optimal EVs scheduling using SBP algorithm:
Case 2

SBP algorithm schedules the vehicles based on the priorities
to vehicles demanding less charging time. Based on number of
customer intake, performance of CS will increase compared to
the ATP algorithm. The total energy consumed by all vehicles
is 335.91 kW. The vehicle allocation using SBP algorithm is
given in Table 6. Here, both FCs consume 161.9 kW to charge
12 vehicles. Eight vehicles are charged with the medium char-
gers that consume 144.5 kW. The slow charger charged two
vehicles only and consumed about 29.36 kW.

The SBP completes the charging of the 20 vehicles in an
average time of 3.03 hours and with a cost of 2526.9 €ct.
Table 7 provides the vehicles assigned to each charger by
the SBP algorithm. This algorithm results in a cost reduction
of 4.4 €ct compared to the ATP algorithm.

5.3 Optimal EVs scheduling using PSO algorithm:
Case 3

The optimal scheduling is done using PSO algorithm and it is
given in Table 8. As noted from this table, there is a significant

Table 5 Results of the chargers

combination and their connected Vehicles charged Vehicles charged Vehicles charged Vehicles charged Vehicles charged
vehicles using the ATP Algorithm with FC1 with FC2 with MC1 with MC2 with SC
2 3 4 5
7 8 10 14
11 17 18 -
12 13 - - -
15 16 - - -
20 19 - - -
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Table 6 EVs schedule using the SBP algorithm: Case 2

Table 8 EVs schedule using the PSO algorithm: Case 3

Vehicle Available Power Time  Typeof  Cost Vehicle  Available  Power Time Typeof  Cost
Number  SOC (%) consumed (min)  charger (€ct) Number  SOC (%) consumed (min)  charger  (€ct)
(kW) (kW)

1 8 16.192 32.38 FC1 128.2 1 8 16.192 48.57 MC2 128.2083
2 25 17.250 345 FC1 136.5 2 25 17.250 34.5 FC2 126.7321
3 10 14.850 4455  MCI 117.5 3 10 14.850 29.7 FC2 115.1980
4 14 20.640 79.92 MC2 154.7 4 14 20.640 6192 MCl 163.1574
5 19 21.870 43774  FC2 158.0 5 19 21.870 4374  FCl 151.0024
6 23 12.320 6428 SC 97.2 6 23 12.320 3696 MC2 93.9577
7 28 17.280 51.84 MClI 128.4 7 28 17.280 51.84 MCl1 129.5309
8 12 26.400 79.2 MC2 183.8 8 12 26.400 52.8 FC1 203.3635
9 30 12.110 3633 MC2 95.40 9 30 12.110 2422 FCl 90.7766
10 35 20.800 41.6 FC2 154.9 10 35 20.800 41.6 FC2 164.6944
11 29 17.040 8890 SC 126.0 11 29 17.040 3408 FC1 134.9227
12 38 16.740 3348 FQC2 127.1 12 38 16.740 3348 FC2 125.4830
13 40 9.6000 19.2 FC1 71.96 13 40 9.6000 28.8 MC2 71.9616
14 33 11.792 2358 FC2 93.36 14 33 11.792 3537 MCI1 85.7997
15 30 16.1 483 MC2 124.0 15 30 16.1 322 FC2 113.7414
16 27 12.045 36.13 MCl1 95.37 16 27 12.045 62.81 SC 95.1423
17 16 252 75.6 MC1 176.2 17 16 252 50.4 FCl1 183.3590
18 18 14.18 2836 FC2 112.3 18 18 14.18 7398 SC 105.4756
19 34 21.12 424  ECl 1583 19 34 21.12 4224  FCl 148.8069
20 25 12.375 2475  FCl 86.9 20 25 12.375 2475  FC2 89.4589

reduction in cost and time compared to ATP and SBP algo-
rithms. PSO completes the charging process in an average
time of 2.8 h and with a cost of 2520.7 €ct. The total energy
consumed by all vehicles is 335.91 kW. Table 9 shows the
vehicles scheduled for each charger. Compared to the previous
cases, there is a cost reduction of 10.6 €ct compared to Case 1
and 6.2 €ct compared to Case 2.

In addition, the average time taken by each charger and
their costs in the three cases are given in Table 10. It is obvious
that the PSO-based scheduling algorithm takes the lowest time
with the minimum charging cost for charging the 20 vehicles
compared to the other algorithms. Based on these, it is found
that the proposed PSO algorithm shows better performance
compared to the other algorithms.

5.4 Load reallocation: Case 4

The charging costs can be significantly reduced using appro-
priate load reallocation (load shifting) strategy that involves

shifting the energy consumption to another time period.
Hence, load reallocation is considered in Case 4 in the pro-
posed EVs charging schedule to investigate the estimated cost
reduction when the energy cost is high. The optimal allocation
of vehicles to the various sockets is analyzed to meet the
overall demand (335.9 kW). Also, considering the operating
period (hour 1 to 6) of the CS, it is observed that the price at
hours 1, 2, 3 and 6 is higher than the price at hours 4 and 5. So,
starting the charging process from hour 1 to hour 3.09 in Case
1 will reduce the charging cost from 649.196 €ct to 600.9 €ct.
Consequentially, the charging cost of the vehicles charged by
the sockets FC2, MC1, MC2 and SC will be reduced from
709.2145 €ct to 662.708 €ct, 497.384 €ct to 467.779 €ct,
421.24 €ct to 389.1 €ct and 254.337 €ct to 235.856 €ct, respec-
tively, and the charging process will be completed in hour 5.
Among all these techniques, the maximum charging time is
taken by FC1 in the PSO algorithm which is 4.127 hour. In
this case, the charging process has to be started at hour 2.53
and the vehicles will complete their charging at hour 6. To

Table 7 Results of the chargers

combination and their connected Vehicles charged Vehicles charged Vehicles charged Vehicles charged Vehicles charged
vehicles using the SBP Algorithm with FC1 with FC2 with MC1 with MC2 with SC

13 14 16 9 6

20 18 3 15 11

1 12 7 -

2 10 17 8 -

19 5 - - _
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Table 9 Results of the chargers

combination and their connected Vehicles charged Vehicles charged Vehicles charged Vehicles charged Vehicles charged
vehicles using the PSO Algorithm with FC1 with FC2 with MC1 with MC2 with SC
11 10 4 1 16
3 7 6 18
12 14 13 -
17 2 - - -
19 20 - - -
5 15 - - -

sum up, using load reallocation in the ATP algorithm will
result in a cost reduction by 175 €ct. When the reallocation
is employed in the SBP algorithm, the charging cost is reduced
by 169.5 €ct and using the PSO algorithm, the charging cost is
reduced by 159.2 €ct but with the advantage of less time of
charging. A cost comparison of the three algorithms before
and after load shifting is given in Fig. 8.

5.5 Microgrid (MG) scenario: Case 5

Without considering loads reallocation in the system, the actual
charging cost is 2531.3, 2526.3 and 2520.7 €ct for the ATP,
SBP, and PSO algorithms respectively. However, as renewable
energy is less costly than the grid, it can be utilized for further
cost reduction. Using the microgrid system illustrated in Fig. 1
with the DG units connected, the cost is further reduced in all
the three algorithms by 8.1%, 7.2% and 8.4% respectively. This
validates that renewable energy resources integration increases
the possibility of purchasing additional power from the
microgrid as an alternative when the grid cost is high.
Table 11 presents the charging costs in the three algorithms with
and without considering the MG scenario. It should be noted
that the charging time is the same for all the three cases.

6 Conclusion and future work

EVs have great potential of becoming the future of the trans-
portation industry while saving this planet from the forthcom-
ing misfortunes of global warming. They are a real alternative
to conventional vehicles that depend directly on the diminishing
fossil fuel reserves. In this work, an optimal charging

Table 10 Comparison of costs and time taken of chargers in Cases 1, 2
and 3

Algorithm Average time (h) Total cost (€Ect)
ATP 3.0 2531.3
SBP 3.0 2526.3
PSO 2.8 2520.7

scheduling of EVs is done using three algorithms (i) scheduling
based on arrival time-based priority (first come, first serve ba-
sis) (ii) scheduling based on charging time (the vehicle which
takes shorter charging time is charged firstly) and (iii) PSO
algorithm to provide the optimal scheduling which optimizes
both the charging cost and time. Also, the same analysis is
extended by considering the load reallocation and microgrid
scenarios. A more detailed analysis of the impact of a microgrid
in the EV charging is derived from the results. The PSO-based
EVs scheduling resulted in a reduction in the cost of 0.42% and
0.23% compared to ATP and SBP based approaches respective-
ly. In addition, a microgrid scenario is further considered for
reducing the consumption of energy when the grid cost is high.
This scenario resulted in a cost reduction of 8.4%, 7.2% and
8.1% for the PSO, ATP and SBP based EVs scheduling prob-
lem respectively. Also, the EV charging is shifted to the time
where electricity price is low. In such a condition, the cost is
further reduced by 6.31% for PSO-based EVs charging algo-
rithm. Based on the results for the different test cases consid-
ered, it is found that the proposed scheme has better results
compared to the other schemes and the total charging cost and
time are reduced significantly.

This research work solved the issue for static charging scenar-
ios. The dynamic scenarios are beyond the framework of the
study, and will be included in future studies. However, the solu-
tions to the static problems presented in this work can be used to

2550

2500 1—:

= 2450 +—
Q

5
= 2400 +—
%2}

o
O 2350 4—

.
A
]
e
S
S
]
SRR

&

Rt
it
A

2
i
3
S
%

i

2300 41—

&

2
2
o
5

£
o
et
2%
&
3
¥

2250 +—L=k ———— .

Algorithms

O Before load shifting After load shifting

Fig. 8 Cost comparison of the three algorithms before and after load
shifting: Case 4
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Table 11 Costs with and without

microgrid Algorithm Without MG With MG Saving in cost (%)
Cost (€ct) Time (h) Cost (€Ect) Time (h)
ATP 2531.3 3 23259 3 8.1
SBP 2526.3 2342.7 3 7.2
PSO 2520.7 2.8 2308.4 2.8 8.4
show the potential cost savings and charging time minimization ~ References
that can be brought by regulating the charging pattern. Moreover,
they can serve as a benchmark for performance evaluation. 1. OECD/IEA, IRENA (2017) Perspectives for the Energy Transition:
Investment Needs for a Low-Carbon Energy System. Int Energy
. . . Agency
mmedgemens The b w0kt ok e rslh eSS0 g AG,Cu AC, M . Wil DL (i 201 i
supgestions electrification: Status and issues. Proc IEEE 99(6):1116-1138.
£8 : htps://doi.org/10.1109/JPROC.2011.2112750
. . . 3. Un-Noor F, Padmanaban S, Mihet-Popa L, Mollah MN, Hossain E
Compliance with ethical standards (2017) A comprehensive study of key electric vehicle (EV) com-
ponents technologies challenges impacts and future direction of
Conflict of interest The authors declare no conflict of interest. development. Energies 10(8):12—17. https://doi.org/10.3390/
en10081217
A d. 4. Rastegarfar N, Kashanizadeh B, Vakilian M, Barband SA (2013)
ppendix Optimal placement of fast charging station in a typical microgrid in
Iran. International Conference on the European Energy Market
Hourly output power of the various DG sources EEM. https://doi.org/10.1109/EEM.2013.6607284
5. Elbasuony GS, Aleem SHEA, Ibrahim AM, Sharaf AM (2018) A
unified index for power quality evaluation in distributed generation
. E 149:607-622. https://doi.org/10.1016/j. .
Table 12 Hourly output power of the various DG sources systems. Energy 149:607-6 ps://dot.org/10.1016/j.energy.
2018.02.088
Time (h) Wind MT PVI PV2 PV3 PV4 PV5 6. Martinenas S, Knezovic K, Marinelli M (2016) Management of
power quality issues in low voltage networks using electric vehi-
les: Experimental validation. IEEE Trans Power Del PP(99):1-9.
1 546 2.099 0 0 0 0 0 N P
https://doi.org/10.1109/TPWRD.2016.2614582
2 4.005 2.09 0 0 0 0 0 7. Guille C, Gross G (2008) Design of a conceptual framework for the
3 4.005 2.099 0 0 0 0 0 v2g implementation. Proceedings of IEEE Energy 2030:17-18.
4 351 2.099 0 0 0 0 0 https://doi.org/10.1109/ENERGY.2008.4781057
Smart transmission grid: Vision and framework. IEEE Trans
6 4935 2.099 0 0 0 0 0 SmartGrid 1(2):168—177. https://doi.org/10.1109/TSG.2010.
7 7.14  2.099 0.006 0.005 0.005 0.005 0.005 2053726
8 7.155 2.099 0.024 0.02 0.02 0.02 0.02 9. Shrestha GB, Ang SG (2007) A study of electric vehicle battery
9 636 2.099 0.105 0.0875 0.0875 00875 0.0875 charging demand in the context of Singapore. Proc Int Power Eng
' ’ ' ' ’ ’ ' Conf:64-69
10 715209903 0.25 0.25 0.25 0.25 10. MaZ, Callaway D, Hiskens I (2013) Decentralized charging control
11 6.885 2099 0.69 0575 0575 0575 0575 for large populations of plug-in electric vehicles. IEEE Trans
12 585 2.099 0.699 0.5825 0.5825 0.5825 0.5825 Control Syst Technol 21(1):67-78. https://doi.org/10.1109/TCST.
13 741209 0954 0795 0795 0795 0795 i‘?“;g“g”s v Wana 1. Xie X (2015) Vehisle-to-arid contrl
14 5325 2099 1299 1.0825 10825 10825 1.0825 - LiuH, HuZ, Song Y, Wang J, Xie X (2015) Vehicle-to-grid contro
for supplementary frequency regulation considering charging de-
15 6495 2099 L1l 0925 0925 0925 0925 mands. IEEE Trans Power Syst 30(6):3110-3119. https://doi.org/
16 4815 2.099 1209 1.0075 1.0075 1.0075 1.0075 10.1109/TPWRS.2014.2382979
17 4935 2.099 0.99 0.825 0.825 0.825 0.825 12.  Vagropoulos SI, Kyriazidis DK, Bakirtzis AG (2016) Realtime
charging management framework for electric vehicle aggregator
18 4545 2099 0714 0595 0595 0595 0.5% in a market environment. IEEE Trans Smart Grid 7(2):948-957.
19 546  2.099 0399 0.3325 03325 0.3325 0.3325 https://doi.org/10.1109/TSG.2015.2421299
20 5.595 2.099 0.129 0.1075 0.1075 0.1075 0.1075 13. Wang G, Xu Z, Wen F, Wong KP (2013) Traffic-Constrained
21 39 2.099 0.009 0.0075 0.0075 0.0075 0.0075 Multiobjective Planning of Electric-Vehicle Charging Stations.
IEEE Trans Power Deliv 28:2363-2372. https://doi.org/10.1109/
2 3072090 0 0 0 0 TPWRD.2013.2269142
23 468 209 0 0 0 0 0 14. YanglJ, He L, Fu S (2014) An improved PSO-based charging strat-
24 519 2.099 0 0 0 0 0 egy of electric vehicles in electrical distribution grid. Appl Energy

@ Springer

128:82-92. https://doi.org/10.1016/j.apenergy.2014.04.047


https://doi.org/10.1109/JPROC.2011.2112750
https://doi.org/10.3390/en10081217
https://doi.org/10.3390/en10081217
https://doi.org/10.1109/EEM.2013.6607284
https://doi.org/10.1016/j.energy.2018.02.088
https://doi.org/10.1016/j.energy.2018.02.088
https://doi.org/10.1109/TPWRD.2016.2614582
https://doi.org/10.1109/ENERGY.2008.4781057
https://doi.org/10.1109/TSG.2010.2053726
https://doi.org/10.1109/TSG.2010.2053726
https://doi.org/10.1109/TCST.2011.2174059
https://doi.org/10.1109/TCST.2011.2174059
https://doi.org/10.1109/TPWRS.2014.2382979
https://doi.org/10.1109/TPWRS.2014.2382979
https://doi.org/10.1109/TSG.2015.2421299
https://doi.org/10.1109/TPWRD.2013.2269142
https://doi.org/10.1109/TPWRD.2013.2269142
https://doi.org/10.1016/j.apenergy.2014.04.047

Mobile Netw Appl (2019) 24:1835-1847

1847

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Hua L, Wang J, Zhou C (2014) Adaptive Electric Vehicle Charging
Coordination on Distribution Network. IEEE Trans Smart Grid 5:
2666-2675. https://doi.org/10.1109/TSG.2014.2336623
Kristoffersen TK, Capion K, Meibom P (2011) Optimal charging of
electric drive vehicles in a market environment. Appl Energy 88:
1940-1948. https://doi.org/10.1016/j.apenergy.2010.12.015
Moeini-Aghtaie M, Abbaspour A, Fotuhi-Firuzabad M (2014)
Online Multicriteria Framework for Charging Management of
PHEVs. IEEE Trans Veh Technol 63:3028-3037. https://doi.org/
10.1109/TVT.2014.2320963

Cao Y, Tang S, Li C, Zhang P, Tan Y, Zhang Z et al (2012) An
Optimized EV Charging Model Considering TOU Price and SOC
Curve. IEEE Trans Smart Grid 3:388-393. https://doi.org/10.1109/
TSG.2011.2159630

Lopes JAP, Soares FJ, Almeida PMR (2011) Integration of Electric
Vehicles in the Electric Power System. Proc IEEE 99:168-183.
https://doi.org/10.1109/JPROC.2010.2066250

Flemish regulator for the energy and gas markets (VREG).
Available: http://www.vreg.be. Accessed 2018, May

Tang Q, Xie M, Yang K et al (2018) A Decision Function Based
Smart Charging and Discharging Strategy for Electric Vehicle in
Smart Grid. Mobile Networks and Applications:1-10. https:/doi.
org/10.1007/s11036-018-1049-4

Leemput N, Van Roy J, Geth F, Tant P, Driesen J (2011)
Comparativeanalysis of coordination strategies for electric vehi-
cles,” in Proc. IEEE, PES Innovative Smart Grid Technologies
(ISGT) Europe, Manchester. 10.1109/ISGTEUROPE.2011.6162778
Jian L, Xue H, Xu G, Zhu X, Zhao D, Shao Z (2013) Regulated
chargingof plug-in hybrid electric vehicles for minimizing load var-
iance in household smart micro-grid. IEEE Trans Ind Electron
60(8):3218-3226. https://doi.org/10.1109/TIE.2012.2198037
Derakhshandeh S, Masoum A, Deilami S, Masoum M,
HamedaniGolshan M (2013) Coordination of generation schedul-
ing with PEVs charging in industrial micro grids. IEEE Trans
Power Syst 28(3):3451-3461. https://doi.org/10.1109/TPWRS.
2013.2257184

Bozchalui M, Sharma R (2012) Analysis of electric vehicles
asmobile energy storage in commercial buildings: Economic
andenvironmental impacts. Proc. IEEE PES General Meeting,
San Diego. https://doi.org/10.1109/PESGM.2012.6345703

Jerram L, Gartner J (2012) Electric vehicle charging equipment.
Navigant Research, London, Tech. Rep.

Morrowa K, Karnerb D, Francfort J (2008) Plug-in Hybrid Electric
Vehicle Charging Infrastructure Review. U.S. Department of
Energy Vehicle Technologies Program, Final Rep

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

(2013) Plug-In electric vehicle handbook for Public Charging
Station Hosts. US Department of Energy, p. 1-20

Electric vehicle Chargers for your business. Available: https://www.
evsolutions.com/ev-charging-products-for-business. Accessed:
Sept. 13, 2018

Zheng J, Wang X, Men K, Zhu C, Zhu S (2013) Aggregation
Model-Based Optimization for Electric Vehicle Charging
Strategy. IEEE Trans Smart Grid 4:1058-1066. https://doi.org/10.
1109/TSG.2013.2242207

De Schepper E, van Passel S, Lizin S (2015) Economicbenefits of
combining clean energy technologies: the case of solar photovoltaic
and battery electric vehicles. Int J Energy Res 39(8):1109—1119.
https://doi.org/10.1002/er.3315

Zhou W, Wu J, Zhong W et al (2018) Optimal and Elastic Energy
Trading for Green Microgrids: a two-Layer Game Approach.
Mobile Networks and Applications:1-12. https://doi.org/10.1007/
s11036-018-1027-x

Papathanassiou S, Hatziargyriou N, Strunz K (2005) A benchmark
LV microgrid for steady state and transient analysis. CIGRE Symp.
Power System Dispersed Generation, Athens

Bhuvaneswari R Srivastava SK Edrington CS Cartes DA,
Subramanian S (2010) Intelligent agent based auction by economic
generation scheduling for microgrid operation. 2010 Innovative
Smart Grid Technologies (ISGT) Gaithersburg MD USA pp. 1-6

https://www.epexspot.com/en/extras/download-center/market
data. Accessed: Sept. 13,2018

Xu H, Nguyen HK, Zhou X et al (2018) Charging Control of
Electric Vehicles in Smart Grid: a Stackelberg Differential Game
Based Approach. Mobile Network and Applications:1-9. https:/
doi.org/10.1007/s11036-018-1125-9

del VY, Venayagamoorthy GK, Mohagheghi S, Hernandez J,
Harley RG (2008) Particle Swarm Optimization: Basic Concepts,
Variants and Applications in Power Systems. IEEE Trans Evol
Comput 12:171-195. https://doi.org/10.1109/TEVC.2007.896686

Sharaf AM, Mavalizadeh H, Ahmadi A, Gandoman FH, Homaee
O, Shayanfar HA (2018) Chapter 3 - Application of New Fast,
Efficient-Self adjusting PSO-Search Algorithms in Power
Systems” Studies. In: Zobaa AF, Abdel Aleem She, Abdelaziz
AYBT-C and RA of PSO, editors., Academic Press, p. 33-61.
doi: https://doi.org/10.1016/B978-0-12-812441-3.00003-3

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1109/TSG.2014.2336623
https://doi.org/10.1016/j.apenergy.2010.12.015
https://doi.org/10.1109/TVT.2014.2320963
https://doi.org/10.1109/TVT.2014.2320963
https://doi.org/10.1109/TSG.2011.2159630
https://doi.org/10.1109/TSG.2011.2159630
https://doi.org/10.1109/JPROC.2010.2066250
http://www.vreg.be
https://doi.org/10.1007/s11036-018-1049-4
https://doi.org/10.1007/s11036-018-1049-4
https://doi.org/10.1109/TIE.2012.2198037
https://doi.org/10.1109/TPWRS.2013.2257184
https://doi.org/10.1109/TPWRS.2013.2257184
https://doi.org/10.1109/PESGM.2012.6345703
https://www.evsolutions.com/ev-charging-products-for-business
https://www.evsolutions.com/ev-charging-products-for-business
https://doi.org/10.1109/TSG.2013.2242207
https://doi.org/10.1109/TSG.2013.2242207
https://doi.org/10.1002/er.3315
https://doi.org/10.1007/s11036-018-1027-x
https://doi.org/10.1007/s11036-018-1027-x
https://www.epexspot.com/en/extras/download-center/market_data
https://www.epexspot.com/en/extras/download-center/market_data
https://doi.org/10.1007/s11036-018-1125-9
https://doi.org/10.1007/s11036-018-1125-9
https://doi.org/10.1109/TEVC.2007.896686
https://doi.org/10.1016/B978-0-12-812441-3.00003-3

	Optimal Charging Scheduling of Electric Vehicles in Micro Grids Using Priority Algorithms and Particle Swarm Optimization
	Abstract
	Introduction
	Objective function framework
	Constraints
	Assumptions

	Microgrid data
	The proposed algorithm
	Arrival Time-based Priority (ATP) algorithm
	SOC-Based Priority (SBP) algorithm
	Particle Swarm Optimization (PSO)

	Results and discussion
	Optimal EVs scheduling using ATP algorithm: Case 1
	Optimal EVs scheduling using SBP algorithm: Case 2
	Optimal EVs scheduling using PSO algorithm: Case 3
	Load reallocation: Case 4
	Microgrid (MG) scenario: Case 5

	Conclusion and future work
	Appendix
	Hourly output power of the various DG sources

	References




