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Abstract
Road region detection is a hot spot research topic in autonomous driving field. It requires to give consideration to accuracy,
efficiency as well as prime cost. In that, we choose millimeter-wave (MMW) Radar to fulfill road detection task, and put
forward a novel method based on MMW which meets real-time requirement. In this paper, a dynamic and static obstacle
distinction step is firstly conducted to estimate the dynamic obstacle interference on boundary detection. Then, we generate
an occupancy grid map using modified Bayesian prediction to construct a 2D driving environment model based on static
obstacles, while a clustering procedure is carried out to describe dynamic obstacles. Next, a Modified Random Sample
Consensus (Modified RANSAC) algorithm is presented to estimate candidate road boundaries from static obstacle maps.
Results of our experiments are presented and discussed at the end. Note that, all our experiments in this paper are run in
real-time on an experimental UGV (unmanned ground vehicle) platform equipped with Continental ARS 408-21 radar.

Keywords Road detection · Millimeter-wave radar · Modified occupancy grid map · Modified RANSAC ·
Unmanned ground vehicle

1 Introduction

Intelligent transportation arouses huge social concern in
recent decades, researches can be directly divided by
application scenarios, such as ground [1–3], underwater [4–
6] and aerial [7] ones. Traversable road detection is a core
task in the context of autonomous driving field. Bunches
of implementations are proposed based on various sensors,
in which vision-based and lidar-based methods are most
popular. Talking about vision-based methods, cameras are
sensitive to the surroundings and interfered significantly
by illumination. Although infrared cameras perform much
better compared to RGB ones on light disturbance, they
fail on environmental perception when rain, smoke or sand
cover the lens. Furthermore, to construct a perfect driving
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environment model, range data is quite necessary, which
has been a consensus to common. So, information provided
by monocular camera, a branch of vision-based methods, is
not adequate. Another branch, stereo vision, provides range
information, but not accurate enough in sake of vehicle
safety. Worse still, it accumulate error along depth, which
could lead to meter scale deviation at a distance ahead of the
vehicle.

LiDAR performs much better in evaluating the distance
from vehicle to obstacles, which could construct a excellent
world model with dense point cloud. However, laser
produced by lidar is easy to be disturbed. Rain, fog and sand
interfere the output as huge noise or even blocks, which
means it can not tolerate multiple natural environment.
To make matter worse, lidar is quite pricey, which is
normally used in experimental platforms and not widely
spread for car industry. In that, millimeter-wave (MMW)
radar, which is stable and budget, becomes a suitable choice
for environmental perception in autonomous driving. In
Fig. 1, red pixels in color and infrared images indicate
the road boundaries detected, and the blue pixels mean
candidate negative obstacles. Grid map is the 2-dimensional
projection of LiDAR and MMW radar outcomes, in which
white and red pixels indicate obstacles over and less than
1 meter respectively detected by LiDAR, while blue blocks
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Fig. 1 Performance of sensors in heavy smoke scenario

surrounded by red square are objects detected by MMW
radar. As Fig. 1 shown, in heavy smoke scenario, vision-
based conception methods are totally invalid, no matter
the color or infrared camera. Laser can not pierce through
heavy smoke, causing a heap of obstacles ahead of the
experimental platform. However, MMW radar still works
well, the obstacles behind the heavy fog is detected stably,
shown in blue blocks surrounded by red squares.

2 Related work

Researchers have studied applications of MMW radar in the
field of precision navigation for decades, especially military
applications, such as missiles mounted with radar-infrared
integrated seekers or satellites equipped with radar detectors
for space observation. In recent years, with decreasing
price and smaller size, as an automotive radar, MMW
radar is playing an increasingly important role in active
safety and autonomous navigation systems. MMW radar
can provide distance and speed of obstacles ahead of the
vehicle immediately. Compared to lidar, it contains all-
weather working and satisfying detecting capability. To our
knowledge, an extensive investigation of automotive radar
used on vehicles is spread by Grimes [8–10], which leads
to the development of radar application on automobiles.
Park [11] did data association and moving object by nearest
clustering tracking based on a MASRAU0025 24 GHz
MMW radar. To improve the detection efficiency of vehicles
and guard-rails, Alessandretti [12] fused vision sensors with

two 24 GHz scanning radars to obtain image and range
data simultaneously. [13] fused stereo-vision with a 24
GHz radar and adopted extended Kalman filter (EKF) to
track vehicle and other obstacle contour. Bertozzi et al.
[14] integrated an inertial sensor after fusion of camera and
radar information to accomplish road obstacle detection and
classification. Xiao [15, 16] inspired by the cooperation
between the cone cell and rod cell in human vision,
and presented a method through fusing MMW radar and
monocular vision sensor, which operates rough position and
precision contour respectively just as the cells in human
vision. In Feng’s paper [17], a new type of road marking is
introduced, providing much better observation to radar.

Road boundaries are the demarcation line between road
and non-road regions. They contain salient features could
be used on road detection tasks. Precise road boundary
localization may ensure high accuracy road segmentation,
so methods based on multiple sensors for road boundary
detection [18, 19] are developed in past decades, especially
based on image and LiDAR.

Although there are already some relative researches
on road detection and boundary localization, MMW
application on autonomous driving is not enough yet. So,
this paper provides an approach for on-road obstacle as
well as road boundaries position detection in autonomous
driving scenes. In recent years, commercial MMW radars
have become increasingly available and affordable thanks
to their lower cost. They generally directly give out the
measurement information of detected targets, which have
already clustered the original radar data and output clusters
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Fig. 2 Single-frame illustration

in form of point targets for convenient processing. In this
paper, a commercial MMW radar (Continental ARS 408-
21 77 GHz) is used to detect obstacles and determine
road boundaries. The Continental ARS 408-21 provides
information of detected targets instead of original wave
data. The main contributions of this paper are as follows:
First, a radar-based road model constructing procedure
is specifically presented, including static and dynamic
obstacle separation, data filter and multi frame fusion based
on modified Bayesian prediction. Second, based on the
constructed scene model, a modified RANSAC method is
introduced to locate road boundaries, which meets the real-
time requirement on unmanned ground vehicles (UGVs).

The rest of this paper is organized as follows: Our radar-
based road detection approach is introduced in Section 3.
Section 4 shows the experiments and corresponding results
of our approach, while discussion based on our results
are also made in this section. We draw a conclusion and
prediction of our future work in Section 5.

3Methods

3.1 Preprocessing of radar data

In order to construct a road model based on radar for
road detection afterwards, we need to choose a description
model first. Due to MMW radar could only evaluate
environment on a two-dimensional plane, occupancy grid
map become a good choice, which could construct
surrounded environment specifically and intuitively. The
ARS408-21 sensor uses radar radiation to analyze its
surroundings. The reflected signals are processed and after
multiple steps they are available in form of clusters and
objects. Clusters are radar reflections with information
like position, velocity and signal strength. They are newly
evaluated every cycle. In contrast to this, objects have a
history and dimension. They consist of tracked clusters.
Here, we choose Clustering mode of ARS408-21 radar for
more abundant and real-time information. In Fig. 2, a road
image (Fig. 2a) and Continental radar detection output using

official software (Fig. 2b) are illustrated. Clusters detected
by Radar are labeled in different colors, which indicate the
corresponding RCS characteristics.

In this paper, to make full use of radar information, we
involve a preprocessing procedure at the very beginning. We
adopted the cluster ambiguous state (ClusterAmbigstate)
and invalid state (ClusterInvalidState) provided by
Continental ARS408-21 to filter the detected clusters.
ClusterAmbigstate returns 5 kinds of units: invalid,
ambiguous, staggered ramp, unambiguous and stationary
candidates. We keep the clusters with last 2 characteristics
and abandon the others. Similarly, ClusterInvalidState

has 12 kinds of states, and we keep the clusters with
characteristic: valid, valid cluster with low RCS, valid
cluster but no local maximum or valid cluster with high
multi-target probability. As Fig. 3 shown, some invalid
clusters, colored in red, are eliminated and the rest are kept.
Next, based on the inertial measurement unit (IMU), vehicle
running state can be measured, by which the absolute speed
of clusters can be determined. As the Eq. 1 shown, a
threshold is set to separate dynamic and static clusters. The
points in blue in Fig. 3 indicate static clusters, while the
green ones represent dynamic targets.
{ |VCluster −VV ehicle| >T hre → Cluster ∈ Dynamic

|VCluster −VV ehicle| ≤T hre → Cluster ∈ Static
(1)

Fig. 3 Preprocessing of radar data
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Then, static clusters are projected to an occupancy grid
map. Here, due to a split of static and dynamic clusters,
smear can be avoided as far as possible when fusing multiple
static occupancy grid map frames. We believe one grid
is occupied if echo received, and the gap region between
occupied grid and the sensor is believed as free. In another
branch, considering noise impact, the dynamic points
colored in green in Fig. 3 are clustered using DBSCAN
algorithm, a density-based method, as Algorithm 1 shown.

Algorithm 1 cluster the dynamic points detected.

Input: dynamic point set , two param-

eters and

Output: cluster division

1: Initialize core set: ø;

2: for do
3: for do
4: Compute the distance between and ;

5: if then
6: Add to ’s neighborhood set

7: end if
8: end for
9: if then
10: Add to the core set:

11: end if
12: end for
13: Initialize cluster number 0 and unvisited point set

;

14: while ø do
15: Record original unvisited point set ;

16: Choose an element , and initialize a queue

17:

18: while ø do
19: Get the first element in the queue ;

20: if then
21: ;

22: Add elements in to the queue

23:

24: end if
25: end while
26:

27:

28: end while

3.2 Multi-frame fusion

Due to sparsity of radar detection, we need to fuse
a temporal sequence of static occupancy grid maps
to construct a complete environment model. Here, to
constantly locate the vehicle position, we combine radar

with GPS (Global Position System) and IMU (Inertial
Measurement Unit). We treat each static OGM as a plane
with 6 degrees of freedom in world space. First, a global
zero and 3 positive directions of the space are initiated.
Then, all OGMs are transformed to world space and
projected to ground surface coordinate. Finally, current
vehicle surroundings model is generated by mapping world
coordinate OGM to the vehicle coordinate. We choose a
recorded fixed location which is not too far away from the
vehicle as global zero, so that ground plane assumption is
tenable. East and North are determined as positive directions
of axis X′ and Y ′ in world coordinate. Vehicle coordinate
is established by setting zero at the middle while right
and forward being positive directions of axis X and Y

respectively. Offsets from the global zero in X′ and Y ′
direction Δx and Δy can be calculated by measuring
longitude and latitude using GPS. Euler angles (pitch α, yaw
β and roll γ ) are detected by the IMU, then transformation
of a point (x, y) from vehicle to world coordinate (x′, y′)
is defined as follow. Details are illustrated in Fig. 4. Three
views of a vehicle is presented. In the front and side views,
pitch α and roll γ are used to calculate the distance between
vehicle and obstacle on earth plane. In the top view, yaw β

and offset between two coordinate systems are shown.{
x′ = x cos γ cosβ + y cosα sinβ + Δx

y′ = −x cos γ sinβ + y cosα cosβ + Δy
(2)

Next, we are facing to decide whether a grid is occupied
or not after a series of frames projected. Bayesian estimation
is widely used here to predict the occupancy status of one
grid. In OGM, we use p(s = 1) to represent free status
probability of one grid, and p(s = 0) for occupied. The
grid status is defined as Odd(s) = p(s=1)

p(s=0) . After a new
measurement z ∈ 0, 1 coming, we need to update the status
of this grid. We indicate the previous status value before
the new measurement as Odd(s), then the updated status
value is defined as Odd(s|z) = p(s=1|z)

p(s=0|z) . Next, Bayesian
estimation is adopted as follow.

{
p(s = 1|z) = p(z|s=1)p(s=1)

p(z)

p(s = 0|z) = p(z|s=0)p(s=0)
p(z)

→ Odd(s|z) = p(z|s = 1)

p(z|p(s = 0)
Odd(s)

(3)

Then, a logarithm procedure is attached as follow.

logOdd(s|z) = log
p(z|s = 1)

p(z|p(s = 0)
+ logOdd(s) (4)

After logarithm, the only measurement item in this model
is log p(z|s=1)

p(z|p(s=0) and it is a preset value named as V meas,

so we define Vf ree = log p(z=1|s=1)
p(z=1|p(s=0) and V occu =

log p(z=0|s=1)
p(z=0|p(s=0) as two constant term to this model.

However, Bayesian estimation is a kind of equivalent
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Fig. 4 Transformation between
coordinate systems

probability estimation based on time, which is not consist
to reality. In real-life, the latest event is most likely to
influence current status. We believe that the affect of each
measurement presents exponential attenuation over time,
so we introduce an exponential distribution to give each
previous V measure a weight, shown as:

logOdd(s|z) = ωzV meas(z) +
s∑

n=1

ωnV meas(n) (5)

in which ωz, ωs, ωs−1...ω0 conform to exponential distribu-
tion. To further simplify our modified Bayesian model, the
function can be written as:

logOdd(s|z) = V meas(z) + ω logOdd(s) (6)

where ω is an artificial set attenuation coefficient to
control the influence of former measurements. By using
the update function above, we can fuse multi-frames in
world coordinate. Finally, the accumulated world grid is
transformed back to the local vehicle coordinate system as

follow. Here, x, y still stand for vehicle coordinates, while
x′, y′ represent world coordinates of each point.

{
x = (x′ − Δx) cosβ − (y′ − Δy) sinβ

y = (x′ − Δx) sinβ + (y′ − Δy) cosβ
(7)

In Fig. 5, a road image (Fig. 5a) as well as the
corresponding radar occupancy grid map after multi-
frame fusion and post-processing procedure (Fig. 5b) are
illustrated.

3.3 Road boundaries detection based onmodified
RANSAC

Now, driving scene is constructed, and we could observe the
road boundaries vaguely from Fig. 5b. In order to further
emphasize road boundaries for afterwards detection, an
edge detection algorithm is attached to the fused occupancy
grid map. Here, we could observe the road boundaries
vaguely, but much interference exists and makes it difficult
to locate road boundaries. To extract structured information

Fig. 5 Multi-frame fusion
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Fig. 6 Road boundaries detection based on modified RANSAC

from a noisy input, RANSAC (Random Sample Consensus)
model is one of the best choices.

RANSAC method could be attached to a line fitting
model which abandons off class points and estimates with-
in class points. Traditional RANSAC line detection selects
2 points randomly, and form a line based on these 2 sample
points. Next, estimate other observed points by computing
distance between the point and the line formed, to determine
whether this point is an off-class or with-in class point.
Calculate the number of with-in points belonged to this line
model. Then, if the number is large enough and greater than
the former best line model, update this line as a new best
predicted line. Repeat these steps until the globally optimal
solution is found.

To improve RANSAC method efficiency and adapt to
driving scene application, we modify this method for road
boundary detection. There are 3 main differences between
traditional RANSAC line detection and our modified one.
First, an edge-detection procedure is attached to reduce
Algorithmic complexity, and instead of selecting 2 points
randomly, we select points from ROI (Region of Interest).
Furthermore, pairs with unreasonable slope are abandoned.
Second, we keep top bonus lines of left and right boundaries
simultaneously based on different ROI. Third, instead of
time-consuming distance calculation to separate off and
with-in class points, we use band template accumulation
to compute the number of class interior points. Algorithm
and illustration of improved RANSAC method to detect
boundaries is detailed in Algorithm 2 and Fig. 6. In Fig. 6a,
left-bottom quarter of the edge detection image is a ROI to
extract left boundary Llef t , while right-bottom quarter for
Lright . The black line in Fig. 6a indicates a candidate right
boundary waiting to be evaluate, and yellow band is the
counting area of this line. All points in the yellow band are

considered as class interior point of the candidate boundary,
and the total number is believed as the score of such
line.

Algorithm 2 Left boundary detection procedure.

Input: fused occupancy grid map

Output: top bonus left boundary

Gradient
0

while do
if Slope 1 2 1 then

Continue;

end if
locate corresponding line by 1 and 2;

Expand the line to a band of narrow width ;

Obtain of this line, by computing the number

of points within the band area;

if then

Update this line as the best left boundary ;

end if
end while

4 Results and discussions

To test and verify the model efficiency, we evaluate our
model on a data sequence which contains 15546 frames
collected by our own UGV platform of different driving
scenes. To further computing the specific precision of our
outcome, we choose 100 valid frames out of the data
sequence and manually label them. We use traditional
measurements to evaluate our method including F-feature,
Recall and Precision on this dataset, which are 79.67%,
77.56% and 81.89% respectively. Here, to ensure sufficient
radar sampling points accumulated on road, we only
evaluate road regions which are less than 30 meters away
from our vehicle. Moreover, part of visual results are shown
in Fig. 7.

Though in most cases our model performs well, it fails in
some instances. In Fig. 8, two instances of failure are shown,
in which no boundary is detected. For case (a) in Fig. 8,
clear left border can be seen vaguely but it is outside ROI
of left boundary. Right boundary is also undetected, cause
there is no suitable line detected which score is over preset
threshold. Same situation occurs in case (b), straight line
model no longer fits to road boundaries at bends.
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Fig. 7 Some visual results

Fig. 8 Fail instances
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5 Conclusions

Throughout this paper, we put forward a practical road
detection method based on millimeter-wave radar, which
caters to realistic autonomous driving requirements on
cheap price and low computational complexity. There
are two main contributions in our paper. First, based
on temporal validity, we introduce a modified occupancy
grid map generation procedure, in which former Bayesian
prediction influence will chronologically attenuate. Second,
a modified RANSAC method on straight line detection
is put forward, which is customized for driving scenes
satisfying real-time requirements.

With regard to future work, multi-sensors fusion is
imperative. Even though MMW radar has great advantages
such as detecting moving objects fast and providing
the long-range detection and exact velocity measurement,
MMW radar cannot recognize the shapes and sizes of the
detected targets. On the other hand, vision systems can
easily obtain the contour of the targets within the short-
distance sensing region of a visual sensor. Furthermore,
high accuracy global positioning system service is always
required when constructing the occupancy grid map, cause
the sparsity of radar data. To ensure perfect environment
perception in all circumstances, information redundancy is
needed, and how to choose and fuse effective data from
multiple sensors in different scenes is the focus of future
work.
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