Mobile Networks and Applications (2023) 28:732-743
https://doi.org/10.1007/511036-019-01369-6

®

Check for
updates

Improving Formal Verification and Testing Techniques for Internet
of Things and Smart Cities

Moez Krichen'2

Published online: 6 September 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

We are interested in formal verification and model-based testing for Internet of Things and Smart Cities. In general these
two techniques suffer from state explosion problem. To remedy this situation we propose a set of techniques which aim
to reduce the cost, duration and complexity of the considered problems. On the first hand the techniques realted to formal
verification are as follows. First, Abstraction consists in modelling a part of the system accurately and the other parts at high
level. Second, Modularization and Compositionality consist in splitting the whole system into smaller subsystems. Third,
Symmetry Detection exploits symmetries that take place during the system execution. Fourth, Data Independence consists
in detecting that the behaviour of the considered system does not depend on some data inputs. Fifth, Eliminating Functional
Dependencies consists in removing dependency among state variables. Sixth, Exploiting Reversible Rules consists in
collapsing subgraphs of the graph of states into abstract states. On the second hand the techniques related to model-based
testing are as follows. First, Refinement Techniques extract test scenarios directly from the untimed specification. Second,
the Reduction of the Size of Digital-Clock Tests Technique provides a heuristic to reduce the size of the generated tests.
Third, the Timed Automata Testers Generation Technique allows to produce testers in the form of deterministic timed
automata. Fourth, the Test Cases Updating Technique after System Evolution makes it possible to reduce the number of tests
to be generated after each adaptation. Fifth, the Resource Aware Test Component Placement Technique allows to produce a
placement plan of the different testers. Sixth, Coverage Technique generates a reasonable-size set of tests. A case study is
proposed in order to illustrate the use of these techniques.

Keywords Formal - Verification - Model-based - Testing - Internet of things - Smart cities - State explosion - Optimization

1 Introduction control and maintenance of public spaces; monitoring the

validity of buildings and workplaces; reducing time lost

The Internet of Things (IoT) [2, 3, 40] has now become
a key technology that can span multiple technology areas,
from data discovery and processing to networking and
data analysis. It is used in many applications ranging
from home security and factory automation to health care
delivery [4, 37, 41] and self-driving [1, 8, 9, 49]. The
Internet of Things offers many benefits and applications
to smart cities, including: improvement of traditional
public services such as transport, traffic and parking;

P4 Moez Krichen
moez.krichen @redcad.org

1 Faculty of CSIT, Al-Baha University, Al-Baha, Saudi Arabia
2 ReDCAD Laboratory, University of Sfax, Sfax, Tunisia

@ Springer

in administrative transactions; monitoring and control of
energy consumption; smart lighting for the city. In addition,
the amount of data collected by connected objects allow
citizens to better understand the state and evolution of the
city. As the number of connected objects increases, so does
the number of potential problems. For this we need to adopt
adequate and effective test techniques. Among the types of
possible tests we mention:

— Hardware Tests: This type of tests consists in verifying
that the device is working properly and that it it is
compatible with other software and devices.

— Functional tests: In the face of the complexity of
connected objects, it is vital to ensure that the different
devices work as expected on any type of environment.

— Security tests: Within the Internet of Things ecosystem,
huge volumes of data are accessible by users. Verifying

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-019-01369-6&domain=pdf
http://orcid.org/0000-0001-8873-9755
mailto: moez.krichen@redcad.org

Mobile Netw Appl (2023) 28:732-743

733

data privacy and user authentication is a key element of
IoT solution testing.

In this work! we are interested in the so-called formal
verification and model-based testing (MBT). The latters
can be considered as a specific branch of formal methods.
Formal methods are alternative, mathematically based
techniques for system specification and development, as
well as automatic property checking. A range of formal
languages and techniques exist to handle different types
of properties at different levels of system development.
More precisely the MBT approach consists in automatically
extracting test cases from the formal model of the
considered system under test (SUT). In general Formal
Verification and MBT suffer from the well known state
explosion problem which corresponds to the fact that
formal verification and test generation may require a huge
amount of time and a very large space to compute and
store generated test cases. The situation becomes even
more critical when dealing with large and sophisticated
distributed systems like IoT Systems and smart cities. To
remedy this situation we propose in this article to use a
set of techniques taken from the literature and some of
previous works and which aim to reduce the cost, duration
and complexity of the generated tests. On the first hand, the
techniques related to formal verification are as follows:

— Abstraction: consists in abstracting details of the system
to be verified which are not relevant to the properties of
interest.

— Modularization and Compositionality: consist in decom-
posing the verification of large systems into relatively
smaller subproblems of reasonable complexity.

— Symmetry Detection: exploits symmetries that take
place during the system execution, in order to minimize
the corresponding state space.

— Data Independence Detection: corresponds to the
situation when the designer of the system to be verified
detects that the behaviour of the considered system does
not depend on some data inputs.

— Eliminating Functional Dependencies: consists in
removing functional dependency among state variables.

— Exploiting Reversible Rules: consists in collapsing
subgraphs of the graph of states into abstract states.

On the second hand, the techniques related to MBT are
as follows:

— Refinement Techniques: instead of transforming an
untimed specification into a timed specification and
then extracting timed test cases from it, this technique
allows to extract the test scenarios directly from the

IThis article is an extension of our previous work [27] presented in
SCITA 2017 [38]

untimed specification and then transform them into
timed tests; thus reducing the cost of test generation in
a very remarkable way.

— Reducing the Size of Digital-Clock Tests: when the size
of the generated tests is large this technique provides a
heuristic to reduce the size of these tests by compacting
the corresponding graphs.

— Generating Timed Automata Testers: consists in generat-
ing testers in the form of deterministic timed automata
with resources fixed in advance (e.g., number of clocks).

— Updating Test Cases after System Evolution: for the
case of dynamic and evolutive systems this technique
makes it possible to reduce the number of tests to be
generated after each adaptation of the system under test
by detecting all the old tests which are still valid and
can be reexecuted without any modification.

— Resource Aware Test Component Placement: allows to
produce a placement plan of the different testers on the
nodes of the system under test that takes into account
available resources such as RAM, CPU and battery.

— Coverage Techniques: consist in generating a reasonable-
size set of tests according to specific selection criteria
to cover particular elements of the model of the system
under test (e.g., nodes, states, transitions, etc.).

The rest of this article is organized as follows. Section 2
provides a brief overview about the Internet of Things,
smart cities, formal methods and model-based testing.
Section 3 defines the model of timed automata adopted in
this work, the untimed and timed conformance relations
and the different types of tests adopted. Section 4 lists
the main techniques used for improving formal verification
procedures. Section 5 gives more details about the different
techniques used to improve the test generation procedure.
In Section 6, we propose a simple case study in order
to illustrate the use of the different proposed techniques.
Finally Section 7 gives a conclusion for the paper and
presents some perspectives for future work.

2 Preliminaries
2.1 Internet of things and smart cities

Internet of Things The International Telecommunication
Union defines the Internet of Things (IoT) to be a “global
infrastructure for the information society, which provides
advanced services by interconnecting objects (physical or
virtual) with the technologies of the Internet. existing and
evolving interoperable information and communication”.

Smart cities The term“smart city” was born in the 1990s.
This expression is primarily the result of a strategy of

@ Springer

734

Mobile Netw Appl (2023) 28:732-743

reconquest of the market set up by the firm IBM. Wishing
to raise profits in a period of recession, the firm has indeed
identified cities as a huge potential market, associating them
with information and communication technologies [51].
Anchored in a context of urban marketing and publicity,
the term ‘“smart city” is also an expression, which among
many others, is used to define the city of the future. The
scientific literature agrees on this aspect: the definitions
vary according to the context and there is no consensual
definition. The authors of [5] identified 23 different
definitions. This variety can be explained in particular
by the fact that the smart city, because of the diversity
of the fields it touches, is an object of multidisciplinary
research. However, there is a common assumption for all
these different meanings: the smart city is a data-driven city.
Indeed the intelligent transformation of cities caused by the
emergence of new technologies has progressively integrated
several aspects of urban life (e.g., economy, education,
infrastructure, transport, environment, safety and quality of
life).

2.2 Formal methods

When developing a computer system, the exhaustive detec-
tion of design errors remains difficult in the context of sim-
ple functional tests or manual verification procedures. Thus,
in the early 1980s, researchers began to make computer
systems verification methods more rigorous, particularly by
automating them [16, 47]. Indeed, with the appearance of
mathematical models for the specification of dynamic sys-
tems [31], the first formal systems verification approaches
have emerged. We can distinguish two categories of com-
puterized methods of formal verification: the automated
theorem proving and model checking.

The automated theorem proving stems from Frege’s pre-
diction theory, which consists in demonstrating theorems,
expressed in the first-order logic, thanks to a certain num-
ber of axioms and rules of inference. From the point of
view of system verification, it is then, from a set of formu-
las and a property, expressed in the form of a theorem, to
prove that the system respects the property, by calculating
a proof tree for the theorem. However, although demon-
strated as complete by Godel in 1929, the calculation of
the first-order predicates was also proved to be undecidable
by Church in 1936 and by Turing in 1937. The theorem
proof is, in fact, not fully automatable for the logic of the
first order (propositional calculus being decidable) and may
require human interaction. There are several proof assis-
tants, such as HOL [18], Isabelle [45] and Coq [12], that
allow computer-assisted verification for systems expressed
in the logic of predicates, but other methods are more suited
to the profile. dynamic systems. In particular, the methods
Z, B and Event-B for example, make it possible to model

@ Springer

the transitions of a system more easily thanks to an abstract
machine model.

Model checking theory, independently proposed by
Clarke and Emerson in 1981 [16] as well as by Queille
and Sifakis in 1982 [47], allows, given the formal
specifications of a system and a property, to automate the
verification process under certain conditions. The principle
of verification by model checking is to algorithmically
traverse the complete state space of a system to validate
a certain property. When the state space of a system is
isomorphic to a finite automaton, it is easy to determine
a path algorithm and thus to verify certain properties. The
verification procedure is then fully automatable. However,
the number of states of a system can often be very large, or
even infinite in some cases, which is the main disadvantage
of model checking. Indeed, the algorithmic complexity of
the verification procedure depends on the size of the system
as well as the shape of the property to be verified. Moreover,
in some cases of infinite systems, the problem becomes
undecidable.

2.3 Model based testing

Model-Based Testing (MBT) or generation of model-based
tests is an approach where the system is represented as an
abstract model that represents the behaviors of the system
(all or in part). This approach consists of reasoning on
this speciation model to automatically calculate abstract
sequences (because of the same level of detail as the model)
of stimuli that constitute the tests. These sequences of
stimuli are then concretized and then performed on the
(real) system under test. The verdict is given by comparing
the results obtained on the system under test with the
results produced by the model. The model thus constitutes
the test oracle because it makes it possible to predict the
expected results on the target system [43, 55] . It represents a
dynamic view and clarifies the initial state of the system by
formalizing system behavior and capturing the control and
observation points of the system under test. The model must
be sufficiently precise and formal to allow unambiguous
interpretation to have a reproducible automatic generation
[60].

The techniques of generation of tests from models
have known for several years a considerable interest and
growth. This attractiveness, on the part of the scientific
and industrial circles, is explained in particular by the ever
increasing complexity of computerized systems and the
current need to guarantee a quality of service and optimum
reliability. Indeed, generating tests from specification
models ensures a high level of confidence in the respect of
the requirements set out in the specifications. Application
loads to be tested through the use of coverage criteria. This
type of technique begins to find its place because of its

Mobile Netw Appl (2023) 28:732-743

735

partial or complete automation made possible by the ability
to reason on formal specification models. Finally, the use of
the model can be initiated very early during the development
cycle, allowing a system-level follow-up and validation of
what is a point strong in a field where the development of a
system can take several years.

Despite the many results, the field is still very active
to meet the new requirements of the market: increasingly
strict standardization, increased quality of service expected,
willingness to control costs and of course, the arrival of
new systems. more and more complex such as modern
embedded systems. This is why guaranteeing the quality of
a system still represents a dynamic sector for research and
innovation, as evidenced by the large number of conferences
and journals specializing in this area.

In addition to the problem of capturing system behaviors
through a model, the MBT presents several problems in the
actual test generation process. Indeed, the generation of tests
must be relevant, that is to say to obtain tests ensuring a
certain level of quality, while being controlled to avoid the
combinatorial explosion.

3 Formal framework
3.1 Timed automata

Timed Automata (TA) [6, 13, 50] are a simple and
expressive formalism for modeling computer systems
that combine discrete and continuous mechanisms. These
structures take the form of finite oriented graphs extended
by a certain number of clocks, represented by real variables
whose value evolves continuously with time.

3.2 Different types of tests

A given test can be seen as an interactive strategy between
the tester and the system under test. The Tester sends
inputs to the SUT and receives outputs from it and then
checks whether the generated outputs are correct or not
and produces either Pass or Fail verdicts correspondingly.
Depending on the capabilities of the tester it is possible to
distinguish three types of tests:

— Timed Automata Testers: In this case the tester itself is
presented as a timed automaton. The latter is built in
advance before test execution. It is deterministic in the
sense that a given action leads to unique known state.
However the construction of such a tester is not always
possible since it is not possible to transform all non-
deterministic timed[—] automata into deterministic ones.

— On-the-Fly Analog-Clock Testers: This type of tests
have the capability to measure time with high precision
using analog clocks. They are generated in parallel with
test execution and can not be stored in memory since
they are infinite.

— Digital-Clock Testers: These tests use digital-clocks to
measure time. They can be generated either before or
during test execution. They can be represented and
stored as finite trees.

3.3 Conformance relations

In model based testing it is necessary to define a
particular relation called conformance relation which
allows to compare a given specification with its possible
implementations. In general we assume that both the
specification and the implementations are described using
the same formalism. More precisely we assume that the
model of the specification is known. However we assume
that the model of every possible implementation exists but
it is unknown. For the case of untimed systems we may
use the input-output conformance relation ioco [54]. The
latter allows to compare two input-output transition systems
Spec and Imp. Imp conforms to Spec with respect to ioco
if it accepts more inputs and generates less outputs than
Spec. For the case of timed systems we may adopt the timed
input-output conformance relation tioco [29, 30].

4 Different techniques for improving formal
verification activities

4.1 Abstraction

As already mentioned formal verification is always limited
by the state explosion problem. Fortunately, many proper-
ties of the considered system may only depend upon a small
part of the system which needs to be accurately modeled
while the other parts may be modelled at a very high level.
In this manner abstraction plays a very important role in
the verification process of complex systems. The abstraction
procedure may be achieved either manually or automat-
ically. Obviously manual abstraction is hard to make in
general and is error-prone. Consequently, it is much better
to rely on automatic abstraction whenever it is possible.
For instance in [53], the authors were interested in the for-
mal verification of cyber-physical systems. These systems
are very complex since they need to represent the phys-
ical environment, hardware and software. The paper pre-
sented an automatic abstraction procedure for simplifying
the Labeled Hybrid Petri Nets (LHPN) models. The main

@ Springer

736

Mobile Netw Appl (2023) 28:732-743

idea consists in applying LHPN transformations to elimi-
nate details that are irrelevant to the aspects of interest. The
considered transformations are inspired by similar transfor-
mations applied to ordinary Petri nets and by various static
analysis techniques used during compilation. Similarly in
[7] the authors proposed a number of languages in order to
model hardware systems. They abstracted away wide datap-
aths and they kept the low-level details of the control logic.
This results in an important reduction in the size of the space
of states and makes the formal verification of the considered
system possible. The proposed automatic abstraction in this
work was achieved using the Vapor tool. Likewise in [56]
the authors aimed to accelerate the verification process
of a specific type of microprocessors. That was done by
automatically applying a set of transformation rules for
abstracting the register file. In [58] the authors presented
the tearing paradigm as a methodology for automatically
abstracting the behavior of a reactive system. Moreover they
proposed algorithms which perform conservative formal
verification.

4.2 Modularization and compositionality

An other way to deal with state explosion problem
while achieving formal verification consists in adopting
modularization and compositionality. These two techniques
consist in decomposing the verification of large systems into
relatively smaller subproblems of reasonable complexity.
For instance the work of [59] concentrated on Cyber-
physical systems. In this paper the authors separated
functional aspects from adaptive aspects. Moreover the
adopted a modular formal verification approach. In [14], the
authors presented a methodology for the verification of C
programs using finite state machines. In [25] the authors
reviewed compositionality issues related to linear temporal
logic (LTL). Moreover a technique for reducing infinite
systems into a finite systems which can then be checked
using formal verification techniques.

4.3 Symmetry detection

Symmetry detection [57] corresponds to an other technique
which may be used to counter the state explosion problem
in formal verification. This technique exploits symmetries
that take place during the system execution, in order
to minimize the corresponding state space. It consists
in computing a mapping from states to representatives
of equivalence classes. In [32] the authors proposed an
approach based on symmetry reduction techniques related
to probabilistic formal verification. In [17], the authors
proposed an efficient method that computes representatives
dynamically during fixpoint calculus. The authors of [21]
presented a framework for defining and evaluating some

@ Springer

symmetry reductions used in software formal verification.
Furthermore, in [46] the authors exploited structural
symmetries in the the system they are aiming to verify.
For that purpose they introduced new elements to their
description language. Then a verifier can automatically
produce a reduced state space.

4.4 Data independence detection

Data independence detection [10] is an other technique that
can be used for simplifying formal verification as well. This
technique corresponds to the situation when the designer of
the system to be verified detects that the behaviour of the
considered system does not depend on some data inputs. In this
case the model of the system can be simplified significantly.
In [39] the authors considered Alloy which is an extension
of the first-order logic. They proposed a theorem which calcu-
lates a threshold which may be used for the analysis of
data-independent systems. In [48] the authors were inter-
ested in verifying specific protocols. For that purpose they
considered data independence aspects in order to restrict the
number of generated states of the system to be verified.

4.5 Eliminating functional dependencies

Many researchers have reported that the use of BDDS
(Boolean Decision Diagrams) remarkably increases the size
of the models to be formally verified. Moreover the pres-
ence of functional dependency among the state variables was
classified as a common cause of inefficient BDD encoding
in formal verification. Consequently removing such depen-
dency reduces considerably the space of states. In [15] func-
tional dependency is identified using SAT solving and Craig
interpolation techniques. In [24] functional dependency is
directly detected from the transition functions rather instead
of being detected from reached state sets. In [20] the authors
were interested in verifying hardware design.They identi-
fied functionally dependent variables in order to reduce the
size of the considered BDDs.

4.6 Exploiting reversible rules

This technique [22, 23] consists in collapsing subgraphs of
the graph of states into abstract states (called progenitors
of the subgraphs). This task is achieved by identifying
generation rules which can be inverted. These rules are
called reversible rules in the sense that a subgraph can
be produced from the progenitor via these rules, and each
state can be associated with the progenitor by executing
the considered reversible rules. Compared to classical
abstraction procedures, this technique does not require the
user to propose an appropriate abstract domain by his
own.

Mobile Netw Appl (2023) 28:732-743

737

5 Different techniques for improving testing
activities

5.1 Refinement techniques

Refinement Approaches are well experimented in the
field of hierarchical design of many types of systems.
They consist in transforming high-level actions into
lower-level actions. That is to start with a high-level
abstraction and to move to a lower-level one until obtaining
the implementation level. Adopting action refinement
approaches in the field of testing seems to be very
promising. In our previous work [11] we proposed an
refinement based approach for testing real times systems.
We assume that the system under test can be initially
described using an untimed specification. For instance it can
be modelled using a simple automaton which has no clocks
and no time constraints. This untimed specification is then
transformed into a timed one using refinement techniques.

5.2 Reducing the size of digital-clock tests

Digital-clock tests can grow very large because they may
sometimes contain big numbers of consecutive tick actions.
In order to reduce of these tests we may extend test cases
with variables and more sophisticated data structures as
proposed in our previous work [30].

5.3 Generating timed automata testers

Representing analog-clock test cases as deterministic timed
automata allows to save a lot of computation time during
computation time. However this alternative is not always
possible since theoretically it is not possible to transform
all non deterministic timed automata into deterministic ones
using a finite number of clocks and nodes. To alleviate
this problem we proposed in a previous contribution
[30] a deterministic over-approximation of the considered
non deterministic timed automaton. This approximation is
obtained by fixing in advance the available resources to use
and the adopted strategy for resetting clocks.

5.4 Updating test cases after system evolution

This technique is taken from our previous works [34]. It
consists in optimizing the test generation phase after the
occurrence of dynamic adaptation of the system under test.
We assume that the model may of the system under test may
evolve either partially or entirely after a dynamic behavioral
adaptation occurs. Consequently, we need to update the set
of available test scenarios either by generating new tests or
updating old ones. For this reason we need to take advantage
from selective regression testing and MBT techniques.

In order to reach that goal, we follow a four-step
approach:

— Model Differentiation: This step aims to compare the
initial and new models of the SUT. That is to detect
differences and similarities between these two models.
This allows to avoid creating the whole set of test cases
from scratch after every behavioral adaptation of the
SUT.

— 0OlId Tests Classification: This step consists in deviding
the set of old available test cases into three subsets of
tests: partially valid tests; still valid tests; no longer
valid tests.

— Test Update and Generation: This step allows to to
update partially valid tests and to derive new test cases
from the newly identified behaviors. To achieve this
goal we may use techniques borrowed from MBT
approaches [26, 30].

— TTCN-3 Transformation: This step consists deriving
a set TTCN-3 tests from the set of abstract test cases
produced during the previous steps [33].

5.5 Resource aware test component placement

This technique is inspired by our previous contributions
[35, 36]. It consists in distributing the test components on
the various nodes of the system under test while taking
into account the available resources of these nodes. For this
purpose, we need to monitor resources during the execution
of the system: free memory, CPU load and battery state.
Then we model the problem we have in hand as an instance
of the knapsack problem. The latter corresponds to a classic
application of integer programming. In the problems of
the knapsack, there is a container (the “knapsack”) with a
fixed capacity and a number of elements. Each element is
associated with a weight and a value . The problem is to
fill the without exceeding its capacity, while maximizing
the overall value of its content. In our case we consider
a Multiple Multidimensional Knapsack Problem (MMKP).
That is we have different types of elements (CPU, RAM
and Battery) that we need to place in a number of knapsacks
(computer nodes). These different constraints can be solved
using existing tools and heuristics in the literature [35, 36].

5.6 Coverage techniques

In MBT approaches, it is impossible to generate all possible
tests that can be derived from the specification of the
system under test. The number of possible is either infinite
or very huge even for relatively very small specifications.
Consequently, we need to find a way for reducing the
number of generated tests. A first alternative consists
in generating a fixed number of test cases randomly. A

@ Springer

738

Mobile Netw Appl (2023) 28:732-743

Sensor 1

Collector

Sensor 4 Sensor 2

Sensor 3

Fig. 1 A temperature measuring system with four sensors and one
collector

second alternative consists in generating all possible tests
up to a fixed depth of the specification. However both
solutions present the risk of ignoring interesting behaviors
of the system under test. For that, we adopt a third
alternative which consists in using coverage techniques.
Different coverage criteria are possible in the field of
software testing such as branch coverage and statement
coverage [42]. Similarly for the case of timed automata,
existing approaches allow to cover finite abstractions of the
space of states (like the region graph [52] and the time-
abstracting quotient graph [44]) or structural elements of the
model of the system under test (like locations or edges [19]).

In our previous work [30] we proposed a finite
abstraction of the specification called the observable graph.
The later is obtained by computing the product of the model
of the specification and the model of the used digital-
clock. Sequences of interest covering a specific criterion are
extracted from this graph and then extended into valid test
cases.

6 Case study: a temperature measuring
system with four sensors and one collector

In this section, we propose a simple case study on which
we illustrate how the previously introduced techniques can
be used. As illustrated in Fig. 1, our case study is made
of five objects: four sensors and one collector. The role of
the sensors consists in measuring the ambient temperature
and then send it to the collector. The collector receives the
measured values sent by the sensors and stores them in an
appropriate database for future use.

In Fig. 2, we propose a simplified model for the proposed
case study made of eight finite state machines (FSMs). On
the first hand the behavior of each sensor is given as a
separate FSM made of three nodes and three transitions:

@ Springer

Collector

Fig.2 A simplified model for the temperature measuring system made
of eight finite state machines

1. Measuring temperature; 2. Sending temperature to the
collector 3. Receiving acknowledgement from the collector.
On the other hand the behavior of the collector is given as a
product of four FSMs. Each of these FSMs is also made of
three nodes and three transitions: 1. Receiving Temperature
from the corresponding sensor; 2. Storing the Received
Temperature; 3. Sending acknowledgment to the sensor.

Next we explain how the already proposed techniques in
the previous sections can be used in order to improve the
formal verification and formal based testing for this case
study. First we start with formal verification aspects:

— Abstraction: At this level, it is quite easy to notice
that the description of the different components of
the considered system are given at a very high
level. Moreover many details are abstracted away
and interaction between the different sensors is not
considered as well.

— Modularization and Compositionality: As already men-
tioned and as illustrated by Fig. 2 the model of the
proposed system is given as a network of eight FSMs.
Each FSM is made of three states and three transitions.
By the way by computing the product of these different

Mobile Netw Appl (2023) 28:732-743

739

Measure(Temp 1)

Collector (part 1/4)

Fig. 3 A possible simplification of the considered model due to
symmetry aspects

FSMs we will obtain a big FSM which has approxi-
mately 3% = 6561 states. If we increase the number of
sensors to 10 the number of states of the product may
reach 320 = 3486784401 states which is a huge number.
This illustrates the importance of considering Modular-
ization and Compositionality in order to reduce the size
of the considered models.

Symmetry Detection: It is not difficult to see that
the different sensors and the different parts of the
collector play symmetric roles. Consequently, the
formal verification of the whole considered system can
be reduced to the verification of the product of only two
FSMs: the first one corresponding to one of the four
sensors and the second one corresponding to one of the
four parts of the collector (as illustrated in Fig. 3).
Data Independence Detection: We may assume that
the different sensors of the system may measure
other entities like pressure and humidity for instance.
However by assuming that no correlation exists
between temperature and these other entities then there
is no need to take into account in the model of the
system. This clearly allows to reduce the complexity of
the considered model and to reduce its size.

Fig.4 A possible refinement of
a high-level untimed action into
a sequence of low-level timed
actions

Reducing
the size
of the test

sequence O

Fig.5 Reducing the size of digital-clock tests

Eliminating Functional Dependencies: Assume that the
collector stores the average of the different values
received from the different sensors. In this case we can
clearly see that there is a direct dependency between
this stored variable and the the values measured by
the sensors. So in order to reduce the complexity of
the verification procedure we need to take into account
this correlation between these different variables by
eliminating the new variable corresponding to the
average value since it can be deduced from other
variables.

Exploiting Reversible Rules: Consider the FSM
describing the behavior of sensor 1 for instance. This
FSM can be simplified a bit more by collapsing the two
nodes connected by the transition Measure(Temp 1)
since this action can be seen as an internal action and
does not have any impact on the formal verification of
the whole system. Similarly we can collapse the pairs
of nodes of the collector FSMs which are connected
by the Store(Temp i) transitions. Once verification is
achieved the collapsed nodes can be separated as they
were initially.

Second we move to Model Based Testing aspects:

Refinement Techniques: Recall that this technique
consists in considering an untimed specification and
a set of refinement rules which allow to transform
each high-level untimed action into a sequence of
low-level timed sequence. Test cases are extracted
from the untimed specification then the obtained
untimed test cases are refined into timed test cases
according to the adopted refinement rules. For instance
in Fig. 4 the action Measure(Temp 1) is refined

: Measure(Temp 1 :

Refinement

1

Measure(1st va
@ [5,10]

e) Measure(2nd value) Measure(3rd value) Average(Temp 1)
Y a8 & &
A [5,10] A O

[5,10] A4 [24]

@ Springer

740

Mobile Netw Appl (2023) 28:732-743

Fig.6 Timed automata tester

generation using
determinization techniques

Fig.7 An example of a possible
Update of the Model of the
considered System

re(2r u;/-\ Measure(3) .“\m A age np1
[5.10] A4 [5,10] A4 [2.4] O
re(2r _‘\»m A ae(Ter 1
[5,10] 4 2.4] ’O
@ Determinization
Vieasure "—'.L‘\A'_'\ y
@ [5.10] A 5.10]

into a sequence made of four timed actions: the
measurement of temperature is made by capturing
three values consecutively and then computing the
average of these three values. This clearly simplifies the
test generation procedure and significantly reduces the
required computation time and space.

Reducing the Size of Digital-Clock Tests: As already
mentioned a digital-clock test can be seen as a special
tree which has a special Tick action which models
time progress. The goal of this step consists in reducing
the size of the test tree by compacting sequences of
Tick actions. This idea is illustrated in Fig. 5 where a
sequence of ten Tick actions is replaced with only one
transition labelled with 10 Ticks. In this manner the
size of tests is reduced significantly.

Timed Automata Testers Generation: When the speci-
fication of the system is given as a non-deterministic
timed automaton then two options are possible for test
generation. The first option consists in generating test
cases on-the-fly. That is test generation and test execu-
tion are done in parallel. This first choice is difficult
in general since it needs high performance calculators.
The second choice consists in deteminizing the con-
sidered timed automaton off-line before test execution.

For instance in Fig. 6, we propose a non-deterministic
version of a portion of the model of the considered sys-
tem. This automaton is non-deterministic since from
the initial node the same action leads to different suc-
cessor nodes. This non-determinism corresponds to the
fact that the sensor may measure temperature either
by computing the average of three captured values or
only two values depending on some internal choices
(available resources for example). In the same figure
we propose the result of the determinization of the
non-deterministic automaton. As already explained this
procedure is not always possible in a exact manner.
Consequently we may need to make some approxima-
tions.

Test Cases Updating: As our system evolves we need
to update the model accordingly. In this case we need
to update the already generated test cases as well since
it would be very expensive to regenerate them from
scratch. In Fig. 7 we propose a possible evolution for
our system. Initially the acknowledgement was sent by
the collector to the corresponding sensor after storing
the temperature in the database. In the new version, the
acknowledgement is sent after the storage is achieved.
The previously generated tests need to be updated

Send(Ackn 1

@ Springer

Mobile Netw Appl (2023) 28:732-743

741

accordingly in order to minimize the cost and the
duration of the test regeneration phase. For this purpose
we need to compare the two models of the system (the
old and the new ones) and to make a classification of
the available test cases as already explained.

— Resource Aware Tester Component Placement: In gen-
eral the testing architecture may be either centralized
or decentralized. In the second case, we need to find a
strategy for placing the different test components over
the computational nodes of the system. For instance if
the collector has enough resources it can host some of
the test components dedicated for testing some of the
sensors. Similarly if the resources of one of sensors are
sufficient then it can host the test component in charge
of testing another sensor as well. Adequate optimization
techniques need to be used for this purpose.

— Coverage Techniques: These techniques allow to reduce
the number of generated tests in a smart way by defining
specific selection criteria. For instance in our case we
may consider a criterion which allows to cover the
different nodes of the different FSMs of the considered
model. Similarly, we may consider a second criterion
which covers the set of transitions or the set of pairs
of consecutive transitions, etc. This can be done by
constructing the observable graph as already explained
in the previous section.

7 Conclusion

In this work, we proposed several techniques to improve
the quality of formal verification and model-based testing
approaches for IoT and Smart Cities. These approaches
generally suffer from the state explosion and are difficult
to implement. On the first hand, the proposed techniques
to remedy to problems related to formal verification are
as follows: 1. Abstraction; 2. Modularization and Com-
positionality; 3. Symmetry Detection; 4. Data Indepen-
dence Detection; 5. Eliminating Functional Dependencies;
6. Exploiting Reversible Rules. On the second hand the pro-
posed techniques related to Model Based Testing are as
follows: 1. Refinement Techniques. 2. Reducing the Size of
Digital-Clock Tests; 3. Timed Automata Testers Generation;
4. Test Cases Updating; 5. Resource Aware Tester Compo-
nent Placement; 6. Coverage Technique. In order to show
how these different techniques can be used we proposed a
simple case study which corresponds to a Temperature Mea-
suring System made of one Collector and four Sensors. As
a future work we need to implement the different proposed
solutions and to define a set of criteria for selecting the set
of appropriate techniques to adopt for each concrete situ-
ation. Moreover we may apply several other techniques to
improve the testing approaches adopted for Iot and Smart

Cities. For instance we may combine functional and load
testing aspects as proposed in [28]. We may also consider
other optimization techniques used in formal verification.

References

1. Alam F, Mehmood R, Katib I (2020) Comparison of decision
trees and deep learning for object classification in autonomous
driving. Springer International Publishing, Cham, pp 135-158.
https://doi.org/10.1007/978-3-030-13705-2_6

2. Alam F, Mehmood R, Katib I, Albeshri A (2016)

Analysis of eight data mining algorithms for smarter
internet of things (iot). Proc Comput Sci 98:437-442.
https://doi.org/10.1016/j.procs.2016.09.068. http://www.
sciencedirect.com/science/article/pii/S187705091632213X.
The 7th International Conference on Emerging Ubiquitous
Systems and Pervasive Networks (EUSPN 2016)/The 6th
International Conference on Current and Future Trends of
Information and Communication Technologies in Healthcare
(ICTH-2016)/Affiliated Workshops

3. Alam F, Mehmood R, Katib I, Albogami NN, Albeshri
A (2017) Data fusion and iot for smart ubiquitous
environments: A survey. IEEE Access 5:9533-9554.
https://doi.org/10.1109/ACCESS.2017.2697839

4. Alamoudi E, Mehmood R, Albeshri A, Gojobori T (2020)
A survey of methods and tools for large-scale DNA mixture
profiling. Springer International Publishing, Cham, pp 217-248.
https://doi.org/10.1007/978-3-030-13705-2_9

5. Albino V, Berardi U, Dangelico R (2015) Smart cities:
Definitions, dimensions, performance, and initiatives. J Urban
Technol 22:3-21

6. Alur R, Dill D (1994) A theory of timed automata. Theor Comput
Sci 126:183-235

7. Andraus ZS, Sakallah KA (2004) Automatic abstraction and
verification of verilog models. In: Proceedings of the 41st annual
design automation conference, DAC ’04. ACM, New York,
pp 218-223. https://doi.org/10.1145/996566.996629

8. Aqib M, Mehmood R, Alzahrani A, Katib I, Albeshri A,
Altowaijri SM (2019) Rapid transit systems: Smarter urban
planning using big data, in-memory computing, deep learning, and
gpus. Sustainability 11(10). https://doi.org/10.3390/sul1102736.
https://www.mdpi.com/2071-1050/11/10/2736

9. Agib M, Mehmood R, Alzahrani A, Katib I, Albeshri A,
Altowaijri SM (2019) Smarter traffic prediction using big data,
in-memory computing, deep learning and gpus Sensors 19(9).
https://doi.org/10.3390/s19092206

10. Benalycherif L, Mclsaac A (2009) A semantic condi-
tion for data independence and applications in hardware
verification. Electron Notes Theor Comput Sci 250(1):39-
54. https://doi.org/10.1016/j.entcs.2009.08.004. http://www.
sciencedirect.com/science/article/pii/S1571066109003296. Pro-
ceedings of the Seventh International Workshop on Automated
Verification of Critical Systems (AVoCS 2007)

11. Bensalem S, Krichen M, Majdoub L, Robbana R, Tripakis
S (2007) A simplified approach for testing real-time systems
based on action refinement. In: ISoLA, Revue des Nouvelles
Technologies de 1I’Information, vol. RNTI-SM-1, pp. 191-202.
Cépadués-Editions

12. Bertot Y, Castran P (2010) Interactive theorem proving and
program development: Coq’ Art the calculus of inductive construc-
tions, 1st edn, Springer Publishing Company, Incorporated

13. Bornot S, Sifakis J, Tripakis S (1998) Modeling urgency in timed
systems. In: Compositionality, LNCS, vol 1536. Springer

@ Springer

https://doi.org/10.1007/978-3-030-13705-2_6
https://doi.org/10.1016/j.procs.2016.09.068
http://www.sciencedirect.com/science/article/pii/S187705091632213X
http://www.sciencedirect.com/science/article/pii/S187705091632213X
https://doi.org/10.1109/ACCESS.2017.2697839
https://doi.org/10.1007/978-3-030-13705-2_9
https://doi.org/10.1145/996566.996629
https://doi.org/10.3390/su11102736
https://www.mdpi.com/2071-1050/11/10/2736
https://doi.org/10.3390/s19092206
https://doi.org/10.1016/j.entcs.2009.08.004
http://www.sciencedirect.com/science/article/pii/S1571066109003296
http://www.sciencedirect.com/science/article/pii/S1571066109003296

742

Mobile Netw Appl (2023) 28:732-743

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Chaki S, Clarke EM, Groce A, Jha S, Veith H (2004) Modular
verification of software components in c. IEEE Trans Softw Eng
30(6):388—402. https://doi.org/10.1109/TSE.2004.22

Lee C-C, Jiang JR, Huang C-Y, Mishchenko A (2007)
Scalable exploration of functional dependency by interpola-
tion and incremental sat solving. In: 2007 IEEE/ACM inter-
national conference on computer-aided design, pp 227-233.
https://doi.org/10.1109/ICCAD.2007.4397270

. Clarke EM, Emerson EA (1982) Design and synthesis of

synchronization skeletons using branching-time temporal logic.
In: Logic of programs, workshop. Springer-Verlag, Berlin, pp 52—
71. http://dl.acm.org/citation.cfm?id=648063.747438

Emerson EA, Wahl T (2005) Dynamic symmetry reduction. In:
Halbwachs N, Zuck LD (eds) Tools and algorithms for the
construction and analysis of systems. Springer, Berlin, pp 382-396
Gordon MJC, Melham TF (eds) (1993) Introduction to HOL: A
theorem proving environment for higher order logic. Cambridge
University Press, New York

Hessel A, Larsen K, Nielsen B, Pettersson P, Skou A (2003)
Time-optimal real-time test case generation using UPPAAL. In:
FATES’03

Hu AJ, Dill DL (1993) Reducing bdd size by exploiting functional
dependencies. In: 30th ACM/IEEE design automation conference,
pp 266-271. https://doi.org/10.1145/157485.164888

ITosif R (2002) Symmetry reduction criteria for software model
checking. In: Bosnacki D, Leue S (eds) Software, model checking.
Springer, Berlin, pp 2241

Ip CN (1998) Generalized reversible rules. In: Proceedings of
the 2nd international conference on formal methods in computer-
aided design, FMCAD ’98. Springer-Verlag, London, pp 403—420.
http://dl.acm.org/citation.cfm?id=646185.758715

Ip CN, Dill DL State reduction using reversible rules. In:
Proceedings of the 33st Conference on Design Automation, Las
Vegas, Nevada, USA, Las Vegas Convention Center, June 3-7,
1996., pp 564-567 1996. https://doi.org/10.1145/240518.240625
Jiang JHR, Brayton RK (2004) Functional dependency for
verification reduction. In: Alur R, Peled DA (eds) Computer aided
verification. Springer, Berlin, pp 268-280

Kesten Y, Pnueli A, Zlatuska J (1998) Modularization and
abstraction: The keys to practical formal verification. In: Brim
L, Gruska J (eds) Mathematical foundations of computer science
1998. Springer, Berlin, pp 54-71

Krichen M (2012) A formal framework for black-box confor-
mance testing of distributed real-time systems. [ICCBS 3(1/2):26—
43. https://doi.org/10.1504/1IJCCBS.2012.045075

Krichen M, Cheikhrouhou O, Lahami M, Alroobaea R, Jmal
Mailej A. (2018) Towards a model-based testing framework for
the security of internet of things for smart city applications.
In: Mehmood R, Bhaduri B, Katib I, Chlamtac I (eds) Smart
societies, infrastructure, technologies and applications. Springer
International Publishing, Cham, pp 360-365

Krichen M, Maalej AJ, Lahami M (2018) A model-
based approach to combine conformance and load
tests: an ehealth case study. IJCCBS 8(3/4):282-310.
https://doi.org/10.1504/1JCCBS.2018.096437

Krichen M, Tripakis S Black-box conformance testing for real-
time systems. In: 11th international spin workshop on model
checking of software (SPIN’04), LNCS, vol. 2989. Springer
(2004). Available at http://www-verimag.imag.fr/PEOPLE/
Stavros.Tripakis/papers/timetest.pdf

Krichen M, Tripakis S (2009) Conformance testing for real-time
systems. Formal Methods in System Design 34(3):238-304
Kripke SA (1963) Semantical considerations on modal logic. Acta
Philosophica Fennica 16(1963):83-94

@ Springer

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

Kwiatkowska M, Norman G, Parker D (2006) Symmetry reduction
for probabilistic model checking. In: Ball T, Jones RB (eds)
Computer aided verification. Springer, Berlin, pp 234-248
Lahami M, Fakhfakh F, Krichen M, Jmaiel M (2012) Towards
a TTCN-3 test system for runtime testing of adaptable and
distributed systems. In: Proceedings of the 24th IFIP WG 6.1
international conference testing software and systems (ICTSS’12),
pp 71-86

Lahami M, Krichen M, Barhoumi H, Jmaiel M (2015) Selective
test generation approach for testing dynamic behavioral adap-
tations. In: Testing software and systems - 27th IFIP WG 6.1
International Conference, ICTSS 2015, Sharjah and Dubai, United
Arab Emirates, November 23-25, 2015, Proceedings, pp 224-239.
https://doi.org/10.1007/978-3-319-25945-1_14

Lahami M, Krichen M, Bouchakwa M, Jmaiel M (2012)
Using knapsack problem model to design a resource aware test
architecture for adaptable and distributed systems. In: Proceedings
of the 24th IFIP WG 6.1 international conference testing software
and systems (ICTSS’12), pp. 103-118

Maalej AJ, Lahami M, Krichen M, Jmaiel M (2018) Distributed
and resource-aware load testing of WS-BPEL compositions. In:
ICEIS (2), pp. 29-38. SciTePress

Mehmood R, Graham G (2015) Big data logistics: A health-
care transport capacity sharing model. Proc Comput Sci
64:1107-1114. http://www.sciencedirect.com/science/article/pii/
S1877050915027015. Conference on ENTERprise Informa-
tion Systems/International Conference on Project MANage-
ment/Conference on Health and Social Care Information Systems
and Technologies, CENTERIS/ProjMAN / HCist 2015 October
7-9, 2015, https://doi.org/10.1016/j.procs.2015.08.566

Mehmood R, Katib I, Chlamtac I, Bhaduri B (2018) Smart soci-
eties, infrastructure, technologies and applications: First interna-
tional conference, SCITA 2017, Jeddah, Saudi Arabia, Novem-
ber 27-29, 2017, Proceedings, Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunica-
tions Engineering book series (LNICST, volume 224) Springer.
https://doi.org/10.1007/978-3-319-94180-6

Momtahan L (2005) Towards a small model theorem for data
independent systems in alloy. Electron Notes Theor Comput Sci
128(6):37-52. https://doi.org/10.1016/j.entcs.2005.04.003. http://
www.sciencedirect.com/science/article/pii/S1571066105002355.
Proceedings of the Fouth International Workshop on Automated
Verification of Critical Systems (AVoCS 2004)

Muhammed T, Mehmood R, Albeshri A, Alzahrani

A (2020) HCDSR: A hierarchical clustered fault tol-
erant routing technique for IoT-based smart societies.
Springer International Publishing, Cham, pp 609-628.

https://doi.org/10.1007/978-3-030-13705-2_25

Muhammed T, Mehmood R, Albeshri A, Katib I (2018)
Ubehealth: A personalized ubiquitous cloud and edge-enabled
networked healthcare system for smart cities. IEEE Access
6:32258-32285. https://doi.org/10.1109/ACCESS.2018.2846609
Myers G (1979) The art of software testing. Wiley

Neto ACD, Travassos GH (2010) A picture from the model-based
testing area: Concepts, techniques, and challenges. Adv Comput
80:45-120

Nielsen B, Skou A (2001) Automated test generation from timed
automata. In: TACAS’01. LNCS 2031, Springer

Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, LNCS, vol 2283.
Springer

Norris IPC, Dill DL (1996) Better verification through
symmetry. Formal Methods in System Design 9(1):41-75.
https://doi.org/10.1007/BF00625968

https://doi.org/10.1109/TSE.2004.22
https://doi.org/10.1109/ICCAD.2007.4397270
http://dl.acm.org/citation.cfm?id=648063.747438
https://doi.org/10.1145/157485.164888
http://dl.acm.org/citation.cfm?id=646185.758715
https://doi.org/10.1145/240518.240625
https://doi.org/10.1504/IJCCBS.2012.045075
https://doi.org/10.1504/IJCCBS.2018.096437
http://www-verimag.imag.fr/PEOPLE/Stavros.Tripakis/papers/timetest.pdf
http://www-verimag.imag.fr/PEOPLE/Stavros.Tripakis/papers/timetest.pdf
https://doi.org/10.1007/978-3-319-25945-1_14
http://www.sciencedirect.com/science/article/pii/S1877050915027015
http://www.sciencedirect.com/science/article/pii/S1877050915027015
https://doi.org/10.1016/j.procs.2015.08.566
https://doi.org/10.1007/978-3-319-94180-6
https://doi.org/10.1016/j.entcs.2005.04.003
http://www.sciencedirect.com/science/article/pii/S1571066105002355
http://www.sciencedirect.com/science/article/pii/S1571066105002355
https://doi.org/10.1007/978-3-030-13705-2_25
https://doi.org/10.1109/ACCESS.2018.2846609
https://doi.org/10.1007/BF00625968

Mobile Netw Appl (2023) 28:732-743

743

47.

48.

49.

50.

51.

52.

53.

Queille JP, Sifakis J (1982) Specification and verification of
concurrent systems in cesar. In: Proceedings of the 5th colloquium
on international symposium on programming. Springer-Verlag,
London, pp 337-351. http://dl.acm.org/citation.cfm?id=647325.
721668

Roscoe AW, Broadfoot PJ (1999) Proving security protocols
with model checkers by data independence techniques. J
Comput Secur 7(1):147-190. http://content.iospress.com/articles/
journal-of-computer-security/jcs120

Schlingensiepen J, Mehmood R, Nemtanu FC, Niculescu M
(2014) Increasing sustainability of road transport in european
cities and metropolitan areas by facilitating autonomic road
transport systems (arts). In: Wellnitz J, Subic A, Trufin R (eds)
Sustainable automotive technologies 2013. Springer International
Publishing, Cham, pp 201-210

Sifakis J, Yovine S (1996) Compositional specification of timed
systems. In: 13th annual symposium on theoretical aspects of
computer science, STACS’96, LNCS, vol 1046. Spinger-Verlag
Soderstrom O, Paasche T, Klauser F (2014) Smart cities
as corporate storytelling. City: analysis of urban trends 18.
https://doi.org/10.1080/13604813.2014.906716

Springintveld J, Vaandrager F, D’ Argenio P (2001) Testing timed
automata. Theoretical Computer Science 254

Thacker RA, Jones KR, Myers CJ, Zheng H (2010) Auto-
matic abstraction for verification of cyber-physical systems. In:
Proceedings of the 1st ACM/IEEE international conference on
cyber-physical systems, ICCPS "10. ACM, New York, pp 12-21.
https://doi.org/10.1145/1795194.1795197

54.

55.

56.

57.

58.

59.

60.

Tretmans J (1992) A formal approcah to conformance testing.
Ph.D. thesis, University of Twente Twente The Netherlands
Utting M, Pretschner A, Legeard B (2012) A taxonomy of model-
based testing approaches. Softw Test Verif Reliab 22(5):297-312.
https://doi.org/10.1002/stvr.456

Velev MN (2001) Automatic abstraction of memories in the formal
verification of superscalar microprocessors. In: Margaria T, Yi
W (eds) Tools and algorithms for the construction and analysis of
systems. Springer, Berlin, pp 252-267

Wahl T, Donaldson A (2010) Replication and abstraction:
Symmetry in automated formal verification. Symmetry 2(2):799—
847. https://doi.org/10.3390/sym2020799

Lee W, Pardo A, Jang J-Y, Hachtel G, Somenzi F (1996)
Tearing based automatic abstraction for ctl model checking.
In: Proceedings of international conference on computer aided
design, pp 76-81. https://doi.org/10.1109/ICCAD.1996.568969
Zhang J, Goldsby HJ, Cheng BH (2009) Modular verifi-
cation of dynamically adaptive systems. In: Proceedings of
the 8th ACM international conference on aspect-oriented soft-
ware development, AOSD ’09. ACM, New York, pp 161-172.
https://doi.org/10.1145/1509239.1509262

Zhu H, Belli F (2009) Advancing test automation technology
to meet the challenges of model-based software testing - guest
editors’ introduction to the special section of the third IEEE
international workshop on automation of software test (AST
2008). Inf Softw Technol 51(11):1485-1486

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

http://dl.acm.org/citation.cfm?id=647325.721668
http://dl.acm.org/citation.cfm?id=647325.721668
http://content.iospress.com/articles/journal-of-computer-security/jcs120
http://content.iospress.com/articles/journal-of-computer-security/jcs120
https://doi.org/10.1080/13604813.2014.906716
https://doi.org/10.1145/1795194.1795197
https://doi.org/10.1002/stvr.456
https://doi.org/10.3390/sym2020799
https://doi.org/10.1109/ICCAD.1996.568969
https://doi.org/10.1145/1509239.1509262

	Improving Formal Verification and Testing Techniques for Internet of Things and Smart Cities
	Abstract
	Introduction
	Preliminaries
	Internet of things and smart cities
	Internet of Things
	Smart cities

	Formal methods
	Model based testing

	Formal framework
	Timed automata
	Different types of tests
	Conformance relations

	Different techniques for improving formal verification activities
	Abstraction
	Modularization and compositionality
	Symmetry detection
	Data independence detection
	Eliminating functional dependencies
	Exploiting reversible rules

	Different techniques for improving testing activities
	Refinement techniques
	Reducing the size of digital-clock tests
	Generating timed automata testers
	Updating test cases after system evolution
	Resource aware test component placement
	Coverage techniques

	Case study: a temperature measuring system with four sensors and one collector
	Conclusion
	References
	Publisher's Note

