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Abstract
This study proposes a system for the automatic recognition of radar waveforms. This system mainly uses the obvious difference
in Choi–Williams distribution (CWD) images of different modulated signals. We successfully convert problems related to radar
signal recognition into problems related to image recognition. The classification system uses CWD time–frequency analysis of
the detected radar signal to obtain its CWD image, which can be recognized by deep neural networks. To verify this method, a
database containing 1800 images and 8 types of radar signal CWD images is established. Although a convolutional neural
network exhibits strong expression, it is not suitable for training a small-scale database. To solve this inadequacy, an image
classification algorithm based on transfer learning and design experiments is proposed. This algorithm is intended to fine-tune
three different pre-training models. This study also integrates the texture features of the image with the depth features extracted
using the depth neural network to compensate for the shortcomings of the depth features in expressing image information. The
simulation results indicate that the method can still be used to effectively recognize radar signals at a low SNR.

Keywords Waveform recognition . Transfer learning . CWDpicture . Convolutional neural network . Feature fusion

1 Introduction

Research on the intra-pulse characteristic analysis of radar
signals began in the 1980s. Radar waveform design has
recently increased in complexity because of the wide use
of advanced radar [1–4]. The requirements for modern
radar counter-spy reconnaissance have been difficult to
meet using the five traditional characteristic parameters
for radar signal identification. However, intra-pulse fea-
tures can help reduce the probability of a multi-
parameter space overlap, which provides a basis for the
classification and identification of radar signals. These
features also offer a feasible method for enhancing the
recognition ability of current radar signals [5, 6].
Identification of intra-pulse modulation can improve the
accuracy of signal sorting, guide radar jamming, and an-
alyze the tactical performance of radars. Numerous
methods to identify radar intra-pulse modulation have
been proposed in the relevant literature. With the

continuous development of radar technology, techniques
in radar signal recognition are constantly updated. The
low probability of intercept (LPI) radar signal has the
characteristics of a large time–bandwidth product, strong
anti-jamming ability, high resolution, and low intercep-
tion, which impede the detection of traditional non-
cooperative interception receivers [7, 8]. Literature [9]
identified radar signals by measuring pulse parameters.
Literature [10] extracted the singular-value features of
time–frequency images. Literature [11] considered a
method for diagnosing and classifying interception radar
signals on the basis of pulse compression waveforms. The
problems identified in the present study are as follows: 1.
The robustness of the classifier is poor at a low SNR; 2.
The effectiveness and universality of man-made features
need to be assessed; 3. The recognition effect is influ-
enced by image processing in several recognition methods
on the basis of the image.

Deep learning is highly effective in solving various
problems, such as visual recognition, speech recognition,
and natural language processing [12]. Convolutional neu-
ral networks (CNNs) is a common deep-learning architec-
ture which prompted by the cognitive mechanism of bio-
logical vision. CNNs can powerfully extract features and
obtain effective characterization of original images. These
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qualities allow CNNs to extract visual laws directly from
the original pixels with minimal preprocessing. However,
a small-scale database direct training network may lead to
model over fitting. The reason is that the number of pa-
rameters of the model would be considerably larger than
the number necessary to fit the small data distribution
[13]. Transfer learning can transfer knowledge from one
machine learning mode to another. The technique can be
used on small databases by fine-tuning the network model
trained on large datasets. Therefore, the current study pro-
poses an approach to training the network by transfer
learning, thereby achieving recognition of eight types of
modulation signals. Meanwhile, to prevent over-fitting
networks caused by highly abstract characteristics, the
current study combines the features possessed by deep
neural networks with the shallow features of artificially
extracted from images. The fused features are then fed
into the SVM classifier for LPI radar signal recognition.
The overall process flowchart is presented in Fig. 1.

The rest of this paper is organized as follows, Section 2
briefly introduces the CWD and gives the CWD image of
the signal to be identified. Section 3 first introduces
network-based transfer learning, feature fusion and support
vector machine (SVM), the overall algorithm flow is given
at the end of this section. Then Section 4 is the experiments
and results. We conclude this work in Section 5.

2 Signal time–frequency analysis

Radar signal is a non-stationary signal that can only obtain
significantly limited signal information by traditional time–

domain and frequency–domain analyses. A powerful tool for
non-stationary signal processing, time–frequency significant-
ly helps analyze radar signal characteristics. It maps one-
dimensional time signals to two-dimensional time–frequency
planes, which can fully characterize the time–frequency joint
characteristics of non-stationary signals [14, 15]. Time–fre-
quency analysis not only reflects the distribution of signal
energy with respect to time and frequency; it also reveals the
relationship of frequency with time.

There are two types of time–frequency analyses have been
identified: linear representation and nonlinear representation.
Typical linear time–frequency analyses include short-time
Fourier transform, wavelet transform, and S transform, among
others. By contrast, typical nonlinear time–frequency repre-
sentation includes Wigner-Ville distribution (WVD), Choi–
Williams distribution (CWD), and so on.

CWD time–frequency analysis was proposed in 1989. It
exhibits minimum cross-interference in all unprocessed
Cohen-like distributions as well as high resolution and recog-
nition accuracy for signals at different times or frequencies.
The CWD of the continuous signal f(t) is expressed as follows:

C t;ωð Þ ¼ ∬
∞

ffiffiffiffiffiffiffiffiffiffi
σ

4πτ2

r
f s; τð Þx sþ τ=2ð Þx* s−τ=2ð Þe−jωτdsdτ ð1Þ

where f(s, τ) is a kernel function. In accordance with Cohen’s
general theory of time–frequency distribution, different distri-
butions can be obtained by kernel functions.

Interference caused by cross-terms can be effectively re-
duced using the kernel function.

f s; τð Þ ¼ exp
σ s−tð Þ2
4τ2

" #
ð2Þ

This kernel function is similar to a low-pass filter in a two-
dimensional space that can filter signal cross-terms. The pa-
rameter σ is a controllable factor and determines the band-
width of the filter. It can inhibit cross-term interference by
controlling the value of σ.

To more efficiently reflect the CWD time–frequency dis-
tribution image of different signals and render the cross-term
less obvious, this study uses σ = 1 to balance cross-term inter-
ference and signal resolution [16]. The discrete form of the
Choi–Williams transform is as follows:

C l;ωð Þ ¼ 2 ∑
∞

τ¼−∞
e− j2ωτ

∑
∞

s¼−∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn2=σ

p e−σ s−lð Þ2= 4τ2ð Þx sþ τð Þx* s−τð Þ

ð3Þ

The smallest time scale in the discrete sequence is the sam-
pling interval. Half of the translation in the continuous case
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Fig. 1 Overall working process of this study
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cannot be achieved, and only a corresponding unit can be
translated by at least one unit 20. For convenience of opera-
tion, the windowed Choi–Williams transform can be
expressed as Eq. (4):

C l;ωð Þ ¼ 2 ∑
∞

τ¼−∞
WN τð Þe− j2ωτ

∑
∞

s¼−∞
WM sð Þ

ffiffiffiffiffiffiffiffiffiffi
σ

4πτ2

r
e−σs

2= 4τ2ð Þx l þ sþ τð Þx* l þ s−τð Þ

ð4Þ

where,WN(τ) is a symmetric window function, with the range
of −N/2 ≤ τ ≤N/2, and WM(τ) is a rectangular window with a
value of 1 in the range of −M/2 ≤ τ ≤M/2.

Figure 2 presents the CWD graph for SNR = 8 dB. As
shown in the figure, the CWD images of 8 different LPI sig-
nals are significantly different, which facilitate the neural net-
work to extract features.

3 Radar signal recognition rlgorithm based
on transfer learning and feature fusion

Deep neural networks have recently drawn considerable inter-
est in machine learning. Accordingly, image classification
based on convolutional neural networks (CNNs) is widely used
because of its high robustness and excellent performance. As

Fig. 2 Different classes of waveforms, including the linear frequency modulation (LFM), Costas code, T1, T2, T3, T4, Frank code, and BPSK code
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highly powerful deep neural networks, deep CNNs have suc-
cessfully realized image recognition and classification, NLP
sentence classification, and so on [17–20]. CNNs have also
been widely applied in the industrial field. Deep CNNs include
a large number of network parameters and can easily lead to
over-fitting during training in a small-scale database. This prob-
lem was addressed via transfer learning by reusing the structure
and weights of the pre-training model [21–25].

3.1 Network-based transfer learning

Network-based deep transfer learning refers to multiplexing
part of the network pre-trained in the source domain, including

its network structure and connection parameters andmigrating
it to a part of the deep neural network used in the target do-
main .

Figure 3 presents a CNN to describe transfer learning. The
network mostly includes parameters in the fully connected
layer. All convolutional layers and the first two full connection
layer parameters are frozen during training, and we only fine-
tune the network parameters of the last fully connected layer
(the fc8 layer in AlexNet and VGGNet). Lastly, we use the
softmax classifier for classification. In order to transfer the
pre-trained network model to the tasks of this study. The di-
mension of the last fully connected layer of the CNN model
pre-trained on ImageNet is changed to suit for our task, and

Transfer

Fine-tune

Source data

Input layer

Convolution layers

Fully connected layers

Last fully connected layer

Input layer

Convolution layers

Fully connected layers

Last fully connected layer

Target data

Softmax Softmax

Fig. 3 Transfer learning based on the deep convolutional neural network model

Fig. 4 Visualization of convolutional layer features. (a) Convolutional layer of AlexNet; (b) Convolutional layer of VGG16; (c) Convolutional layer of
VGG19
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the parameters of this layer are randomly initialized. The fc8
layer is then fine-tuned under the database established in this
paper. The pool layers in CNNs mainly act as a scaling-down
layer of convolution results, which can also be regarded as
nonlinear down sampling operation layers. The scale of the
feature map is expected to decrease after pooling operation.

Figure 4 presents the feature map of the third convolution
of the AlexNet, VGG16, and VGG19 networks respectively.
The feature map shows that the features of the images extract-
ed by different network models also vary with the network
structure and the size of the convolution kernel.

3.2 Feature fusion algorithm

Deep CNN can automatically extract the deep features of im-
ages. If the given dataset is relatively simple, the model ex-
cessively considers the correlation between unnecessary data,
such as noise in the fitting function, which can lead to over
fitting. Therefore, to prevent over fitting when training neural
networks and compensating for the deficiency of deep neural
networks in shallow feature expression, we use feature fusion
to realize radar signal recognition. The texture features of an
image can describe repeated local patterns and permutation
rules in images. The texture features of the images have a wide
range of applications in image classification owing to its

satisfactory anti-noise performance and rotation invariance
[26]. To obtain a simple end classifier, image texture analysis
was conducted based on the statistical properties of the gray
histogram. We ultimately obtain six characteristic values. The
features selected for feature fusion are listed in Table 1.

The n-order moments of the mean are expressed as Eq. (5):

μn ¼ ∑
L−1

i¼0
zi−mð Þnp zið Þ ð5Þ

where zi represents a random variable of the gray scale, p(z)
represents a histogram of gray levels in one region, and L
represents the number of gray levels. All features in the table
can be derived from Eq. (5), and the expression of each is
given in Table 1.

A support–vector machine (SVM) is a supervised learning
algorithm mainly used to solve data classification problems in
pattern recognition. The basic idea of the SVM is to find the
best separated hyperplane on the feature space to maximize
the interval between positive and negative samples in a train-
ing set. This idea can be turned into solving the following
constrained optimization problems by applying the Lagrange
multiplier method and the concept of a kernel function [23]:

maxL αð Þ ¼ ∑
N

j¼1
α j−

1

2
∑
N

j¼1
∑
N

k¼1
α jαky jykK xj; xk

� �

s:t:
0≤α j≤C

∑
N

j¼1
ajy j ¼ 0

8<
:

ð6Þ

where C is the punishment coefficient, which denotes the pun-
ishment degree of SVM, and K(xj, xk) denotes the kernel func-
tion. There are commonly 4 types of kernel function, includ-
ing linear kernel, polynomial kernel, sigmoid kernel and
Guass radial basis kernel. In this study, we choose the
Gaussian kernel, expressed as Eq. (7):

K xj; xk
� � ¼ exp −

x j−x2k
2σ2

� �
ð7Þ

Table 1 List of features selected for feature fusion

Index Features Expression

1 Mean

2 Standard deviation σ ¼ ffiffiffiffiffi
μ2

p

3 Third moment μ3 ¼ ∑
L−1

i¼0
zi−mð Þ3p zið Þ

4 Uniformity U ¼ ∑
L−1

i¼0
p2 zið Þm ¼ ∑

L−1

i¼0
zip zið Þ

5 Entropy e ¼ − ∑
L−1

i¼0
p zið Þlog2p zið Þ

6 Smoothness R ¼ 1− 1
1þσ2
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7fc SVM

classifier

Image texture

features
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Fig. 5 The overall flow of feature fusion algorithm
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Lastly, we use the fc7 layer features of the deep CNN and
the texture features of the image to be fused in series. In ad-
dition, we use the fused features to train the SVM classifier in
order to recognize the radar signal. The overall flowchart of
the algorithm is shown in Fig. 5.

3.3 Dataset

Automatic waveform recognition systems are generally appli-
cable in highly complex environments; thus, the length of the
received signal is indefinite. To expedite the calculation, we
set the number of samples to a random.

value between 512 and 1024 and discard data larger than
1024. The signal is assumed to be propagated on a Gaussian
white noise channel, and SNR denotes the ratio of signal to
noise [27–31]. SNR ¼ 10log10 σ2

s

� �
= σ2

ε

� �
.

All LPI radar signal generation and experimental simula-
tion processes in this chapter are based on MATLAB 2016a.
Different modulation types of LPI radar signals have various
parameters; thus, this study uses the uniform distribution U(⋅)
based on the sampling frequency fs. Radar signal parameters
are listed in Table 2.

In this section, the SNR ranges from −8 to 8 dB with inter-
val of 2 dB. We transform the radar signal into different time–
frequency images by CWD. Lastly, we established a database
contaning 1800 CWD pictures and 8 types of radar signal
images. We split this database into two parts such that the
training set has 1440 pictures, and the test set has 360 pictures.
The images have a 236*236*3 resolution with the third

dimension corresponding to the red–green–blue system color
channels.

4 Simulation results

To verify the effectiveness of the transfer learning and feature
fusion algorithm in our task, the experiments were conducted
using AlexNet, VGG-VD16, and VGG-VD19. All images
were resized to the optimal resolution for each CNN mod-
el—that is, either 227*227*3 or 224*224*3. The dimension
of the last layer of the training model is modified to
1*1*4096*8 corresponding to the number of the radar wave-
form. During training, the parameters of all front layers are
frozen, and the parameters of the fc8 layer are subjected to
random initialization. Compared with real-world object recog-
nition, time–frequency images are relatively simple, which
might prompt the model to consider unnecessary noise and
other unnecessary data association when fitting functions. To
reduce over fitting, several dropout layers are added (which
can weaken the single relationship between the features and

Table 3 Testing environment

Project Environment/Version

Computer HP Z440

CPU E5-1620V4(Intel)

Memory 16GB(DDR3@1600 MHz)

GPU P4000(Quadro)

MATLAB R2016a

Framework matconvnet-1.0-beta24

Table 2 List of simulation parameters

Radar signal Parameters Ranges

– Sampling frequency fs 1

LFM Length of signal N 1024

Bandwidth Δf U(1/16, 1/8)

Initial frequency f0 U(1/16, 1/8)

Costas Hopping sequence Nc [3, 6]

Fundamental frequency fmin U(1/24, 1/20)

Length of signal N [512, 1024]

T1–T4 Code sequence number k [4, 6]

Overall coding cycle T [0.07, 0.1]

Length of signal N [512, 1024]

Frank Carrier frequency fc U(1/8, 1/4)

Cyclic phase code cpp [1, 5]

Step frequency M [4, 8]

BPSK Carrier frequency fc U(1/8, 1/4)

Length of Barker code {7, 11, 13}

Number of code periodsNp [100, 300]

Cycles per phase code (cpp) [1, 5]
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Fig. 6 Recognition performance with different iteration time
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formmore combinations of features so that the model does not
heavily depend on a feature) at the right before the output.

layers. The epoch is set to 30, and the batch size is 64.
When training each deep CNN model, we used the standard
cross-entropy loss (cost) function. The experimental environ-
ment is listed in Table 3.

Figure 6 presents the trend of the recognition rate of
three pre-training models under different iterations. After
time–frequency analysis of the radar signal, the difference
between classes become more apparent so that this method
can achieve superior performance with reduced iteration.
Meanwhile, Fig. 7 tests the robustness of the three models.
As shown in the figure, the recognition rate of all three
models can still exceed 90% under the condition of a re-
duced sample size.

Figure 6 indicates that satisfactory recognition performance
may still be obtained using the algorithmwhen the sample size
is small. Therefore, the algorithm proposed in this study
exhibis strong robust performance.

Studies on the introduction of multi-time coding into
the experiment of the classification system are rarely
reported. Thus, the experiment in this section is com-
pared with Lundén’s [11] and Ming Zhang’s [20]. The
signal waveforms classified by the Lundén and Ming
Zhang are similar to this paper, The simulation results
are shown in Fig. 8.

As shown in Fig. 8, multi-time coding is introduced for the
first time in the classification system; thus, the Lundén’s meth-
od exhibits poor performance in recognizing multi-time cod-
ing. Zhang Ming used the deep learning algorithm for the first

time; thus, the performance is relatively good when SNR is
above 0 dB.

The classification method proposed in this study still
achieves a good recognition accuracy rate below 0 dB.
Specifically, when using the VGG16 pre-training network
model for feature fusion, satisfactory performance and stabil-
ity can be obtained.

Table 4 presents the improvement in recognition perfor-
mance by using the feature fusion algorithm and SVM classi-
fier. Experimental results indicate that compared with only
using the fc7 layer features, the feature fusion algorithm can
obtain enhanced recognition performance.

Figure 9 presents the detailed recognition results of eight
waveforms under the −4 dB condition. The correct recogni-
tion rates of all models are more than 96% after 30 epochs of
training. However, the recognition effect of VGG19 is rela-
tively poor and followed by AlexNet. VGG19 is the deepest
among the three network structures. Thus, the features extract-
ed by VGG19 are relatively abstract, which can lead to
overfitting during network training. VGG16 andAlexNet with
a relatively shallow network structure can achieve good rec-
ognition results. We evaluate the recognition performance of
transfer learning and feature fusion at a low SNR. The results
show that the algorithm proposed in this study can be effec-
tively used for the classification task of CWD images and
further realize the recognition of different radar signals.
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Table 4 Performances of feature fusion and non-feature fusion

Features AlexNet VGG-
16

VGG-
19

Fc7 features 97.33% 95.83% 97.22%

Fusion feature 98.89% 99.72% 99.42%
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5 Conclusion

We proposed an automatic recognition system for an LPI radar
waveform. In order to reduce the influence of cross-terms,
CWD is used for time–frequency analysis of the signals and
a small-scale CWD image database is created for training
CNNs. This method transforms the problem of abstract radar
signal intra-pulse recognition into one of image classification
and optimizes the superior performance of depth neural net-
work in the field of image classification. Meanwhile, in order
to address the problem that the deep CNNs is easy to over fit
on a small-scale datasets, this study introduces transfer learn-
ing to fine-tune the pre-training network to adapt to this task.
Experimental results indicate that the trained CNNs can auto-
matically extract CWD image features, which solves the dif-
ficulties attributed to man-made features. Apart from this, this
study proposes the feature fusion algorithm to combine the
features extracted using the CNN with shallow feature fusion
and thereby solve the problem of insufficient depth features in
image expression. Lastly, we use the SVM classifier for LPI
radar signal recognition. The recognition accuracy under dif-
ferent SNR indicates that the method can still achieve good
recognition results at a low SNR. It provides a feasible solu-
tion for LPI radar signal recognition under low-SNR
conditions.
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