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Abstract
Indoor location is definitively a key feature with immense value especial for geofencing. The received signal strength (RSS)
fingerprinting based methodology is widely adopted to determine his/her proximity to that particular region. Its dynamic
nature and maintain overhead remain a primary challenge. In this paper, we propose a hybrid electronic geofence approach
that combines self-updating RSS fingerprints based localization and Channel State Information (CSI) motion detection.
Multidimensional matching and filtering principle achieves fingerprints self-updating and improves the localization accuracy.
CSI-based speed estimation reduces localization frequency and overhead. Our extensive real-world experiment results show
that the proposed indoor geofencing method works well for more than 30 days without manual Wi-Fi fingerprints updating.

Keywords CSI-RSS collaboration · Mobile device management · Multi-dimensional RSS · Self-update

1 Introduction

Electronic Security Systems are increasingly applied and
deployed in many mobile IoT scenarios [5, 26], e.g., mobile
phone experience center, museum, library, and factory. They
leverage optical fiber probe, infrared detection, geomag-
netism detection and closed-circuit television methods [10]
to protect individual or public safety and security. However,
these solutions have many drawbacks. Optical fiber probe
is appropriate for outdoor scenario due to its large locating
errors, i.e., about 20 m [40]. Thermal imagery and geomag-
netism detection solutions are vulnerable to heat sources or
electromagnetic interference. Video based solutions suffer
from illumination changes, large pose variations, and par-
tial or full occlusions. Fortunately, location based services
provide another supplementary scheme, Geofence [15] for
indoor scenario. Geofence is a virtual perimeter for a real-
world geographic area. It could be dynamically generated
as in a radius around a point location, or be a predefined
set of boundaries. Hence, Geofence is extensively used in
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children care [28], burglar alarm [2], and location based
communication. Due to the wide deployment and availabil-
ity of Wi-Fi infrastructure, Wi-Fi based electronic Geofence
solutions have much advantages than other radio signal
based solutions and becomes one of the most attractive
techniques for electronic Geofence solution. Note that due
to the complex and fluctuating indoor environments, it is
hardly to calculate the Wi-Fi signal by a general formula.
Hence, most indoor Geofence solutions leverage fingerprint
based solution instead. The working principle of a typical
fingerprint-based Geofence approach consists of two stages:
site survey and fingerprint matching. In the former phase,
a set of Radio Signal Strength (RSS) values from multi-
ple Access Points (APs) are measured and recorded as the
fingerprint for each location and labelled with “safe” or
“alert”. A fingerprint database is accordingly constructed,
in which the fingerprint-location relationship is stored. To
verify wether a user or a device is in the legal zone, the
Geofence algorithm searches current RSS measurements in
the fingerprint database to find a matched location. Another
emergent localization solutions leverage channel state infor-
mation (CSI). CSI is a crucial parameter for Multi-user
MIMO communication in next generation networking col-
laboration. However, although it contains richer information
and the average accuracy is better than RSS, CSI are not
suitable for this scenario due to the highly de-correlation
property. If exploiting CSI, the fingerprint database must
collect fingerprints every 6.25 cm under 2.4 GHz. That is
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a a extremely laborious project. Since the Geofence solu-
tion we mentioned in the following paragraphs is based on
LBS, we will revisit theWi-Fi fingerprint-based localization
solutions and seek for the feasibility to perform accu-
rate and robust indoor Geofence without increasing costs.
We conduct extensive experiments and discover following
limitations of Wi-Fi fingerprint-based Geofence:

1. Different locations sometimes have the same RSS
fingerprinting, resulting in incorrect mappings between
locations and fingerprints. The reason behind is that
single channel RSS is an one-dimensional fingerprints
with little anti-collision ability. Only one channel of
RSS fingerprints cannot provide good uniqueness for
localization.

2. There would be many RSS measurements in the same
location. It is mainly caused by the signal fluctuation
and human body blocking. For example, the obstacles
near the receiver may weaken the received signal
strength by about 10dB. Moreover, multi-path effect
can result in frequency selective fading across the
wireless channel.

3. APs have diverse spatial resolutions on the fingerprints
of locations with different distances to AP. Since the
value of RSS is inversely proportional to the distance
from AP, the distribution is not uniform. Intuitively, the
RSS nearby the AP has more resolution.

4. RSS measurements may experience a large delay due
to hardware and software limitations of commodity
wireless devices. In other words, latest measured RSS
values could be the result of a scan performed several
seconds ago. Since the user may be continuously
moving, this RSS measurement would be expired for
current localization query.

To address these problems, we design a new Multi
Dimen-sional Fingerprint based scheme, namely MDF, for
location based mobile device management (MDM) restric-
tion. Compared to existing RSS based fingerprint, MDF
involves more information about wireless signals to gener-
ate a more concrete fingerprint. In particular, we improve
the localization accuracy from three perspectives. First, we
weight each AP’s reporting and make the APs with better
resolutions with more weights in the fingerprint match-
ing. Second, we introduce multidimensional information,
including RSS, transmission power, channel state, and body
effect, to form the distribution of fingerprints for each
location, to suppress the ambient interference. Third, we
propose multi-dimensional matching principles to leverage
above information and achieve fingerprints self-updating.
Finally, we propose to leverage CSI standing wave prop-
erty in indoor environment to trigger multi-dimensional
fingerprint collection, which can significantly alleviate the

wireless channel hopping overhead. Our contribution are
summarized as follows:

1. We leverage the distribution of multidimensional infor-
mation to generate fingerprints for distinct locations.
Compared with single channel RSS approaches, the
proposed fingerprint contains sufficient spatial infor-
mation about the location of interests, enabling a high
accurate indoor Geofence. In addition, it is also highly
resilient to the interference and ambient change.

2. We propose a novel indoor geofence scheme, MDF,
to realize lightweight, real-time and accurate indoor
location based MDM restriction. We comprehensively
consider the main factors that affect the localization
accuracy, such as the AP discrimination, object’s mov-
ing speed, hardware and environment variance, and sig-
nal fading or shielding from the human body. MDF can
detect the environmental variance and the movement
state of device, which achieve the variable localization
frequency and automagically fingerprints updating to
improve the localization accuracy and reduce system
maintenance overhead. In addition, we point out that
the CSI means the 2-D standing wave property in rich
multi-path environment from Clark model. This discov-
ery theoretically guarantees that CSI variance can be
leveraged to indicate device’s movement.

3. We implement MDF with commodity devices, which
load comprised channel switching program and con-
duct extensive experiments in typical cyber-physical
services. The extensive experiments show that our
approach is with high localization accuracy and resilient
to the ambient change.

2 Related work

As aforementioned reasons, electronic Geofence is a
beneficial complement for other indoor security systems,
especially in low-level-light and dynamic environments.
Here, we merely introduce localization solutions. Current
indoor localization approaches fall into two categories:
fingerprint-based and modeling-based. Fingerprints [48] are
utilized to assist positioning, and the most widely used one
is Wi-Fi signal. In indoor environment, fingerprint based
methods (e.g., Radar [7], Horus [47], SurroundSense [6],
PinLoc [36]), first collect fingerprint of Wi-Fi signal (or
cellular, or FM, or other sensors such as light) in advance
at known locations inside a building, and then identify the
user’s location by matching the fingerprint of this user
with the fingerprint stored in database. Dead-Reckoning is
another stream of techniques (e.g., [18, 33]) proposed in the
literature for localization.
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The mostly used fingerprint is the RSS value. Yang et al.
[45] propose a crowdsourcing based indoor localization,
which exploits the possibility of automatically establishing
the mapping between fingerprint set F and position set P .
In our previous work [23], graph matching algorithm is used
to achieve the automatic mapping in complex environment.
Wu et al. [41] leverages smartphones to collect real-time
RSS samples at mobile reference points and adapts the
complete radio map by learning the relationship of RSS
dependency between different locations. Acoustic ranging
(AR) assisted Wi-Fi positioning was recently developed to
provide distance estimation between two users (e.g., [29,
30]). These schemes leverage the accurate AR and are able
to provide high localization accuracy using the mapping
of fingerprints with some additional distance constraint.
However, if the environment changes, they need update the
fingerprint database artificially.

CSI has potential for accurate indoor localization since
the CSI tool [19] has been released to public on off-the-shelf
hardware. CSI is not a simple extension of RSS on physical
subcarriers but it reveals totally different information on
frequency selective fading process [46]. Sen et al. [35]
proposed a rotation based indoor localization system that
leveraging the human bodies’ strong fading to Line-of-
Sight (LoS) components. Roy et al. [36] proposed a CSI
fingerprint-based localization system which can achieve
meter-level precise indoor point localization. Based on the
strong position distinction property of CSI, Jiang et al.
[24] proposed an Wi-Fi Management Frame Authentication
framework. Besides the above device-based localization,
Xi et al. [42] proposed an CSI-based device-free crowd
density estimation system. There are also many RFID based
tag authentication and localization systems [21, 22, 37].
However, the expensive infrastructures narrow the their
application scenarios, which are mostly implemented in
warehouse. Compared with these schemes, our scheme
provides an accurate moving speed estimation of a single
user in a complex indoor environment. However, due to the
highly de-correlation property, if we need collect all the
fingerprints in the legal zone, it is time consuming.

Recently, the popularity of Software Defined Radio
(SDR) system brings more powerful approaches. Array-
Track [44] uses an antenna array driven by SDR to provide
accurate Angle-Of-Arrival (AoA) based indoor localization.
On the other hand, Wi-See [4] and PinIt [39] simulate
the antenna array by a moving antenna. The latest work
WiTrack [3] implements frequency-modulated continuous-
wave (FMCW) radar technology on SDR platform, and it
achieves 3D device-free human tracking. Although SDR
platform exhibits strong potential, the deployment cost and
computation requirement are still too high for wide range
deployment.

3 Observation on SDF-based fingerprints

Previous RSS fingerprint based localization solutions
leverage a fixed single channel of multiple APs placed in
different locations to acquire and record a mass of RSS
values to generate the location fingerprints. In matching
phase, users exploit the obtained RSS collected from the
same channel of these APs to localize their positio. We name
these type of solutions as Single Dimensional Fingerprint
(SDF) scheme. In this section, we investigate the properties
of classical SDF fingerprint based solutions and show their
limits in enabling accurate localization.

3.1 The restriction of time coherence

Many existing fingerprinting approaches collect several
RSS values on a single channel with in reasonable delay, and
leverage the mean or median of RSS values as the location
fingerprint. They can obtain sufficient packets to generate
the numerical characteristics via improving packets sending
rate. If utilizing packet tcpdump tools, the sending rate can
rise to 300–500 packets per second (p/s). However, due to
the channel time coherence, excessively improving packet
rate has little help in the fingerprint generation process and
are helplessness to localization accuracy.

Time coherence is an engineering concept to characterize
the channel time diversity which is often defined to be time
separation Δt when the time domain correlation function
R(Δt) drops below a certain level. Clarke [13] has shown
that the correlation function R(Δt) has an close form
expression of

R(Δt) = J0(2πfDΔt)

where J0(·) is the 0-order 1st -kind Bessel function and
fD is the equivalent maximum Doppler shift, respectively.
In wireless transmitter-receiver system, which is a typical
linearly time-varying system, the environment change or
reflectors/obstacles movement can be equivalent to the
receiver movement which causes Doppler shift. This kind
of Doppler shift is referred to as equivalent Doppler shift.
However, in indoor environments, the typical equivalent
maximum Doppler shift fD is about several hertz [32]. If
we set the transmitting rate to 200 p/s, i.e., Δt = 0.005,
the time diversity, or time correlation would be about 0.98.
Since commercial NIC can only return integral RSS values,
we can only obtain a large number of identical RSS values,
which are meaninglessness. In fact, our actual tests have
verified this phenomenon.

We leverage “iw” [1] command to implement packet
monitoring and channel hopping. “iw” is a new nl80211
based Linux Command Line Interface (CLI) configuration
utility for wireless devices. It supports all new drivers
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Table 1 A glance of unpacked frames

Record time(HH:MM:SS) Frequency RSS BSSID Source address Destination address

06:53:31.148619 5500 MHz -− 57 dB 30:5a:3a:cb:16:a0 00:16:ea:12:34:56 74:e5:43:5e:fd:a9

06:53:31.153621 5500 MHz − 57 dB 30:5a:3a:cb:16:a0 00:16:ea:12:34:56 74:e5:43:5e:fd:a9

06:53:31.158509 5500 MHz − -57 dB 30:5a:3a:cb:16:a0 00:16:ea:12:34:56 74:e5:43:5e:fd:a9

· · · · · · · · · · · · · · · · · ·
06:53:38.141203 5500 MHz − 58 dB 30:5a:3a:cb:16:a0 00:16:ea:12:34:56 74:e5:43:5e:fd:a9

· · · · · · · · · · · · · · · · · ·
06:53:45.722784 5500 MHz − 57 dB 30:5a:3a:cb:16:a0 00:16:ea:12:34:56 74:e5:43:5e:fd:a9

that have been added to the kernel recently. For instance,
we can use command iw phy phy0 interface add
mon0 type monitor to create a new interface mon0
to set phy0 into monitor mode. In addition, we can use
command iw dev mon0 set freq fc to switch the
center frequency of mon0 to fc MHz. These operations will
only spend several milliseconds. In motion detection phase
(see Fig. 2), the client keeps normal communication to APs
and obtain CSIs from preambles. When the system detects
object’s abnormal moving (see details in Section 4.2),
the client’s NIC card will change to monitor mode and
record all the packets heard from ambient APs. Table 1
lists the unpacked packets information using single channel
(Channel 100 whose fc = 5500 MHz). The table lists
the packets information as follow, time stamp indicated
by the Timing synchronization function,1 channel center
frequency, RSS value, the identifier of basic service set,2

transmitter’s MAC (source) address, and receiver’s MAC
(destination) address, respectively.

As shown in Table 1, SDF-based solutions expose two
main drawbacks: 1) In training phase, we have no need to
record such amount of RSS values in a single channel,
whereas we should leverage this opportunity to obtain
more abundant, and meaningful fingerprints; 2) In matching
phase, since users cannot endure long waiting cycles to
obtain a stable RSS numerical characteristics, e.g., mean or
median, calculating the distance between collected samples
average or median and the mean or median in fingerprint
database would result some localization errors. Hence, we,
in this paper, first propose to leverage multiple channel
fingerprint to improve location accuracy (detailed in
Section 4.1) and exploit sample hypothesis testing to verify

1Timing synchronization function (TSF) is specified in IEEE 802.11
wireless local area network (WLAN) standard which is based on a
1-MHz clock and “tick” in microseconds [49].
2In IEEE 802.11 wireless local area networking standards, basic
service sets (BSS) are units of devices operating with the same medium
access characteristics.

users’ location. In this way, we can not merely leverage all
the sampled RSS values, but also obtain the confidence of
localization precision (detailed in Section 4.6).

3.2 Resolution diversity

Wireless devices, e.g., APs, have a discrimination capability
when fingerprinting a specific location. This capability,
however, is subject to inherent constraints of radio signal
propagation.

Discrimination capability is referred to as the ability
that an AP distinguishes a specific location when using
its RSS observations as fingerprints. Ideally, following the
propagation law of wireless signals, the RSS of a certain
wireless signal decays logarithmically with its propaga-
tion distance d. In other words, an identical ΔRSS can
imply a smaller distance change Δd at the location closer
to the antenna of AP, or a larger Δd at the location far
away from the AP’s antenna. As shown in Fig. 1, the RSS
variance shows vast difference in different physical posi-
tions, depending on the specific distance d. Hence, using
the RSS reading from a long-distance AP may cause a large
error in the location estimation, while using those from near
APs can conversely mitigate the error. In fact, such a RSS
variance also indicates a diversity of AP resolution across
different transmitter-receiver distances.

Fig. 1 AP resolution
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3.3 Measurement latency

The measured RSS might become time-ineffective due to
a long delay or latency, e.g being outdated for estimating
the location. The long delay or latency might be caused by
software and hardware restrictions when performing device
scanning and discovery.

For example, commodity smartphones acquire WLAN
information in a passive scanning mode, in which they
listen to periodic beacons flying in all working channels
sent from surrounding APs. In this mode, the time duration
that a client stays on a channel is 100ms by default, which
is specified by the 802.11 standard [17]. Consequently,
the latency incurred in capturing the AP information is
about 1100ms since there are 11 available channels in
typical 2.4GHz Wi-Fi. In practice, it takes about 1 ∼ 1.5
seconds to complete a scanning for typical commodity
smartphones. Due to the beacon conflict and channel
collision, the beacon interval of 100ms cannot be always
guaranteed, potentially resulting in missing some APs
during a scanning. However, existing smartphone OS may
direct duplicate the information scanned a few seconds
before from these missed APs to the scanning result, which
is indeed out of date for supporting localization.

3.4 Environment variance

The propagation of wireless signals in indoor environments
is extremely complex. The intensity of a radio signal at
a given location usually varies with time for a number
of reasons. In general, the received signal is composed
of both a Line-Of-Sight (LOS) component and numerous
delayed components with different ambient attenuations. In
particular, the impact of the channel variation contributes
significantly to the RSS value of received signals. This
impact also greatly varies at different positions due to the

scattering-rich nature of indoor environments. All the
components combine to the ultimate received signal, either
enlarging or diminishing its RSS depending on the relative
phases of the delayed reflections. Moreover, the observable
reflection is affected not only by the signal propagation
across the environment, but also by the bandwidth of com-
munications, especially in those bandwidth limited systems.

3.5 Hardware variance

Another challenging issue is the hardware variance. The
hardware variance is derived from heterogenous device
components, e.g., the Wi-Fi chip-set and antenna. A Wi-
Fi fingerprint is usually generated via training phase, and
then used in the real tracking. However, the devices used in
training phase to generate fingerprints may differ from users
used in matching phase. The differentiation between those
device would obtain different RSS values even in the same
conditions. In order to avoid the manufacturing error among
different devices, a calibration component is necessary in
both training phase and matching phase.

4 TheMDF system

In this section, we will introduce a novel indoor geofence/
localization scheme, namely MDF, as shown in Fig. 2.

The working process of MDF consists of two phases:
training phase and monitoring phase. The major output
of training phase is a fingerprint database in which a
multidimensional RSS fingerprint and its corresponding
location are associated. The fingerprint database is further
used in monitoring phase to process MDM requests and it
should be automatic updating. We describe the training and
monitoring phases in detail in coming subsections and give
brief introduction as follows.

Fig. 2 The system flowchart
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Training phase The core task of training phase is to build
the fingerprint database. We divide this task into 3 steps:
(1) creating fingerprint space; (2) determining the weight of
APs; (3) eliminating device differences.

Monitoring phase Since channel-hopping decreases com-
munication throughput significantly, MDF does not leverage
multi-dimensional fingerprint to manage mobile device per-
petually. When MDF obtains device’s location, it verifies
whether it is in the legal area. If not, MDF would send alarm
to users. Otherwise, MDF continues estimate the motion
state of device leveraging CSI preamble (see detail in
Section 4.2). Note the CSI feedback meets the requirement
of 802.11ac/ax protocol, the CSI reply operation would not
cause additional overhead. According the motion state and
position offset, MDF will selectively trigger multidimen-
sional RSS collection when the device may approach legal
boundary. When a location query comes, MDF takes the
multi-dimensional fingerprint as a keyword and searches the
fingerprint database. The best matched item is viewed as the
location estimation and sent back to users.

As shown in Fig. 2, MDF eliminates the diversity of
different devices’ gain by module “Device Dependence
Elimination” (see details in Section 4.3). Then it determines
the weight of APs for each location in the training phase
(see details in Section 4.4). After that, MDF leverages the
weighted RSS fingerprints as the inputs to estimate the
location (see details in Section 4.7). Furthermore, after we
get a set of location data, we can predict the position by next
autoregressive model (see details in Section 4.5).

The core components of MDF include the AP selection,
delay cancellation, hypothesis test based fingerprint match-
ing, robust location estimation, and object tracking. InMDF,
we assume that N APs are deployed in the training and
matching scenario. The mobile device can receive the RSS
from those APs in multiple channels.

4.1 Multi-channel fingerprints

As aforementioned, due to time coherence property,
increasing the sample rate in a single channel cannot
improve localization precision. We propose a novel solution
to leverage multiple dimensional RSS information to
promote the accuracy. We utilize frequency diversity to
rich the fingerprints, i.e., we employ multiple channel with
different center frequency to generate multi-dimensional
fingerprint to achieve high positioning accuracy. In the
remain part of this subsection, we will illustrate multiple
channel fingerprints are meaningful and briefly introduce
how to synchronize the channel switching on different APs.

The frequency domain correlation function sounds like
the time correlation function mentioned above. Denote the

frequency interval to beΔf , hence the frequency correlation
function R(Δf ) can be characterized as

R
(
Δf

) =
∞∫

0

S (τ)e−j2πΔf τ

where S(τ), termed power delay profile, is a power delay
profile function of receiving delay τ . Rappaport et al.
[34] point that when the frequency interval is larger than
4 MHz in an indoor radio environment, the frequency
domain correlation function drops below a certain level.
Since different channels possess 20–40 MHz (802.11n/ac)
bandwidth [32], the different channels would have low
correlations which can be used to generate fingerprints.
Our test has verified this inference as shown in Table 2.
Besides changing the client’s NIC into monitor mode, MDF
also leverages command iw dev mon0 set freq fc

to switch the communication channel (center frequency)
to fc. This operation will only spend several milliseconds.
Hence client can obtain multiple-channel RSS fingerprints
in sub-second.

Compared with Table 1, we can see that multiple channel
RSS values provide much more information than single
channel RSS. We will theoretically prove that MDF is more
precise than SDF and give a channel selection approach in
Section 5.

In the following part of this subsection, we will discuss
another problem: select how many channels and how to
select channels to generate and match multi-dimensional
fingerprints. However, this is not a simple nor trivial
issue. On one hand, if the channels are uncorrelated, more
channels would result little error variance (we will discuss
this topic in Section 5). On the other hand, since correlation
does not possess transitivity property, some low correlated
channels might make up a couple of high correlated channel
pairs and they are helplessness for localization . It is up
to channel selection. Fundamentally, it is determined by
the environment and the user’s current location. Hence, in
training phase, we record the RSS of all the channels, while
in matching phase, we dynamic select RSS values collected
from proper channels for localization. Our basic idea is:

Table 2 RSS values in different channels

Record time(HH:MM:SS) Frequency RSS

21:20:23.271207 5500 MHz − 57 dB

21:20:23.413736 5540 MHz − 60 dB

21:20:23.555509 5640 MHz − 58 dB

21:20:23.697279 5700 MHz − 62 dB

21:20:23.839917 5740 MHz − 63 dB

· · · · · · · · ·
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1)Leverage multidimensional scaling (MDS) algorithm to
acquire a quasi-global distance in place of correlation
between different channels in order to avoid to set up high
related channels; 2)Obtain as many channels as possible
with as lower correlation as possible. The channel selection
algorithm is list as follows and the correctness and the
complexity of this algorithm will be discussed in Section 5:

1. Calculate the correlation coefficient ρij between RSS
values collected from channel i and j ;

2. Calculate the local distance di,j = 1 − ρij ;
3. Leverage MDS algorithm to obtain global distance

Di,j = MDS(di,j );
4. Construct an undirected weighted graph G=(V,E) where

the weight of edge evivj
= Di,j ;

5. Solve the Maximum Clique Problem to find the largest
clique S. Here S is the selected channels set.

In the end of this subsection, we briefly introduce our
solution to implement channel switching synchronization.
We adopt a simple yet robust client server synchronization
protocol. For each channel, the AP stays for 100ms, and
broadcast 20 customizedWi-Fi frame containing the current
timestamp and the channel number of next hop. When
a client enters the environment, it stay on an arbitrary
channel and listen for the traffic. When the client hear
the customized frame sent by localization AP, it will soon
synchronize its local counter and hop to the next channel
along with he AP.

4.2 CSI basedmotion detection

As previous section mentioned, in order to keep normal
communication, multidimensional fingerprint collection
can only be triggered when the device moves close to the
safe boundary from inside. Leveraging CSI position de-
correlation property, MDF can estimate device’s moving
distance. However, we cannot leverage CSI to estimate
device’s position directly, since CSI site-survey is extremely

Fig. 3 The CSI variance without moving

Fig. 4 The CSI variance with moving

labour consuming and CSI fingerprint is much vulnerable
to environment changes. Fortunately, we do not need to do
this. According to Jakes’ Model, in rich multi-path indoor
environment, the CSI correlation follows 0-order 1st -kind
Bessel function [13]. That means the CSI must form a 2-D
standing wave filed (like vibrations of a drum membrane)
[16]. Hence, we can estimate the moving distance from the
counts of nodes and antinodes of the standing wave. As
shown in Fig. 3, if the device keep stable, the CSI varies
less than 4 units. In contrast, if the device moves at about
0.15 m/s.3 We draw the CSI amplitude in Fig. 4. We can see
the CSI amplitude changes much more dramatically. Hence,
MDF can easily distinguish whether the device is moving or
not. However, it is hard to count the wave node, i.e., moving
distance, in the map due to environment noise. As shown in
Fig. 5, we binarize the figure using O’tus method [31]. We
count the flip numbers to estimate the moving distance using
the centering mean value (drop the min and max value) of
distance D counted by all subcarriers as Eq. 14

D = CE
2≤i≤29

{
cNi

λi

}
(1)

where c, Ni , λi are the velocity of light, flip count and
centering frequency of i-th subcarrier, respectively. Here,
we do not leverage mean value directly to depress the impact
of large deviation. We do not leverage median value as well
since if so, the resolution will limited by the minimum CSI
wavelength (0.052m@5.825GHz).

4.3 Device dependence elimination

Since the device used in training phase may quite differ
from the devices in matching phase, there will exist
mismatch in RSS measurements obtained at the same
physical location from the same AP in two phases. The

3In order to obtain more CSI samples, we set transmitting rate to be
100 packet/s (more may result buffer overflows).
4Suppose the first and the last values are the min and max ones.

857Mobile Netw Appl (2021) 26:851–869



Fig. 5 The binarized picture of Fig. 4

mismatch comes from the difference of the devices’
receiver gains, which will reduce the fingerprint quality. In
following paragraph, we will analyze the RSS fingerprint
and eliminate the device dependence via relative RSS.

4.3.1 Fingerprint decomposition

In training phase, we leverage a mobile device M0 to
investigate the RSS at location L. In MDF, we can get RSS
matrix

P M0(L) =
{
p

M0
i,j (L)

}
m×n

where i and j indicate i-th (i = 1, 2, · · · , m) AP and j -th
(j = 1, 2, · · · , n) channel, respectively. According to Friis
transmission formula [14], we can decompose the measured
RSS value p

M0
i,j (L) into

p
M0
i,j (L) = GM0 + Gi + pi + pli,j (L) (2)

where GM0 , Gi , pi and pli,j (L) are the gain of receiver
(M0), the gain of transmitter (i-th AP), the transmitting
power of i-th AP and the combination of path-loss and
multi-path fading of j -th channel established by M0 and
i-th AP.5 Since the former three values are constants, the
RSS fingerprint related to location L only depends on the
last one. Note Gi and pi shared parameters for different
users. We only need eliminate GM0 to eradicate device
dependence.

4.3.2 Device-dependence elimination

Based on Eq. 2, GM0 , which is determined by user’s device,
must be eliminated since different devices have different
receiver gains. Gi and pi can be treated as constants since
each user would leverage the same AP to obtain RSS.
pli,j (L) is the relevant value that indicates the position

5We ignore the noise since independent repeated measurements can
effectively reduce random noise in train phase.

of user. Therefore, we leverage relative RSS [11] to avoid
device-dependence.

We exploit the difference of the RSS obtained from the
benchmark AP, say AP0 (details in Section 4.4) and the ones
from the others as the position profile, i.e.,

DRSS(L) = {
dpli,j (L)

}
(m−1)×n

where

dpli,j (L) = pl
M0
i,j (L) − pl

M0
0,j (L)

(2)= Gi − G0 + pi − p0 + pli,j (L) − pl0,j (L)

If we choose a group of appropriate G0, p0, Gi and pi

values, we can make Gi −G0 +pi −p0 = 0. Therefore, we
can get that

dpli,j (L) = pli,j (L) − pl0,j (L) (3)

In this way, the device diversity (device gain GM0 ) would
be eliminated. We leverage the difference between different
APs as the fingerprint.

4.4 Benchmark AP selection

In order to achieve accurate localization, we need to
select an AP with high quality RSS fingerprints as the
benchmark AP. Otherwise the error will spread to the other
APs via device dependence elimination. The fingerprint of
Benchmark AP should meet two conditions: a good stability
and a high degree of differentiation.

A good stability means that the RSS measurements in the
same place always have the similar values. Since the heavy
multi-path effects and the high dynamic environment, the
RSS measurements are constantly changing. We introduce
the variance (σ

j
i )2 of RSS measurements from the AP j

at the position li as the stability metric. Obviously, a small
(σ

j
i )2 indicates a stable fingerprint.
A high degree of differentiation means that the RSS

measurements in different places will get a very different
values. Given that APs have diverse spatial resolutions on
the RSS fingerprints with different range, it is inappropriate
to equally use the RSS readings from all APs for fingerprint
training and location estimation. Intuitively, augmenting the
contribution from more discriminative APs, while limiting
or even eliminating the influence from those fluctuating and
distant APs can improve the quality of RSS fingerprint.
Toward this goal, we attempt to find a discrimination
metric that complies with physical constraints of signal
propagation and simultaneously stays robust to RSS
fluctuations. Note that we need not think much about device
diversity in this subsection because the discrimination
metric is for only a single device.

To quantitatively differentiate each AP for a specific
location, we define a discrimination factor by estimating the
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physical distance between the AP and this location by using
the following Log-Distance Path Loss (LDPL) model [11]:

Pd = Pd0 − 10γ log

(
d

d0

)
(4)

where Pd0 denotes the received power at a reference
distance d0 (measured in meter), γ is the path loss exponent,
and Pd is the RSS measured in decibel at a distance of d

(d > d0). Let P ′ be the derivative of P to d, we can get
P ′ = −10 γ

d
. Utilizing implicit function derivation rule and

discretization, we have

Δd ≈ Ce
− Pd

10γ ΔP (5)

where C = − d0
10γ e

Pd0
10γ is a constant for a certain AP. The Pd

will decrease with d increasing. For the same ΔP , the Δd

will increase. In other words, the RSS measured closer to a
reference AP is more discrimination. Therefore, we prefer
to select the RSS fingerprints of nearer APs as a location’s
signature.

To this end, we will re-sort APs with an instantaneous
score Si as follows:

As shown in Fig. 1, the RSS from AP attenuates fast
in a very narrow field while slowly else. We set the score
of different APs by appraising both the stability and the
distinguishability of the AP.

In general, a “good” AP should provide a stable RSS
fingerprint and a high degree of differentiation. The quality
score of AP j at position li is defined as following:

S
j
i = H

j
i

(σ
j
i )2

where (σ
j
i )2 is the j -th AP’s RSS variance of current

position li and H
j
i is a distinctness index of AP j at position

li . H
j
i can be calculated by following steps:

1. Query all the RSS of li’s δ-neighbourhood RSS
j
k where

Pk(k = 1, 2, · · · , N) ∈ ⋃
(li , δ). δ is the action radius

which defaults to “1”.
2. Solve the rate of change of RSSj at position li . That is

H
j
i k

= |RSS
j
k −RSS

j
i |

||lk li || (k = 1, 2, · · · , i−1, i+1, · · · , N).
3. Calculate the mean value of RSS change rate at position

li . That is H
j
i =

∑

1≤k≤N,k �=i

H
j
i k

N−1 .

Therefore, the benchmark AP (AP0) at position li is set to
argmax

j
S

j
i

4.5 Delaymitigation

According to the 802.11 specification and our synchroniza-
tion protocol, the receiver remains on a channel as long as

100 ms. Hence, a mobile device will take about 1∼1.5 s for
the commercial Android OS in one round of scanning.

To mitigate the impact of the delay, especially in
the mobile scenario, we seek assistance from historical
information of positions. Because we only need to predict
future short-term (only 1-2 s) position, the device D’s
motion can similarly be seen as a constant one in a
short span of time, we can forecast the location Lt[i]
at time slot t[i] by the latest two positions Lt[i−1]
and Lt[i−2]. Because the orientation of D is the unit

vector of
−−−−−−−−→
Lt[i−2]Lt[i−1] and the velocity of D can be

inferred by the norm of distance between Lt[i−1] and
Lt[i−2]. If the movement vector (direction and velocity)
is fixed, the position of the constant moving device D

is determined. Obversely, calculating these two values are
trivial and inefficient. To address this issue, we leverage
second order autoregressive model to simplify calculations.
In this model:

Lt[i] = β ·
⎡

⎣
1

Lt[i−1]
Lt[i−2]

⎤

⎦ (6)

where β = [β0, β1, β2] is a systemic parameter, and Lt ,
Lt−1 and Lt−2 are the positions in time slot t , t − 1
and t − 2, respectively. The systemic parameter β1 and
β2 is the contribution of historical location to current
location while β0 denotes the estimation error. According
to the historical location information Lt [1, 2, · · · , i − 1],
we can set an arbitrary vector, say [0, 1/2, 1/2] to β, and
leverage standard least-squares method to estimate β [20].
Subsequently, we leverage the parameter β and historical
location information Lt [i − 2] and Lt [i − 1] to estimate
current location Lt [i].

As analyzed in Eq. 6, we should leverage the RSS
values or rather estimated location to predict the user’s
position. However, in most commercial scenarios, in order
to maintain quality of service, devices will return the
scanning results by duplicating information from last scan
cycle if the RSS does not update. If we substituting the
duplicated RSS to matching algorithm, we will obtain an
incorrect location which will result a wrong prediction
of the location. Unfortunately, the default record timestap
would update when querying the RSS. In other words,
we can not distinguish whether the RSS updates or are
only duplicated from last scan cycle. Hence, we leverage
Synchronization Function (TSF) timestamp [49] to record
the receiving time of RSS. TSF provided by 802.11 MAC
Management Function can help us solve this problem. TSF
value is contained in the beacons transmitted by APs and
would be not changed when querying. Hence we can clear
distinguish whether the RSS updates.
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4.6 Hypothesis testing basedmatching principles

As aforementioned in Section 3.1, we would leverage
hypothesis testing, a statistical inference based localiza-
tion solution to estimate the position of object. Prob-
ability based algorithms, e.g., Bayesian network [30],
KL-divergence [38], and conditional random field [43],
find the user’s location with the maximum likelihood.
We do not employ above statistical inference solu-
tions with following reasons: 1) Although Bayesian
network or Bayesian inference can offer confidence
interval [25], this type of solutions should calculate
the priori probability of each event and only pro-
cess single value but not a sequence of records; 2)
KL-divergence like solutions can process all the records but
cannot provide the confidence. Hence, in this paper, we pro-
pose to leverage hypothesis testing, which can utilize all the
RSS record and offer a confidence coefficient.

In matching phase, after channel selection, user
k can acquire his own RSS matrix DPLk

i,j (l
�) =

{
dplki,j (l

�)
}

(m−1)×n. The element dpli,j (l
�) can be

expressed as

dplki,j (l
�) = plki,j (l

�) − plk0,j (l
�) + wk

i,j − wk
0,j (7)

where plki,j (l
�) is the power loss from AP i to user k’s

location l� with central frequency fj corresponding to
channel j . Different from Eq. 3, since user k’s measuring
error can not be eliminated through repeating measure-
ments, we leverage wk

i,j to indicate user k’s RSS measuring
error of j -th channel at i-th AP in Eq. 7.

According to Eqs. 3 and 7, we have

Δdpl(i, j) = dplki,j (l
�)−dpli,j (L)

=
(
plki,j (l

�)−pli,j (L)
)
−

(
plk0,j (l

�)−pl0,j (L)
)

+ wk
i,j − wk

0,j

If l = l�, the first two component of Δdpl(i, j) are equal
to zero and Δdpl(i, j) = wk

i,j −wk
0,j . Hence, our basic idea

is testing the following hypothesis,

– Null hypothesisH0: E(Δdlp) = 0 ⇔ l = l�

– Alternative hypothesisH1: E(Δdlp) �= 0 ⇔ l �= l�

Only the proper location l� = l can accept the null
hypothesis, and others l� �= l would accept the alternative
hypothesis.

AlthoughΔdlp has a zero mean and finite variance, since
we know nothing about the distribution of Δdlp, we cannot
leverage standard hypothesis test directly. Fortunately,
if the sample size ≥ 306 the sum of Δdlp follows

6The sample size restriction is an empirical value. Meanwhile, it can
be deduced by large deviation theory detailed in [12].

Gaussian distribution guaranteed by Lindeberg central limit
theorem [9], i.e.,

m−1∑

i=1

n∑

j=1

Δdpl (i, j) ∼ N (0, σ 2)

where σ 2 is the unknown variance. In single-channel
fingerprint approach, although the packet sending rate of
the device can be increased to 300 p/s or more, however,
due to time coherence discussed in Section 3.1, in order
to obtain sufficient quasi-unrelated RSS samples, users
should stay in a place to wait for several seconds. When
considering time-diversity, the time will last longer. That is
impractical in a real scenarios. Fortunately, due to frequency
diversity, leveraging multi-channel RSS records, MDF has
much more valuable RSS information than SDF. Hence,
MDF only need to spend a fraction of the time SDF would
cost to collect RSS samples. For instance, if there are 5
unrelated channels available, we only need to spend 1/5 time
to obtain sufficient RSS records than SDF.

We leverage t-test to test the null hypothesis. When null
hypothesis is true, we have

t= Δdpl−0

var(Δdpl)/
√

(m−1)×n
∼ t ((m−1)×n−1) (8)

where Δdpl is the sample mean and var(Δdpl) is the
sample standard deviation of the sample. The degrees of
freedom used in t test are ((m − 1) × n − 1). We can
compare t and t α

2
((m − 1) × n − 1) (α is the significance

level) to determine whether accept or reject the hypothesis,
i.e., to determine whether the locations are matched or not.

For a given significant level α, say 0.05, the t-distribution
of freedom degree ((m − 1) × n − 1), say 29, the t-test
threshold is t0.025(29) = 2.0452.

Recall Eq. 8, the accept field should be

|t| = |Δdpl|√(m − 1) × n

var(Δdpl)
< t0.025(29) = 2.0452

while the reject filed is |t| ≥ 2.0452. In other word, if the
result |t| is less than 2.0452, we can say that the current
location l� and the testing location l are identical under 95%
confidence. Otherwise, we can say that the current location
l� and the test location l are not the same location with
significance level α = 0.05.

4.7 Robust estimation

Human body has a strong effect of electromagnetic energy
absorption and reflection which can cause 5 ∼ 10 dbm
error. When a mobile device is placed at different positions
near a human body, the RSS measurements may sharply
change. The signal strength observed by a wireless receiver
drops most significantly when there is an obstacle directly
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between it and the transmitter. Figure 6 presents an example
of directional shadowing from real measurement. That is,
if the moving direction in matching phase is different from
training phase, the RSS fingerprint will be different at the
same position.

Fortunately, each location always receive multiple Wi-
Fi signal from different APs. The strongest drop in signal
strength is only from individual APs, called blocked AP,
where the user is precisely at the line joining the AP and
the phone. For most of APs, called unblocked AP, the the
human body effect would not be significant.

Developing a good localization method that can accu-
rately locate mobile user from “unblocked AP” by discern-
ing “blocked AP”, is the motivation behind our work in
MDF. Since unblocked APs is a majority, we introduce
robust estimation to modify the conventional least squares
method. Different from optimizing the sum of squared
residuals, this is, Σr(P i(s), P i(ŝ)) = Σ(P i(s) − P i(ŝ))2,
where P i(s) and P i(ŝ) are the RSS from current loca-
tion and estimated location, respectively. Robust estimations
employs a shaped residual function as

F = Σs(P i(s)P i(ŝ))

where

s =
{

αr2 |r| < τ

ln (1 + 2ατ (|r| − τ)) + ατ 2 otherwise

α and τ are parameters to be configured. The former
controls the height of the residual evaluation function
while the latter impacts its width. In the SISR estimator,
setting a small τ can lead to more accurate localization

results, but will also increase the risk of falling into
an incorrect local minimum. On the other hand, a more
permissive τ reduces the venture at the cost of localization
accuracy. SISR will degrade into Least-squares estimator
when τ → ∞.

4.8 Automatic fingerprint update

Fingerprint-based localization methods are blamed for
laborious site survey and mutable environment. In this
subsection, we propose an automatic RSS update approach
to keep a long-term effective fingerprint which can
significantly reduce the re-fingerprinted frequency.

In fact, the environment would be gentle but continued
changing, which results the RSS in the same location
would consequently change. In conventional method, the
fingerprints need to be re-investigated which will be a
major expenditure of time and effort. Our approach can
automatic update the RSS fingerprint. Fortunately, the
changing rate is not big, and we will harvest sufficient valid
fingerprint before fingerprint compromises by employing
crowdsourcing.

The basic idea of RSS update is also based on t-
distribution testing. Assuming there are r valid RSS
different record of AP i channel j corresponding to location
l, say < Δdpl′1i,j (L), Δdpl′2i,j (L), · · · , Δdpl′ri,j (L), >, they
should also follow t-distribution. Then the updated Δdpl

should be

Δdplnew = Δdpl′ − sgn(Δdpl′)εr × s′
√

r

Fig. 6 The body block effect
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where Δdpl′, s′ and sgn(·) are the the mean, the standard
variance of valid RSS different record and signum function,
respectively. εr is a small positive parameter associated to
sample size r , that depicts the maximum difference between
sample mean and expectation. By the weak law of large
numbers, we have a qualitative result lim

r→∞ εr = 0. However,

if we need to depict the deviation quantitatively, it should
leverage Sanov’s Theorem [12] to analyze the relationship
between deviation and sample size. Assuming the noise
in each channel is i.i.d and follows zero-mean Gaussian
distribution N (0, σ 2

N), according to Sanov’s Theorem, the
probability of deviation |η| ≥ εr , i.e., the deviation is bigger
than εr , is

P(|η| ≥ εr) ≈ 2−rD(Ps‖Pt ) = 2
−r

ε2r
σ2
N

where D(Ps‖Pt) is the KL divergence between the sample
distribution Ps and the theoretical distribution Pt of noise.
If we set the significance level to be 0.002, i.e., P(|η| ≥
εr)=0.002, we can obtain εr = 3σN√

r
. In our actual

experiment, since the valid RSS count r may change in
different time, in order to simplify the calculation, εr is
approximated as a piecewise-constant as follows:

εr =
⎧
⎨

⎩

0.1 r � 10
0.05 10 < r � 30
0 r > 30

5 Discussion

In this section, we will give theoretical proof that MDF
is superior to SDF and discuss why channel selection
algorithm works. Assume we select s channels to estimate
the user’s position P and each estimated position is P̂i =
P + εi(i = 1, 2, · · · , s). Without loss of generality, we can
assume the error εi follows zero mean Gaussian distribution
εi ∼ N (0, σ 2). Note that σ 2 is the same with SDF based
localization error variance. In MDF, the final localization
result P̂ can be expressed as a linear combination of P̂i as
Eq. 9.

P̂ =
L∑

i=1

λi P̂i (9)

s.t .

⎧
⎨

⎩

s∑

i=1
λi = 1

λi ≥ 0

where λi is i-th unknown coefficient.

The MDF based localization error variance σ 2
MDF can be

calculated as

σ 2
MDF = E

(̂
P − P

)2

(9)= E

(
L∑

i=1

λi (P + εi) − P

)2

(a)

� E

(
L∑

i=1

λi
2

L∑

i=1

εi
2

)

(b)

� E

(
L∑

i=1

εi
2

)

(c)= σ 2

The inequalities (a)and (b) leverage Cauchy inequality
and Jensen inequality, respectively. The last equation (c)
comes from the definition of variance. The equation (a)
holds iff. λi

εi
is a constant and the equation (b) holds iff.

λi = 1 while the others λ1,2,··· ,i−1,i+1,··· ,s = 0.
From this inequality, we prove that the localization error

variance of MDF is always smaller than the localization
error variance of SDF. As shown in Fig. 7, We evaluate
the error estimations of SDF and MDF by simulation.
We can see the error of MDF (denote by red points)
is more concentrated than SDF (denote by blue points).
More precisely, both the probability mass functions of SDF
(Fig. 8) and MDF (Fig. 9) follow the Gaussian distribution
approximately. The variance of SDF is significantly greater
than the variance of MDF. In addition, we verify the
excellent performance of MDF in evaluation section (see
detail in Section 6.2).

Furthermore, if the estimation error εi are independent to

each other, we can get a better conclusion that σ 2
MDF = σ 2

s
.

Although independence is a harsh condition in reality, there
is a perfect property that no correlation is equivalent to
independence for Gaussian variables. In other words, we
should select uncorrelated channel to estimate the user’s

Fig. 7 The error of SDF and MDF estimation
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Fig. 8 The probability mass function of SDF error

position. As we discussed in Section 4.1, different channel
has low correlation due to large frequency interval. This is
the reason that the localization accuracy of MDF is much
better than the localization accuracy of SDF and why we
should select channels but not employ all the available
channels.

In the following part of this subsection, we will dis-
cuss the correctness and complexity of channel selection
algorithm shown in Section 4.1. As discussed in that
section, in order to improve localization accuracy, we should
leverage as many weak correlated channel as possible. Since
correlation coefficients can only describe the correlation
between two sequence, we utilize distance instead and lever-
age multidimensional scaling to process these distances. An
MDS algorithm aims to place each channel in high dimen-
sional space such that the between-channel distances are
preserved as well as possible. In this way, we can obtain a
quasi-global distance to avoid make up a pair of channels
with high correlation.

The next challenge is how to select as many channels
as possible that makes the average quasi-global distance
as large as possible. We can convert this problem into the
Maximum Clique Problem in a weighted undirect graph.
Although the Maximum Clique Problem [8] is an NP-hard

Fig. 9 The probability mass function of MDF error

problem, since the number of vertex is very limited (we
only record less than 10 channels due to channel switching
overhead limitation), we can quickly compute the selected
channels from brute-force approach, e.g., deep first search.

The last part of this section will discuss the time
complexity of MDF. Firstly, in motion detection phase,
Otsu’s method would spend most of the time, whose time
complexity is O(Npix) where Npix is the number of pixel
in the finger. In our experiment, we block our CSI data
into a 200 × 30 pixel picture, and merely spend several
millisecond. If we leverage OpenCV library function,
the time overhead would decease to sub-millisecond. In
position matching phase, for a certain fingerprint, MDF
would calculate the Δdpl for each channel of each AP, and
compare the hypothesis function with the t-value. Hence,
the time complexity is O(NANC) + O(1) = O(NANC).
Since there are NP position candidates, the total time
complexity is O(NP NANC). In fingerprint updating phase,
since we leverage piecewise-constant for simplification and
approximation, the time complexity is O(NANC) for current
position. Hence, the overall time complexity is O(Npix) +
O(NP NANC). In our experiments, the time overhead is
about sub-second, and MDF can achieve real-time indoor
geofencing.

6 Evaluation

In this section, we will test the parameters in MDF and
evaluate the performance of MDF. In each experiment, we
randomly select a number of points to estimate the location
using MDF. We record the reported coordinates of each test.
The difference between the estimated location and ground
truth, measured in meter, is the localization error, which
indicates the accuracy of MDF.

As aforementioned, ambient changes incur a significant
impact on the performance of RSS-based localization. We
investigate the impact of three ambient changes, i.e., the
deployment height, number of APs, and the number of
used channels for localization. We then compare MDF
and two classical state-of-the-art RSS based localization
approaches, RADAR and Horus, in terms of localization
accuracy. We also investigate performance of MDF in the
office, classroom and lobby scenarios. Finally, we check the
robustness of MDF in an indoor area with complex ambient
settings.

6.1 System setup and deployment

We design and implement a prototype MDF system based
on our customized APs, which are developed based on
Intel ATOM-based mini PCs. We adopt a commercial
Intel 5300 wireless NIC as the transmission component.
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However, in order to implement channel switching, we
leverage the newest Ubuntu 18.04 to enable “iw” CLI.
This type of APs has a single-core 1.6Ghz ATOM CPU,
4GB RAM and 8GB SSD hard drive. The Wi-Fi monitor
mode is activated to enable the channel/power scanning
functionality as aforementioned. In specific, We adopt a
simple yet robust client server synchronization protocol. For
each channel, the AP stays for 100ms, and broadcast 20
customized Wi-Fi frame containing the current timestamp
and the channel number of next hop. When a client
enters the environment, it stay on an arbitrary channel and
listen for the traffic. When the client hear the customized
frame sent by localization AP, it will soon synchronize
its local counter and hop to the next channel along with
the AP.

In our experiments, we use a laptop as the client receiver.
We set the wireless card of the laptop in the monitor mode
to enable the channel scanning. The scanning range is from
Channel 100 to Channel 165, i.e., from 5.5Ghz to 5.8Ghz.
In each channel, the AP varies its TX power from 8dbm to
15dbm during the scanning. As shown in Fig. 10, different
channels have different RSS values. Compared with time
domain, frequency domain has more diversity which can
be leveraged as multi-dimensional fingerprints with low
correlation.

6.2 MDF vs. SDF

In this subsection, we will demonstrate the performance
between SDF and MDF in a typical application scenario,
a part of indoor exhibiting hall, including a 117m2 office
as shown in Fig. 21. The test scenario is placed within a
certain area of an imaginary grid, which splits the 12 ×
9 rectangular area into 12 × 8 equal areas. In training
phase, we investigate the multi-dimensional RSS fingerprint
of each grid intersections, while in matching phase, we
collect both single-dimensional and multi-dimensional RSS
values at each testing points labelled with triangle. The
estimated position calculated through both SDF and MDF

Fig. 10 MDF under 5 GHz

RSS fingerprints are drawn with square and circle, and we
leverage lowercase d and capital D to indicate locating
error of SDF and MDF solution, respectively. In addition,
to verify the locating robust performance, we sample some
fingerprints at un-investigate positions, e.g., (9,1.5) (9,5,5),
and (6.5,7) to estimate the position using training data. We
can see that MDF has overwhelming strengths (about 0.6m
locating error) than SDF solution (about 3m locating error).

6.3 Deployment height

We investigate the impact of deployment height. In practice,
an AP is usually deployed in three typical heights, i.e.,
on the ceiling, furniture, and ground. In our experiment,
the height of our APs is set as 3.5m, 1.6m, and 0.3m,
respectively. We denote them as the top, middle, and
ground. The CDF of localization is shown in Fig. 11. From
the result, we find that the middle pattern provides the
highest localization accuracy. The accuracy is lowest in the
ceiling pattern. Generally, this result supports our analysis
on the impact of the AP’s positions and blocking effect
of human body. For the middle pattern based deployment,
the distance between the AP and the object is usually
smaller than that in the top pattern, i.e., the d in Eq. 4,
indicating a higher AP’s resolution. This helps to increase
the discrimination capability of AP. In addition, the light
and other devices deployed on the ceiling may pose strong
interference to the Wi-Fi signal, which also degrades the
localization accuracy.

6.4 The impacts of number of APs

We vary the number of APs used in our experiments, rang-
ing from 3 to 6, and plot the localization accuracy in
Fig. 12 It is obviously that the more the APs, the higher
the localization accuracy. A very intuitive reason is that
introducing more APs is helpful to reduce the probability

Fig. 11 Impact of different altitudes
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Fig. 12 Impact of different number of APS

of f ingerprintcollision, which happens when one fin-
gerprint is mapped to multiple locations. Due the complex
multipath effect, this phenomenon is very common for RSS-
only fingerprint since the RSS value is one-dimensional and
prone to be same at different locations in indoor environ-
ments. Increasing the number of APs tends to enhancing
the discrimination capability such that more distinct finger-
prints can be generated.

On the other hand, the blocking effect from the human
body can also be alleviated by introduce more APs. In
this case, the methods with good anti-breakdown ability
[27], e.g., the SISR method used in MDF, can provide
high accurate estimation. In theory, if the ratio of the RSS
readings from blocked APs is not larger than 25%, the
estimation can remain accurate.

6.5 The impacts in different scenarios

Similarly, using more channels also improve the localization
accuracy. In our prototype, we use 5GHz as the operating
spectrum. It is worth to note that in the IEEE 802.11
specification, there are 42 channels designated in the 5 GHz

Fig. 13 Impact of different channels

Fig. 14 CDF of locating accuracy in classroom

spectrum, spaced by 5 MHz. The channels involved in
our prototype are No. 100, 108, 128, 140, 149, 153, and
165 channels, with their center frequency as 5500 MHz,
5540 Mhz, 5640 MHz, 5700 MHz, 5745 MHz, and
5825 MHz. We increase the number of channels from 3 to
7, which are selected by channel selection algorithm shown
in Section 4.1. We examine the CDF of localization error,
as shown in Fig. 13. Indeed, the accuracy mainly depends
on the number of incoherent channels. The more incoherent
channels we use, the higher the accuracy, which is proved in
Section 5.We can see we may reach the point of diminishing
returns when the channel numbers increase to 5. That is
because although we introduce more channels, the channel
correlations are rolling up as well. The experiment result
well supports our theoretical analysis. Thus, it is promising
to reduce the expectation of error by using more APs in
practice.

6.6 Comparison with RSS-only approaches

We compare the localization accuracy of MDF to that
of two state-of-the-art RSS-only approaches, namely
RADAR and Horus. The experiments are conducted in the

Fig. 15 CDF of locating accuracy in office
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Fig. 16 CDF of locating accuracy in lobby

office, classroom, and lobby scenario, and the results are
shown in Figs. 14, 15, and 16. We can find that MDF
outperforms RSS-only approaches in all scenarios, achiev-
ing a localization error of < 0.7 m in average. Note that
in the office scenario, the localization accuracy when using
Horus approaches that of MDF. This is because Horus uses
the distribution of the RSS values as the fingerprint, which
demonstrates good resilience to dramatic environmental
changes. In the lobby scenario, the localization accuracy
of MDF is much higher than other two approaches. This
is because MDF tackles the problem of outdated data in
the location-fingerprint matching by adopting the second
order auto regression model to predict the location of object.
This result also indicates that the RSS-only fingerprint is
vulnerable to the mobility of objects or devices.

6.7 Comparison among variant MDFs

We check the localization accuracy of using variant
MDFs, including the MDF only(MDF), AP weight-based
MDF(WP+), robust estimation localization MDF(SISR+),
and the MDF combining all measurements (ALL). The
experiments are conducted in three scenarios and the
results are plotted in Figs. 17, 18, 19. The involvement

Fig. 17 Location error in classroom

Fig. 18 Location error in office

of WP and adoption of SISR significantly improves the
localization accuracy, i.e., reducing the error by approxi-
mately half. In addition, the result indicates that the weight-
based mechanism and robust estimation mechanism can
collaboratively improve the localization accuracy. It is worth
to note that the improvement from adopting WP and SISR
is not the same. In the classroom scenario, the WP + MDF
performs better than SISR + MDF. This is because that the
layout of classroom is commonly regular, and the ambi-
ent changes smoothly. In contrast, SISR + MDF shows a
better accuracy than WP+MDF in the office scenario. This
result shows that the SISR+MDF is capable of mitigating
the impact of the complex environment, blocking effect by
human body, or insufficient number of APs.

6.8 The performance of CSI basedmotion detection

In this subsection, we will evaluate the motion detection
performance. Since CSI cannot estimate direction, we only
test the distance precision of our solution in different
scenarios. In this experiment, we move the device apart from
its original position 5m with different packet sending rate.
We evaluate the impacts of packet rate and the scenarios
with 20 times for each group. As shown in Fig. 20, the
accuracy among three scenarios are acceptable, the max

Fig. 19 Location error in lobby
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Fig. 20 The performance of CSI based motion detection

error is less than 0.25 m, i.e., 5%. We can see that for the
scenario with richer multi-path, the smaller of average error.
That is because more multi-path will generate more stable
standing wave filed. That means it can work well in complex
scenarios. In addition, we can see that the packet sending
rate with 50 packets/s and 100 packets/s have little impacts
on the estimation error. That means the CSI sample rate can
lower down.

6.9 Localization in complex indoor environment

We focus on the tracking error in the indoor environment.
We deploy our prototype in an 12 m × 9 m room. The
left part of this room is with many partition boards, desks,
chairs, and other stuff. The right part of this room is indeed
a small meeting room. Thus, the left part is much more
complex than the right part in this room. We than ask a
volunteer to move randomly in this room. The room is
site-surveyed using MDF in advance. We plot the location
of a volunteer estimated by MDF and the real one in
Fig. 21. In this figure, small pink triangles represent the real
positions of volunteers, i.e., the ground truth. The red circles
represent the results of using multidimensional fingerprint

Fig. 21 The location error in complex indoor environment

Fig. 22 The impact of fingerprint self-update mechanism

estimation. For example, at a certain time, a volunteer is at
the position of (11,3). If the estimated location by MDF is
(11,3), the error is 0. The results clearly show the influence
from indoor environments. Since the left part is more
complex, the tracking error, i.e. < 0.7 m in average, is larger
than that in right part i.e. < 0.32 m in average. However,
MDF still works reliably in complex indoor environments,
enabling a high accurate location estimation. The maximum
localization error is not larger than 2.1 m, and the average
error is smaller than 1 m.

6.10MDFwith/without self-update

In this subsection, we evaluate the impact of self-update me-
chanism, we can see the proposedmechanism can efficiently
improve the long-term localization accuracy. As shown in
Fig. 22, we can see that with our self-update mechanism,
the average localization/geofence precision can maintain
about 1m after 10 days, while the average precision error of
contrast group without self-update mechanism will rise to
about 3 m. This experiment soundly illustrate that the effect
of our self-update mechanism. Furthermore, after 1 month,
the error using our approach merely increase 1 m, while that
error without self-update mechanism climbs to 6 m. Note that
the experiment scenario is a 12 × 9 rectangular area. That
means the fingerprint database without self-update mecha-
nism is invalid thoroughly while our solution can still work.

7 Conclusion

In this work, we propose MDF, an automatic and continu-
ous Wi-Fi fingerprints self-updating service for electronic
Geofence that exploits the static power of mobile devices.
The combination of RSS, transmission power and channel
information significantly improves the localization/Geofence
accuracy and reduces system maintenance overhead. We
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prototype MDF and conduct experiments in typical build-
ings. Experimental results from 30 days across 6 months
demonstrate that MDF effectively accommodates the RSS
deviations caused by environmental dynamics. Using
the automagical updating fingerprints, MDF provides 2x
improvement in localization/Geofence accuracy for long-
term running Geofence service.
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