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Abstract
Vehicular communication is an emergent technology with promising future, which can promote the development of mobile
vehicular networks. Due to the broadcast nature of wireless channels, vehicular user mobility, and the diversity of vehicular
network structures, the physical layer security issue of the mobile vehicular networks is a major concern. In this paper, the
physical layer security performance of the mobile vehicular networks over N-Nakagami fading channels is investigated. Exact
closed-form expressions for the probability of strictly positive secrecy capacity (SPSC), secrecy outage probability (SOP), and
average secrecy capacity (ASC) are derived. Monte-Carlo simulation is used to verify the secrecy performance under different
conditions. We further investigate the relationship between secrecy performance and the system parameters.
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1 Introduction

Since mobile user spend significant amounts of time in vehi-
cles, the mobile vehicular computing and communication ap-
plications have increased dramatically in recent years [1–3].
Mobile vehicular communication has attracted wide research
interest in the development of a wide range of applications
based on user quality of experience (QoE) [4–6].

To support various types of mobile vehicular applications,
the fifth generation (5G) mobile communication technologies

are promising candidates [7]. A novel and practical 5G-
enabled smart collaborative vehicular network architecture
was introduced in [8]. [9] exploited 5G mmWave communi-
cation for vehicle positioning.5G-enabled software defined
vehicular networks were proposed in [10].

Due to the vehicular user mobility, the physical layer security
of 5Gmobile vehicular networks is of significant interest [11–13].
An integrated network architecture was proposed for secure
group communication in vehicular networks [14]. Based on a
cooperative authentication method, [15] proposed an anonymous
authentication protocol for vehicular networks. Closed-form ex-
pressions for the probability of strictly positive secrecy capacity
(SPSC) over Rician fading channels were derived in [16], and
secrecy outage probability (SOP) over correlated log-normal fad-
ing channels was investigated in [17]. In [18], the probability of
SPSC with multiple eavesdroppers over log-normal fading chan-
nels. Closed-form expressions for the probability of SPSC and a
lower bound on the SOP over generalized Gamma fading chan-
nels were derived in [19]. In [20], in the presence of an eaves-
dropper, the transmission of confidential messages in a single-
input multiple-output (SIMO) system over identically indepen-
dent Generalized-K fading channels was investigated. The
physical-layer security of cooperative wireless networks with
amplify-and-forward (AF) and decode-and-forward (DF) relay-
ing were investigated in [21]. In [22], the outage probability (OP)
of single-relay and multi-relay selection schemes in the presence
of an eavesdropper was analyzed. [23] investigated the secure
performances over non-small-scale fading channels, considering
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the independent log-normal fading, correlated lognormal fading,
or independent composite fading. [24] proposed two schemes to
improve the sum rate of secondary users (SUs) while guarantee-
ing the secrecy rate of primary user (PU). By aligning the jam-
ming signal togetherwith interference among users cooperatively,
an anti-jamming scheme was proposed in [25]. The authors pro-
posed an artificial noise assisted interference alignment scheme
with wireless power transfer in [26].

However, the effects of mobile communication is far severe
than what can be modeled using the classical Rayleigh,
Rician, Nakagami, log-normal and Generalized-K fading
channels. They are not the best channel models for practical
mobile scenarios. The N-Rayleigh and N-Nakagami fading
channels were adopted in [27–29] to provide a realistic mobile
channel model. In [30–32], the OP performance of mobile
cooperative networks with incremental AF and DF protocols
was investigated.

To date, research on physical layer security has focused on
Rayleigh, Rice, Nakagami-m log-normal and Generalized-K
fading channels. To the best of our knowledge, physical layer
security over N-Nakagami fading channels has not been con-
sidered in the literature. As a consequence, the main contribu-
tions of this paper are as follows:

1. For practical mobile scenarios, it is well known that N-
Nakagami fading channels are more general and flexible,

and include the Rayleigh and Nakagami-m fading chan-
nels. Thus, we investigate the secrecy performance of the
mobile vehicular networks model over N-Nakagami fad-
ing channels.

2. Closed-form expressions are derived for the average se-
crecy capacity (ASC), a lower bound on the SOP, and the
probability of SPSC over N-Nakagami fading channels.

3. Monte-Carlo simulation is used to verify the accuracy of
the theoretical results obtained.

The rest of the paper is organized as follows. The mobile
vehicular networks model is presented in Section 2, and
closed-form expressions for the ASC are derived in
Section 3. A lower bound on the SOP and the probability of
SPSC are presented in Sections 4 and 5, respectively. Monte-
Carlo simulation results are provided in Section 6 to verify the
analysis in the previous sections. Finally, some concluding
remarks are given in Section 7.

2 System model

The mobile vehicular networks model is shown in Fig. 1. It
consists of a mobile source (S) vehicle, a mobile eavesdropper
(E) vehicle, and a mobile destination (D) vehicle, all of which
are equipped with a single antenna. The S vehicle acts as a
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Fig. 1 The system model
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Table 1 Simulation Parameters

mD 1 1 2

mE 2 1 1

GD 5 dB 5 dB 5 dB

GE 5 dB 5 dB 5 dB

ND 2 2 2

NE 2 2 2
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legal transmitter, the D vehicle acts as a legitimate receiver.
When the S vehicle communicates with the D vehicle, the E
vehicle can wiretap the information.

We use h = hk, k∈{D,E}, to represent the complex channel
coefficients of the S→D and S→ E links, respectively. The
probability density function (PDF) of h is given as [28].

f hð Þ ¼ 2

h ∏
N

i¼1
Γ mið Þ

GN ;0
0;N

h
h2 ∏

N

i¼1

mi

Ωi

��������

−

m1;…;mN

i
ð1Þ

where G[·] is Meijer’s G-function.
S transmits the signal x, and the received signals rD and rE

are given as

rD ¼
ffiffiffiffiffiffiffiffiffiffi
GDE

p
hDxþ nD ð2Þ

rE ¼
ffiffiffiffiffiffiffiffiffi
GEE

p
hExþ nE ð3Þ

where E is the energy used by S, the mean and variance of nD
and nE are 0 andN0/2.Here, we useGD andGE to represent the
relative geometrical gain of the S→D channel and the S→ E
channel, respectively [33].

D receives the signal-to-noise ratio (SNR) as

γD ¼ KGD hDj j2γ ð4Þ

γ ¼ E
N 0

ð5Þ

γD ¼ KGDγ ð6Þ
where K is the relative SNR gain.

The received SNR at the E is given as

γE ¼ GE hEj j2γ ð7Þ
γE ¼ GEγ ð8Þ

The cumulative distribution function (CDF) of γk is given
as

Fγk rð Þ ¼ 1

∏
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and the corresponding PDF is given as

f γk rð Þ ¼ 1
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3 Average secrecy capacity

The instantaneous secrecy capacity is given as [34].

CS ¼ max ln 1þ γDð Þ−ln 1þ γEð Þ; 0f g ð11Þ

The average secrecy capacity (ASC) is the average of Cs.
The ASC is given as

CS ¼ ∫∞0 ∫
∞
0CS γD; γEð Þ f γD; γEð ÞdγDdγE

¼ ∫∞0 ∫
∞
0CS γD; γEð Þ f γDð Þ f γEð ÞdγDdγE

¼ ∫∞0 ln 1þ γDð Þ f D γDð ÞFE γDð ÞdγD
þ∫∞0 ln 1þ γEð Þ f E γEð ÞFD γEð ÞdγE

−∫∞0 ln 1þ γEð Þ f E γEð ÞdγE
¼ V1 þ V2−V3

ð12Þ

With the help of [35], V1 is given as

V1 ¼ 1
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V2 is given as
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Table 2 Simulation
Parameters mD 1

mE 1

GD 5 dB

GE 5 dB

ND 2

NE 2
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and V3 is given as

V3 ¼ 1

∏
N

j¼1
Γ mj
� � G

Nþ2;1
2;Nþ2

1

γE
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Ω j
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4 Secrecy outage probability

The SOP is the probability that the instantaneous secrecy ca-
pacity falls below a target threshold,which an important per-
formance measure. The SOP is given as

FSOP ¼ Pr CS γD; γEð Þ < γthð Þ
¼ Pr γD < βγE þ β−1ð Þ

¼ ∫∞0 FD βγE þ β−1ð Þ f E γEð ÞdγE
ð16Þ

β ¼ exp γthð Þ ð17Þ

where γth is a secrecy capacity threshold. The integral in (16)
has no closed-form form because ofMeijer’s G-function.With
the aid of the results in [36–38], a lower bound on the SOP can
be obtained as

FSOPL ¼ Pr γD < βγEð Þ
¼ ∫∞0 FD βγEð Þ f E γEð ÞdγE
¼ 1
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5 Probability of SPSC

The probability of SPSC means the existence of secrecy
capacity,which is a fundamental benchmark in secure commu-
nications. It is given as

FSPNC ¼ Pr CS γD; γEð Þ > 0ð Þ
¼ Pr γD > γEð Þ

¼ 1−∫∞0 FD γEð Þ f E γEð ÞdγE
ð19Þ

and substituting (9) and (10) in (19) gives

FSPNC ¼ 1−
1
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6 Numerical results

In this section, Monte-Carlo simulation results are presented
to confirm the analysis in the previous sections. Figure 2 pre-
sents the ASC performance versus K for γ =10 dB. The
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simulation parameters are given in Table 1. Combinations of
mD and mE are denoted as (mD, mE). Figure 2 shows that the
Monte-Carlo simulation results match very well with the an-
alytical results. For a fixed K, the ASC performance is im-
proved with increasing mD and decreasing mE. The ASC per-
formance for (2,1) is better than that of (1,1) and (1,2). This is
because the fading severity of an N-Nakagami channel is less
for a larger m. Further, it is observed that the ASC perfor-
mance improves as K increases. This is because a higher K
means that the S→ D channel is better than the S→ E
channel.

Figure 3 presents the ASC performance versus K with
(1,1). The other simulation parameters are γ =5 dB, 10 dB,
15 dB, 20 dB. The simulation parameters are given in
Table 2.This again shows that the Monte-Carlo simulation
results match the analytical results. For fixed K, the ASC
performance is improved as γ increases. This is because the
S→D channel is better than the S→ E channel.

Figure 4 presents the SPSC performance versus K with γ
=10 dB. The simulation parameters are given in Table 1. This
confirms the analysis given previously as it matches the
Monte-Carlo simulation results. For fixed K, the SPSC perfor-
mance is improved as mD increases and mE decreases. The
SPSC performance for (2,1) is best. Further, it is clear that
the SPSC performance improves as K increases. This is be-
cause the S→D channel is better than the S→ E channel.

Figure 5 presents the SPSC performance versus K with γ
=0 dB, 5 dB, 10 dB, 15 dB, 20 dB. The simulation parameters
are given in Table 3. This shows that the SPSC performance
cannot be improved by increasing γ. This observation
matches the results obtained from (21)–(22).

Figure 6 presents the SOP performance versusKwith (2,1).
The simulation parameters are γ =0 dB, 10 dB, 20 dB, 30 dB,
40 dB, GD = 5 dB, GE = 1 dB, ND =NE = 2, and γth = 0 dB.
This shows that the analytical bound on the SOP cannot be
improved by increasing γ. This observation confirms the re-
sults obtained from (18)–(20). As γ increases, the Monte-
Carlo simulation results approach the analytical bound on
the SOP.

Figure 7 presents the SOP performance versus K with γ
=20 dB,and γth = 0 dB. The simulation parameters are given in
Table 4. This again shows that the Monte-Carlo simulation
results match the analytical results. For fixed K, the SOP per-
formance is improved with increasing mD and decreasing mE.
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The SOP performance of (2,1) is the best. Further, the SOP
performance improves as K increases.

Figure 8 presents the ASC performance under different
channels with γ =5 dB. The simulation parameters are given
in Table 5. For fixed K, the ASC performance under 2-
Nakagami channels is the best. This is because the fading
severity of 2-Nakagami channels is larger than Nakagami
and Rayleigh channels. Further, the ASC performance im-
proves as K increases. This is because the S→D channel is
better than the S→ E channel.

7 Conclusion

In this paper, the secrecy performance of the mobile vehicular
networks over N-Nakagami fading channels has been investi-
gated. Exact closed-form expressions for the probability of
strictly positive secrecy capacity (SPSC), secrecy outage prob-
ability (SOP), and average secrecy capacity (ASC) were de-
rived and verified via Monte-Carlo simulations. The simula-
tion results showed that them,N,GD, andGE had a significant
effect on the secrecy performance.
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