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Abstract
As sponsored data with subsidized access cost gains popularity in industry, it is essential to understand its impact on the
Internet service market. We investigate the interplay among Internet Service Providers (ISPs), Content Provider (CP) and
End User (EU), where each player is selfish and wants to maximize its own profit. In particular, we consider multi-ISP
scenarios, in which the network connectivity between the CP and the EU is jointly provided by multiple ISPs. We first model
non-cooperative interaction between the players as a four-stage Stackelberg game, and derive the optimal behaviors of each
player in equilibrium. Taking into account the transit price at intermediate ISP, we provide in-depth understanding on the
sponsoring strategies of CP. We then study the effect of cooperation between the ISPs to the pricing structure and the traffic
demand, and analyze their implications to the players. We further build our revenue sharing model based on Shapley value
mechanism, and show that the collaboration of the ISPs can improve their total payoff with a higher social welfare.

Keywords Internet pricing · Content sponsoring · Game theory · Network economics · Cooperative game

1 Introduction

As demand for mobile data increases, Internet service
providers (ISPs) are turning to new types of smart data
pricing to bring in additional revenue and to expand the
capacity of their current network [1]. One way to keep up
funding such investment is content sponsorship. Content
providers (CPs) split the cost of transferring mobile data
traffic, and sponsor the user’s access to the content by
making direct payment to the ISPs. For example, GS Shop,
a Korea TV home shopping company, has partnered with
SK Telecom to sponsor data incurred from its application,
so consumers are incentivized to continue browsing and
making purchases from their mobile devices without ringing
up data charges [2]. Content sponsoring may benefit all
players in the market: the ISPs can generate more revenue
with CP’s subsidies, and users can enjoy free or low-
cost access to certain services, which in turn increases the
demand and attracts more traffic, resulting in higher revenue
of the CP.
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There are several studies on content sponsoring despite
of a short history. Most of the works either focus on
a simple model with a single ISP and a single CP
interacting in a game theoretic setting, or considers Quality-
of-Service (QoS) prioritization and its implications for
net neutrality [3–6]. In a two-sided market with a single
ISP providing connection between CPs and EUs, profit
maximization of the players under sponsoring mobile data
has been studied in [7, 8]. In [7], single monopolistic
ISP determines optimal price to charge the CPs and
the EUs, while the authors in [8] study the contractual
relationship between the CPs and the ISP under a
similar model. Nevertheless, none of them consider the
interaction between multiple ISPs. Although the authors
in [9] proposes a model with a transit ISP and a user-
facing ISP, their understanding of the interaction between
these non-cooperative ISPs are limited to the environments
without content sponsoring. Other works, e.g. [10–12], have
analyzed content sponsorship from the economic point of
view. They examine the implications of sponsored data on
the CPs and the EUs, and identify how sponsored data
influence the CP inequality.

In many Internet markets, there are multiple ISPs
that cooperate to provide end-to-end connectivity service
between the CPs and the EUs, in which case the assumption
of a single representative ISP no longer holds. Since each
ISP aims to maximize its own profit, the establishment
of interconnection among multiple ISPs is a thorough

Published online: 20 September 2018

Mobile Networks and Applications (2021) 26:501–511

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-018-1126-8&domain=pdf
http://orcid.org/0000-0003-1690-2298
mailto: cjoo@unist.ac.kr
mailto: abylay@unist.ac.kr


process that depends on specific profit sharing/inter-
charging arrangements.

As the most commercial traffic originates from the
CPs and terminates at the EUs, some ISPs positioned
on the middle of the traffic delivery chain will have
more power and request a transit-price. An ISP serving a
large population of users might have a dominant influence
in determining the transit price paid by other relatively
weak ISPs for traffic delivery. For an example, a large
entertainment company Netflix directly uses the service
provided by ISPs such as Level 3, which is connected with
residential broadband ISPs like Comcast to get access to
the customers [13]. Level 3 charges Netflix and Comcast
charges the users. Netflix may partially or fully sponsor
its traffic, which is likely to increase the amount of traffic
through both ISPs. Due to high traffic volume, the access
ISP (Comcast) may require additional transit price for traffic
delivery, which will impact on the pricing decision at Level
3 and subsequently on the sponsoring decision at Netflix.
In this work, we are interested in the dynamics between the
players with focus on content sponsoring and transit pricing.
To this end, we study the interplay among two Internet
Service Providers (ISPs), Content Provider (CP), and End
User (EU), where each player selfishly maximizes its own
profit. We model this non-cooperative interaction between
ISP1, ISP2, CP, and EU as a four-stage Stackelberg game.
We aim to understand the behaviors of the players in non-
cooperative equilibrium and their decisions to maximize
their own utility. Also we investigate the responses of the
players when the ISPs cooperate with each other. We show
that, under collaboration with appropriate revenue sharing,
each ISP can achieve a higher revenue while improving the
social welfare.

The rest of the paper is organized as follows. We present
the basic system model in Section 2, and investigate the
strategies of the CP, the EU, and the ISPs to maximize
their utility in Section 3. We also study the effect of
collaboration and build our revenue sharing model based on
Shapley value mechanism in Sections 4 and 5, respectively.
Numerical results are presented in Section 6, followed by
the conclusion and future work in Section 7.

2 Two-ISP PricingModel

We consider an Internet market model with one CP and
two ISPs as shown in Fig. 1. Two interconnected ISPs have
their own cost structures and each provides connectivity to
either the CP or the EU. The CP-facing ISP (ISP1) obtains
its profits by directly charging the CP (CP ) by pcp per
unit traffic while the EU-facing ISP (ISP2) charges the EU
(EU ) by peu per unit traffic. Further ISP2 charges ISP1

with transit-price ptr for traffic delivery. CP can sponsor

Fig. 1 Two-sided Internet market

the cost of EU by s · peu per unit traffic with s ∈ [0, 1]. We
assume that the sponsored amount is paid to ISP1 and then
indirectly delivered to ISP2 through the transit price, which
allows both ISPs to benefit from the sponsoring. Let m1 and
m2 denote the marginal costs of traffic delivery for ISP1

and ISP2, respectively. We denote x as the traffic amount
of flow between CP and EU .

We assume that the players in this non-cooperative game
make decisions in four stages as follows:

1. ISP2 sets prices peu and ptr to charge EU and ISP1,
respectively.

2. ISP1 determines the optimal value of pcp to charge
CP .

3. CP decides howmuch content to sponsor, i.e., the value
of s.

4. The traffic volume is decided by both EU and CP .

Each player selfishly maximizes its own profit subject
to the others’ decisions. We model this non-cooperative
interaction as a four-stage Stackelberg game. In game
theory, a Stackelberg competition is a sequential game in
which the leader moves first and then the follower makes its
move [14, 15]. Specifically, in our model, we assume that
the EU-facing ISP (residential ISP) has a dominant power
and can be considered as the game leader, who decides
the transit cost preceding the choice of the CP-facing ISP
(transit ISP). The Stackelberg model can be solved to find
the subgame perfect Nash equilibrium or equilibria (SPNE),
i.e. the strategy profile that serves best each player, given
the strategies of the other players, and that entails every
player playing in a Nash equilibrium in every subgame. The
objective of the game is to find the equilibrium point, from
which neither the leaders nor the followers have incentives
to deviate [14–16]. By modeling the problem as a four-
stage Stackelberg game, we can find each subgame perfect
equilibrium using the backward induction method with the
optimal strategy of each player.

Let us define the utility of EU by the multiplication of
a scaling factor σeu ≥ 0 and a utility-level function. The
utility represents user’s desire to obtain traffic, and has been
widely adopted in resource allocation problems to capture
the property of decreasing marginal satisfaction [17–20]. In
this work, we assume a concave and non-decreasing utility
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function ueu(x) = x1−αeu

1−αeu
with parameter αeu ∈ (0, 1).

Given unit price peu that ISP2 charges user, EU will
maximize its utility minus the payment by solving

(EU − P)(EU − P)(EU − P) max
x

σeu · ueu(x) − (1 − s) · x · peu,

s.t . x ≥ 0, (1)

where s ∈ [0, 1] denotes the sponsored percentage, and
(1 − s) · x · peu denotes the payment of EU to ISP2.
The solution x∗

eu to Eq. 1 can be obtained as x∗
eu(s, peu) =

( σeu

(1−s)peu
)

1
αeu .

Similarly, we model the behavior of CP . The utility of
CP is given by σcpucp(x), where σcp ≥ 0 is a scaling factor
(e.g., the popularity of the content) and ucp(x) is a concave

utility-level function ucp(x) = x1−αcp

1−αcp
with parameter αcp ∈

(0, 1). CP will maximize its payoff by solving

(CP − P)(CP − P)(CP − P) max
x,s

σcp · ucp(x) − s · x · peu − x · pcp,

s.t . x ≥ 0 and 0 ≤ s ≤ 1. (2)

In the objective, the first term denotes its utility, the second
term denotes the cost due to sponsorship, and the third term
is from the network usage cost to ISP1. Given s, pcp, and
peu, it can be easily shown that the optimal amount of traffic

for CP is x∗
cp(s, pcp, peu) = (

σcp

speu+pcp
)

1
αcp .

Since ISP1 obtains its revenue from charging CP , it
decides the optimal value of pcp to maximize its total profit
as

(ISP 1−P)(ISP 1−P)(ISP 1−P) max
pcp

(pcp+s∗ · peu−ptr −m1) · x∗(pcp, peu),

s.t . pcp ≥ 0, (3)

where m1 is the marginal cost1 for traffic delivery and thus
pcp + s∗ · peu − ptr − m1 is the net-gain of ISP1 per unit
traffic.

ISP2 obtains its revenue from charging ISP1 with
transit-price ptr and charging EU with traffic-price peu.
Therefore, in order to maximize its total profit, it will solve

(ISP 2−P)(ISP 2−P)(ISP 2−P) max
peu,ptr

((1−s∗) · peu+ptr −m2) · x∗(pcp, peu),

s.t . peu ≥ 0 and ptr ≥ 0, (4)

where m2 is the marginal cost for traffic delivery.
Through the sequential decision, we investigate the

interactions of the players described in Eqs. 1, 2, 3, and 4,
and find the optimal strategies for pricing and sponsoring.

1In general, the traffic delivery cost is unlikely to be a linear function
of the traffic amount. However, in this work, we focus on the
traffic change from the CP of our interest, assuming that it does not
substantially change the total traffic amount in the network. In this
case, the marginal delivery cost of the traffic can be approximated as a
linear function with a marginal cost parameter.

3 Strategies for Utility Maximization

In this section, we sequentially find the optimal strategies of
CP , ISP1, and ISP2 by exploiting the backward induction.

3.1 Sponsoring of Content Provider (CP)

Note that each solution to Eqs. 1 and 2 results in user-
side traffic demand x∗

eu and CP-side traffic amount x∗
cp,

respectively, and the actual traffic amount x∗ between CP

and EU will be determined by their minimum, i.e., x∗ =
min{x∗

cp, x∗
eu}. In general x∗

eu �= x∗
cp. For instance, a certain

website may restrict the number of simultaneous on-line
clients, which implies x∗

cp ≤ x∗
eu.

Suppose that peu and pcp are given. The actual traffic
x∗(s) will be determined by the sponsoring rate s, and CP

will decide its optimal sponsored percentage s∗ by solving
the following problem:

(CP −P)(CP −P)(CP −P) max
s

σcp · ucp(x∗(s))−s · x∗(s) · peu−x∗(s) · pcp,

s.t . 0 ≤ s ≤ 1. (5)

We assume αeu = αcp = α ∈ (0, 1), i.e., EU and
CP utility components have the same utility shape. This
assumption is reasonable in the scenarios where CP makes
its pricing decision according to the user response. On the
other hand, the scaling factors σeu and σcp of EU and
CP can be quite different. The sponsoring behavior will
be affected by whether the traffic volume is constrained
by EU or CP . If x∗

eu ≤ x∗
cp, we have s ≤ σcppeu−σeupcp

(σeu+σcp)peu

and x∗ = x∗
eu. Similarly, if x∗

eu ≥ x∗
cp, we have s ≥

max
(

σcppeu−σeupcp

(σeu+σcp)peu
, 0

)
and x∗ = x∗

cp. We consider each
case.

Case i) When x∗ = x∗
cp. The profit of the CP can be

written as

V (s) = σcp ·ucp(x∗
cp(s))−s ·x∗

cp(s)·peu−x∗
cp(s)·pcp. (6)

By substituting x∗
cp(s, pcp, peu) =

(
σcp

speu+pcp

) 1
α

into

Eq. 6, it can be easily shown that V (s) is a decreasing
function of s, and we have the optimal value s∗ =
max(

σcppeu−σeupcp

(σeu+σcp)peu
, 0). Thus, the traffic amount and the

sponsoring rate will be

(x∗
cp, s∗) =

⎧⎪⎪⎨
⎪⎪⎩

((
σcp

pcp

) 1
α

, 0

)
, if

σcp

σeu
≤ pcp

peu
,

((
σcp+σeu

pcp+peu

) 1
α

,
σcppeu−σeupcp

(σeu+σcp)peu

)
, if

σcp

σeu
>

pcp

peu
.

(7)
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The maximum profit of CP is given as

V ∗(x∗
cp, s∗) =

⎧⎪⎨
⎪⎩

α(σcp)
1
α

1−α
(pcp)1− 1

α , if
σcp

σeu
≤ pcp

peu
,

ασcp

1−α

(
peu+pcp

σeu+σcp

)1− 1
α

, if
σcp

σeu
>

pcp

peu
.

(8)

Case ii) When x∗ = x∗
eu. In this case, we have s ≤

σcppeu−σeupcp

(σeu+σcp)peu
, x∗

eu(s, peu) =
(

σeu

(1−s)peu

) 1
α

and σcp

σeu
>

pcp

peu
. CP will optimize its sponsorship percentage by

solving

max
σcp

(
σeu
peu

) 1
α −1

1−α
(1 − s)1− 1

α − (speu+pcp)(
σeu
peu

)
1
α

(1−s)
1
α

,

s.t . 0 ≤ s ≤ σcppeu−σeupcp

(σeu+σcp)peu
,

σcp

σeu
>

pcp

peu
. (9)

From the first order condition, the optimal data rate x∗
and the optimal sponsoring rate s∗ can be obtained as

(x∗
eu, s

∗)=

⎧⎪⎪⎨
⎪⎪⎩

((
σeu

peu

) 1
α

, 0

)
, if

pcp

peu
<

σcp

σeu
≤ α+ pcp

peu
,

((
σcp+(1−α)σeu

pcp+peu

) 1
α

,

σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α

)
,if

σcp

σeu
>α+ pcp

peu
,

(10)

and the maximum profit of CP is

V ∗(x∗
eu, s∗)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
σeu

peu

) 1
α

[
σcppeu

(1−α)σeu
−pcp

]
if

pcp

peu
<

σcp

σeu
≤α+ pcp

peu
,

α(pcp+peu)

1−α

(
σcp+(1−α)σeu

pcp+peu

) 1
α
if

σcp

σeu
>α + pcp

peu
.

(11)

From the two-case response of CP , we can obtain the
following Proposition.

Proposition 1 Given prices pcp and peu, the optimal
sponsorship rate s∗ of the CP is

case 1) if
σcp

σeu
≤ pcp

peu
, s∗ = 0,

case 2) if
pcp

peu
<

σcp

σeu
≤ α + pcp

peu
, s∗ = 0,

case 3) if
σcp

σeu
> α + pcp

peu
, s∗ =

σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α
.

(12)

Proof For case 1, the maximum available profit of CP can

be easily obtained as V ∗(x∗
cp, s∗) = α(σcp)

1
α

1−α
(pcp)1− 1

α from
Eq. 8.

For σcp

σeu
>

pcp

peu
, the CP will choose the largest one among

available profits of V ∗(x∗
cp, s∗) and V ∗(x∗

eu, s
∗), given in

Eqs. 8 and 11, respectively. Let σ = σcp

σeu
and p = pcp

peu
. We

decompose it into two subcases as below.

1) When p < σ ≤ α + p, each profit function can be
written as

V ∗(x∗
cp, s∗) = (σeu)

1
α (peu)1− 1

α

(1−α)
(
1+p
1+σ

)(
1+p
1+σ

)− 1
α ασ,

V ∗(x∗
eu, s

∗) = (σeu)
1
α (peu)1− 1

α

(1−α)
(σ − (1 − α)p).

Consider the ratio V ∗(x∗
eu,s∗)

V ∗(x∗
cp,s∗) . By using the generalized

form of Bernoulli’s inequality (1 + x)r ≥ 1 + rx

for r ≤ 0 or r ≥ 1 and x > −1, we can
obtain
V ∗(x∗

eu,s∗)
V ∗(x∗

cp,s∗) ≥ (σ − (1 − α)p)( 1+σ
1+p

)(1 + p−σ
(1+σ)α

) 1
ασ

≥ 1 + (1−α)(σ−p)(p+α−σ)

σα2(1+p)
.

Hence, if p < σ ≤ α + p, we have V ∗(x∗
eu,s∗)

V ∗(x∗
cp,s∗) ≥ 1,

implying x∗ = x∗
eu and s∗ = 0 from Eq. 10.

2) When σ > α + p, we have

V ∗(x∗
cp, s∗) =( α

1−α
)(peu+pcp)1− 1

α (σeu)
1
α (σ )(1+σ)

1
α
−1,

V ∗(x∗
eu, s

∗) =( α
1−α

)(peu+pcp)1− 1
α (σeu)

1
α (1 + σ − α)

1
α .

Againwe consider the ratio V ∗(x∗
eu,s∗)

V ∗(x∗
cp,s∗) = 1+σ

σ
(1− α

1+σ
)
1
α .

Applying the generalized form of Bernoulli’s inequality,

we have V ∗(x∗
eu,s∗)

V ∗(x∗
cp,s∗) ≥ 1+σ

σ

(
1 − 1

1+σ

)
= 1, and thus we

have x∗ = x∗
eu and s∗ =

σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α
from Eq. 10.

According to Proposition 1,CP has no incentive to invest
in sponsored data plan when σcp

σeu
≤ α + pcp

peu
. On the other

hand, when σcp

σeu
> α + pcp

peu
, CP will invest in sponsoring as

in Eq. 10. The data rate under sponsoring will be

case 1) if
σcp

σeu
≤ pcp

peu
, x∗(pcp, peu) =

(
σcp

pcp

) 1
α

,

case 2) if
pcp

peu
<

σcp

σeu
≤α + pcp

peu
, x∗(pcp, peu) =

(
σeu

peu

) 1
α

,

case 3) if
σcp

σeu
>α+ pcp

peu
, x∗(pcp, peu)=

(
σcp+(1−α)σeu

pcp+peu

) 1
α
.

(13)

3.2 Utility Maximization of ISP1

ISP1 also tries to maximize its total profit in each region
specified in Eq. 13. We obtain the optimal response of ISP1

in each case.
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Case 1) When x∗ =
(

σcp

pcp

) 1
α
and s∗ = 0. From Eq. 3,

ISP1 maximizes (pcp − ptr − m1) ·
(

σcp

pcp

) 1
α
subject to

σcp

σeu
· peu ≤ pcp. The best response p∗

cp of ISP1 can be

easily obtained as p∗
cp = ptr+m1

1−α
. The maximum profit

P ∗
1 is

P ∗
1 =

[
α(m1+m2)

(1−α)
· σ
1+σ(1−α)

]
·
(

σcp(1−α)(1+σ(1−α))

σ (m1+m2)

) 1
α

,

where σ = σcp

σeu
.

Case 2) When x∗ =
(

σeu

peu

) 1
α

and s∗ = 0. From

Eq. 3, ISP1 has the objective of max
pcp≥0

(pcp − ptr −

m1) ·
(

σeu

peu

) 1
α

subject to pcp

peu
− σcp

σeu
≤ 0 and σcp

σeu
−

α − pcp

peu
≤ 0. From the constraints, we have pcp ∈[(

σcp

σeu
− α

)
peu,

σcp

σeu
peu

]
. Note that since the objective

is an increasing function of pcp, we set the largest
pcp = σcp

σeu
· peu for the optimal solution, which gives us

maximum utility P ∗
1 =

(
σcp

σeu
· peu − ptr − m1

)
·
(

σeu

peu

) 1
α
.

By differentiating it with respect to peu, we can find

p∗
eu = σeu

σcp
·
(

ptr+m1
1−α

)
that maximizes P ∗

1 , which results

in the optimal p∗
cp = ptr+m1

1−α
. The maximum profit is

P ∗
1 =

[
α(m1+m2)

(1−α)
· σ
1+σ(1−α)

]
·
(

σeu(1−α)(1+σ(1−α))
(m1+m2)

) 1
α
.

Case 3) When x∗ =
(

σcp+(1−α)σeu

pcp+peu

) 1
α

and s∗ =
σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α
. The problem can be rewritten as max

pcp≥0
(pcp +

s∗peu − ptr − m1) ·
(

σcp+(1−α)σeu

pcp+peu

) 1
α
, subject to pcp ≤(

σcp

σeu
− α

)
peu. From the first order condition, we can

obtain the optimal price p∗
cp = (k+1)(ptr+m1)

k(1−α)
−peu, where

k = σcp

σeu
− α. The maximum profit is

P ∗
1 = α

(
m1+m2
1−α

)1− 1
α ·(σcp +(1−α)σeu)

1
α ·

(
1+k(1−α)

1+k

) 1
α · k

1+k(1−α)
.

3.3 Utility Maximization of ISP2

For the behaviors of ISP2, we also consider the three cases
of Eq. 13 and find the best strategy of ISP2 for each case.

Case 1) When x∗(p∗
cp, peu) =

(
σcp

p∗
cp

) 1
α

and s∗ = 0.

We already have p∗
cp = ptr+m1

1−α
. From Eqs. 4 and 13,

the ISP2 determines its prices peu and ptr by solving

max
peu≥0,ptr≥0

((1 − s∗) · peu + ptr − m2) ·
(

σcp

p∗
cp

) 1
α
, subject

to σcp

σeu
− p∗

cp

peu
≤ 0.

Let P denote the objective function. From the Karush-
Kuhn-Tucker (KKT) conditions, we have ∂P

∂peu
= 0,

∂P
∂ptr

= 0, and λ ·
[

σcp

σeu
− p∗

cp

peu

]
= 0. By solving these

equations, we have the optimal prices

p∗
eu = (m1+m2)

(1−α)(1+(k+α)(1−α))
and p∗

tr = (k+α)(m1+m2)
(1+(k+α)(1−α))

−m1,

at which the maximum profit P ∗
2 is

P ∗
2 =

[
α(m1+m2)

(1−α)

] (
σcp(1−α)(1+(k+α)(1−α))

(k+α)(m1+m2)

) 1
α

,

where k = σcp

σeu
− α.

Case 2) When x∗(p∗
cp, peu) = ( σeu

peu
)
1
α and s∗ = 0. In this

case, we have p∗
cp = ptr+m1

1−α
. From Eqs. 4 and 13, the

ISP2 determines its prices by solving max
peu≥0,ptr≥0

((1−
s∗) · peu + ptr − m2) · ( σeu

peu
)
1
α , subject to

p∗
cp

peu
− σcp

σeu
≤ 0

and σcp

σeu
− α − p∗

cp

peu
≤ 0.

From the KKT conditions, we have ∂P
∂peu

= 0, ∂P
∂ptr

= 0,

λ1 ·
(

p∗
cp

peu
− σcp

σeu

)
= 0 and λ2 ·

(
σcp

σeu
− α − p∗

cp

peu

)
= 0,

where λi ≥ 0, pcp ≥ 0, and peu ≥ 0. There are three
possible subcases: i) λ1 = 0, λ2 �= 0, ii) λ1 �= 0, λ2 = 0,
iii) λ1 = 0 and λ2 = 0. The solution to each subcase can
be obtained as follows.

i) When λ1 = 0 and λ2 �= 0, the optimal prices will be

p∗
eu = m1+m2

(1−α)(1+k(1−α))
and p∗

tr = k(m1+m2)
1+k(1−α)

− m1,

where k = σcp

σeu
−α, and we have the maximum profit

P ∗
λ1

=
[

α(m1+m2)
(1−α)

] (
(σcp−σeuα)(1−α)2+σeu(1−α)

m1+m2

) 1
α

.

ii) When λ1 �= 0 and λ2 = 0, the optimal prices will be

p∗
eu = (m1+m2)

(1−α)(1+(k+α)(1−α))
and p∗

tr = (k+α)(m1+m2)
(1+(k+α)(1−α))

−m1,

and the maximum profit

P ∗
λ2

= α(m1+m2)
(1−α)

(
σcp(1−α)2+σeu(1−α)

m1+m2

) 1
α

.

iii) When λ1 = 0 and λ2 = 0, the two inequality
constraints should be an active constraint (i.e.,
the equalities hold). However, it is not possible
to satisfy both equalities, and hence, this case is
infeasible.

From P ∗
λ2

> P ∗
λ1
, we should have λ2 = 0 and the best

response of the ISP2 is that of ii), which also equals the
result of Case 1.
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Case 3) In this case, we have the optimal sponsor-

ing rate s∗ =
σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α
and the traffic demand

is x∗(p∗
cp, peu) =

(
σcp+(1−α)σeu

pcp+peu

) 1
α
. As shown

in Section 3.2, the best-response p∗
cp of ISP1 is

(k+1)(ptr+m1)
k(1−α)

− peu. From Eqs. 4 and 13, ISP2 deter-
mines its prices by solving max

peu≥0,ptr≥0
((1− s∗) ·peu +ptr −

m2) ·
(

σcp+(1−α)σeu

p∗
cp+peu

) 1
α , subject to

p∗
cp

peu
+ α − σcp

σeu
≤ 0.

From the KKT conditions, we have ∂P
∂peu

= 0, ∂P
∂ptr

= 0,

and λ · [p∗
cp

peu
+α − σcp

σeu
] = 0. By solving the equations, we

can obtain without difficulty that

p∗
eu = (m1+m2)

(1−α)(1+k(1−α))
and p∗

tr = k(m1+m2)
(1+k(1−α))

− m1.

The maximum profit P ∗
2 will be

P ∗
2 = α

(
m1+m2
1−α

)1− 1
α

(σcp +(1−α)σeu)
1
α

(
1+k(1−α)

1+k

) 1
α
.

We have shown the optimal responses of the EU, the CP,
and two ISPs in a non-cooperative equilibrium. The results
show the sponsoring rate s∗ and the pricing of p∗

cp, p
∗
eu, and

p∗
tr when each player maximizes its own utility in a greedy

manner. We further investigate the players’ behaviors when
the two ISPs cooperate.

4 Cooperative Model

In this section, we study the effect of collaboration to the
pricing structure and the traffic demand between CP and
EU, and analyze their implications for the total payoff of
ISPs. Instead of maximizing their own profit, the two ISPs
can make an agreement to cooperate in order to achieve a
higher total profit [15, 16]. The total profit can be obtained
as the total revenue of the two ISPs minus their marginal
cost for traffic delivery. Since the transit cost simply moves
some profit from one ISP to the other, we can ignore it
in calculation of the total profit. Full collaboration allows
them to make decisions on pcp and peu to maximize the
total profit, which makes them behave as if one single
ISP. A good example of such cooperation is the agreement
between Verizon, a residential broadband ISP with a large
user population, and Cogent, a transit ISP, in 2015 [21, 22].
They have made a peering agreement to improve the quality
of interconnection without any bilateral payments.

In our model, when ISP1 and ISP2 collaborate to deliver
traffic from CP to EU, we can consider them as one ISP
who obtains its revenue from charging CP by pcp and EU

by peu. The two ISPs are in peering with no transit-cost:
neither party pays the other in association with the exchange
of traffic. Instead, they need to fairly redistribute the total

revenue according to their marginal contributions. We will
use Shapley value mechanism for this purpose.

We first obtain the total revenue of the ISPs. The utility
maximization of the ISPs can be written as

(ISP − P)(ISP − P)(ISP − P) max
pcp,peu

(pcp + peu − m1 − m2) · x∗(pcp, peu),

s.t . pcp ≥ 0 and peu ≥ 0. (14)

Given unit price peu that ISP charges user, EU will
maximize its utility minus the payment by solving

(EU − P)(EU − P)(EU − P) max
x

σeu · ueu(x) − (1 − s) · x · peu,

s.t . x ≥ 0, (15)

where s ∈ [0, 1] denotes the sponsored percentage, and
(1 − s) · x · peu denotes the payment of EU to ISP . The
solution x∗

eu to Eq. 2 can be obtained as x∗
eu(s, peu) =(

σeu

(1−s)peu

) 1
αeu .

Similarly, CP will maximize its payoff by solving

(CP − P)(CP − P)(CP − P) max
x,s

σcp · ucp(x) − s · x · peu − x · pcp,

s.t . x ≥ 0 and 0 ≤ s ≤ 1, (16)

where the first term denotes its utility, the second term
denotes the cost due to sponsorship, and the third term is
from the network usage cost to ISP . Given s, pcp, and peu,
it can be easily shown that the optimal amount of traffic for

CP is x∗
cp(s, pcp, peu) = (

σcp

speu+pcp
)

1
αcp .

Since the actual traffic amount x∗ between CP and
EU will be determined by their minimum, i.e., x∗ =
min{x∗

cp, x∗
eu}, we can obtain the optimal sponsorship rate

s∗ and the data rate under sponsoring by considering three
cases as before. We omit the detailed derivation and provide
the result as

(x∗, s∗) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

((
σcp

pcp

) 1
α

, 0

)
, if

σcp

σeu
≤ pcp

peu
,

((
σeu

peu

) 1
α

, 0

)
, if

pcp

peu
<

σcp

σeu
≤ α + pcp

peu
,

((
σcp+(1−α)σeu

pcp+peu

) 1
α

,

σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α

)
, if

σcp

σeu
> α + pcp

peu
.

(17)

ISP s cooperate and try to maximize their total profit
in each region specified in Eq. 17. We obtain the optimal
response of ISP s in each case.

Case 1) When x∗(pcp, peu) =
(

σcp

pcp

) 1
α
and s∗ = 0. From

Eqs. 14 and 17, the coalition-ISP determines its prices
peu and pcp by maximizing (pcp + peu − m1 − m2) ·(

σcp

pcp

) 1
α
, subject to σcp

σeu
− pcp

peu
≤ 0, peu ≥ 0, and pcp ≥ 0.
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Let P denote the objective function. From the Karush-
Kuhn-Tucker (KKT) conditions, we have ∂P

∂peu
= 0,

∂P
∂pcp

= 0, and λ ·
[

σcp

σeu
− pcp

peu

]
= 0. By solving these

equations, it is not difficulty to obtain the optimal prices
of

p∗∗
eu = σeu(m1+m2)

(1−α)(σcp+σeu)
and p∗∗

cp = σcp(m1+m2)

(1−α)(σcp+σeu)
,

(18)

at which the maximum profit P ∗∗ equals

P ∗∗ = α
(

m1+m2
1−α

)1− 1
α

(σcp + σeu)
1
α .

Case 2) When x∗(pcp, peu) = ( σeu

peu
)
1
α and s∗ = 0. From

Eqs. 14 and 17, the coalition-ISP determines its prices

by solving max
peu≥0,pcp≥0

(pcp + peu − m1 − m2) ·
(

σeu

peu

) 1
α
,

subject to pcp

peu
≤ σcp

σeu
≤ α + pcp

peu
.

From the KKT conditions, we have ∂P
∂peu

= 0, ∂P
∂pcp

=
0, λ1 ·

(
pcp

peu
− σcp

σeu

)
= 0 and λ2 ·

(
σcp

σeu
− α − pcp

peu

)
= 0,

where λi ≥ 0, pcp ≥ 0, and peu ≥ 0. There are four
possible subcases: i) λ1 = 0, λ2 �= 0, ii) λ1 �= 0, λ2 = 0,
iii) λ1 = 0 and λ2 = 0, iv) λ1 �= 0 and λ2 �= 0.

i) When λ1 = 0 and λ2 �= 0, the optimal prices will be

p∗∗
eu = m1+m2

(1−α)(1+k)
and p∗∗

cp = k(m1+m2)
(1−α)(1+k)

,

where k = σcp

σeu
−α, and we have the maximum profit

P ∗∗
λ1

= α(m1+m2
1−α

)1− 1
α (σcp + (1 − α)σeu)

1
α .

ii) When λ1 �= 0 and λ2 = 0, the optimal prices will be

p∗∗
eu = σeu(m1+m2)

(1−α)(σcp+σeu)
and p∗∗

cp = σcp(m1+m2)

(1−α)(σcp+σeu)
,

(19)

and the maximum profit P ∗∗
λ2

= α(m1+m2
1−α

)1− 1
α (σcp+

σeu)
1
α .

iii) When λ1 = 0 and λ2 = 0, the two inequality
constraints of pcp

peu
≤ σcp

σeu
≤ α + pcp

peu
should be an

active constraint (i.e., the equalities hold). However,
it is not possible to satisfy both equalities, and hence,
it is infeasible.

iv) Similarly, when λ1 �= 0 and λ2 �= 0, we cannot find
a feasible solution for any α > 0.

From P ∗∗
λ2

> P ∗∗
λ1
, we should have λ2 = 0 and the best

response of the ISP s is Eq. 19, which is exactly the same
as in Eq. 18.

Case 3) In this case, we have the optimal sponsoring

rate s∗ =
σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α
and the traffic demand is

x∗(pcp, peu) =
(

σcp+(1−α)σeu

pcp+peu

) 1
α
. From Eqs. 14 and 17,

ISP s determine their prices by solving max
peu≥0,pcp≥0

(pcp +

peu−m1−m2)·
(

σcp+(1−α)σeu

pcp+peu

) 1
α , subject to pcp

peu
+α− σcp

σeu
≤

0. From the KKT conditions, we have ∂P
∂peu

= 0, ∂P
∂pcp

=
0, and λ · [pcp

peu
+ α − σcp

σeu
] = 0. By solving the equations,

we can obtain without difficulty that

p∗∗
eu = (m1+m2)

(1−α)(k+1) and p∗∗
cp = k(m1+m2)

(1−α)(k+1) ,

where k = σcp

σeu
− α, with the maximum profit as

P ∗∗ = α(m1+m2
1−α

)1− 1
α (σcp + (1 − α)σeu)

1
α .

Comparing the results with those in non-cooperative
scenarios, we can obtain the following proposition.

Proposition 2 The ISPs obtain higher total payoff when
they collaborate.

P ∗∗ ≥ P ∗
T , (20)

where P ∗
T denotes the total profit in non-cooperative case,

i.e., P ∗
T = P ∗

1 + P ∗
2 .

Proof We consider each case as before.
For Case 1. From our previous results

for non-cooperative game, we know that the
maximum profits of ISP1 and ISP2 are[

α(m1+m2)
(1−α)

· σ
1+σ(1−α)

] (
σcp(1−α)(1+σ(1−α))

σ (m1+m2)

) 1
α

and
[

α(m1+m2)
(1−α)

]
·

(
σcp(1−α)(1+σ(1−α))

σ (m1+m2)

) 1
α
, respectively, where

σ = σcp

σeu
. Hence, the total profit is

P ∗
T =

[
α(m1+m2)

(1−α)
· 1+σ+σ(1−α)

1+σ(1−α)

] (
σcp(1−α)(1+σ(1−α))

σ (m1+m2)

) 1
α
.

We can rewrite the total profits of ISP s for each non-
cooperative and cooperative case as

P ∗
T = α(m1+m2

1−α
)1− 1

α (σeu)
1
α (1 + σ(1 − α))

1
α

(
1+σ+σ(1−α)
1+σ(1−α)

)
,

P ∗∗ = α(m1+m2
1−α

)1− 1
α (σeu)

1
α (1 + σ)

1
α .

Considering the ratio P ∗∗
P ∗

T
=

(
1+σ

1+σ−ασ

) 1
α

(
1+σ−ασ

1+σ+σ−ασ

)

and applying the generalized form of Bernoulli’s inequality,
we obtain

P ∗∗
P ∗

T
≥

(
1 + σ

1+σ−ασ

) (
1+σ−ασ

1+σ+σ−ασ

)
= 1,

which immediately implies P ∗∗ ≥ P ∗
T .

For Case 2, we have the same total profits P ∗
T and P ∗∗ as

in Case 1. Thus, we have P ∗∗ ≥ P ∗
T .
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Fig. 2 Payoff changes of CP

and ISP2 when α = 0.5

For Case 3, from Sections 3.2 and 3.3, The total profits
in non-cooperative and cooperative cases can be written as

P ∗
T = α

(
m1+m2
1−α

)1− 1
α

(σcp + (1 − α)σeu)
1
α

(
1+k(1−α)

1+k

) 1
α k+1+k(1−α)

1+k(1−α)
,

P ∗∗ = α
(

m1+m2
1−α

)1− 1
α

(σcp + (1 − α)σeu)
1
α ,

where k = σcp

σeu
−α and σ = σcp

σeu
. Again we apply Bernoulli’s

inequality to P ∗∗
P ∗

T
=

(
1+k

1+k(1−α)

) 1
α 1+k(1−α)

k+1+k(1−α)
, and obtain

P ∗∗
P ∗

T
≥

(
1 + k

1+k(1−α)

)
· 1+k(1−α)

k+1+k(1−α)
= 1.

This completes the proof, and in all three cases, ISPs obtain
a higher total payoff when they collaborate.

5 Shapley Revenue Distribution

One remaining task under the collaboration is how to
distribute the payoff P ∗∗ to each ISP. To this end, we
exploit the Shapley value mechanism. It is often adopted
to solve the problem of n-person cooperative game, and
it is an approach to allocate resources according to the
contribution of each member in alliance, while improving
the alliance initiative of the members [23]. It has the
desirable properties of efficiency, symmetry, and linearity,
and has been widely used in the literature to implement
a profit-sharing mechanism and to analyze the cooperative
interactions among the players [15, 24, 25].

We consider a network that consists of a set of ISP s

denoted as N with N = |N|. Any nonempty subset S ⊆ N

is a coalition of ISPs. For any coalition S, P (S) denotes
the profit (i.e., revenue minus cost) generated by the sub-
network formed by the set of ISPs S. We define the marginal
contribution of ISPi to a coalition S ⊆ N \ {i} as �i (S) =
P(S ∪ {i}) − P(S). The Shapley value φ is defined by

φi = 1

N !
∑
π∈�

�i (S(π, i)) ∀i ∈ N, (21)

where � is the set of all N ! orderings of N and S(π, i) is
the set of players preceding i in the ordering π [25, 26].
The Shapley value depends only on the values {P(S) :
S ⊆ N} and satisfies desirable efficiency and fairness

properties [27]. Revenue sharing model based on the
Shapley value belongs to a cooperation-based game theory,
and the mechanism has a capacity to divide the revenue
fairly between the involved parties [27, 28].

In our model, we have N = {1, 2}, and ISP1 and ISP2

receive their Shapley value, which can be obtained as

φ1 = 1
2P({1}) + 1

2 [P({1, 2}) − P({2})],
φ2 = 1

2P({2}) + 1
2 [P({1, 2}) − P({1})], (22)

where P({1, 2}) = φ1 + φ2 is the total profit under
collaboration, and P({1}) = P ∗

1 and P({2}) = P ∗
2 are

the profit of ISP1 and ISP2 in non-cooperative case,
respectively.

Recall that letting A = α
(

m1+m2
1−α

)1− 1
α

(σeu)
1
α , σ = σcp

σeu

and k = σcp

σeu
− α, we have

if
σcp

σeu
≤ α + pcp

peu
, P ∗

1 = A(1 + σ(1 − α))
1
α

(
σ

1+σ(1−α)

)
,

P ∗
2 = A(1 + σ(1 − α))

1
α ,

if
σcp

σeu
> α + pcp

peu
, P ∗

1 = A(1 + k(1 − α))
1
α

(
k

1+k(1−α)

)
,

P ∗
2 = A(1 + k(1 − α))

1
α .

(23)

From the results in Section 4, we can also obtain the total
payoff P({1, 2}) under cooperation as

if
σcp

σeu
≤ α + pcp

peu
, (Cases 1 & 2)

P({1, 2}) = α
(

m1+m2
1−α

)1− 1
α

(σeu)
1
α (1 + σ)

1
α ,

if
σcp

σeu
> α + pcp

peu
, (Case 3)

P({1, 2}) = α
(

m1+m2
1−α

)1− 1
α

(σcp + (1 − α)σeu)
1
α .

(24)

Plugging (23) and (24) into (22), we can compute the
Shapley values φ1 and φ2.

The following proposition shows that the collaboration
with revenue sharing of Shapley mechanism improves the
profit of each ISP.
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Fig. 3 The optimal sponsoring
rate with respect to pcp , peu, σ ,
and ptr

Proposition 3 The revenue sharing mechanism assures that
an ISPi’s revenue portion at least equals to the revenue
gained without collaboration, i.e.

φi ≥ P({i}) (25)

Proposition 3 states that for all regions specified in
Eq. 17, we have φi ≥ P({i}), i.e., each ISP ’s revenue
in cooperative case exceeds the revenue gained without
collaboration. We omit the proof and refer to our technical
report [29].

6 Numerical Simulations

We verify our analytical results through numerical simula-
tions. We consider one CP, one EU, and two ISPs as shown
in Fig. 1, and assume that CP and the EU share the same
utility-level function αeu = αcp = α ∈ (0, 1). Figure 2a
shows that, if σ(= σcp

σeu
) > α + p(= pcp

peu
), CP has the max-

imum profit at σ = 0.4 and thus has incentive to invest in
sponsored data plan. It implies that when CP has a higher

utility level than EU (or similarly, when the price charged
to CP is relatively lower than the price charged to EU ),
CP is willing to provide a higher sponsorship rate. In con-
trast, when σ ≤ α + p, the maximum payoff is achieved at
s∗ = 0, i.e., the best strategy of CP is not sponsoring.

Next we observe the payoff of ISP2 as we change
the price per unit traffic peu that charges to EU .
Figure 2b illustrates the results and show that the payoff
of ISP2 linearly rises till some point, and then declines
exponentially, which is due to the fact that the demand
of users is inversely proportional to peu. Although ISP2

obtains its revenue from charging ISP1 with transit-price
ptr , the results show that increasing the ptr does not
necessarily increase the payoff of ISP2. As the transit price
becomes higher, CP is forced to increase pcp which in
turn results in a decline of the traffic demand. Hence, the
maximum point is achieved at ptr = 1 and peu = 2.

We examine the impact of ISP prices (pcp, peu, and
ptr ) and σ on the optimal sponsoring rate with different
parameter sets. Figure 3a shows that as pcp increases, the
sponsoring rate drops sharply. The decreasing rate can be
mitigated with higher σ . Figure 3b shows that with the

Fig. 4 Payoff changes of ISP1 and ISP2 when α = 0.5
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increase of peu, the marginal increase of the sponsoring
rate is decreasing. Moreover, a larger σ value indicates
a higher and rapidly growing sponsorship rate. Figure 3c
demonstrates the change of the optimal sponsoring rate with
respect to σ under different α values. The sponsorship rate
logarithmically increases as σ increases. It can be explained
from the fact that CP with higher revenue level can afford
more investment on the sponsoring content. We can also
observe that the variation in α has a little impact on the
traffic demand. Figure 3d will help us to understand the
effect of the transit cost ptr to the optimal sponsoring rate
s∗. We can observe that the increase of the transit cost results
in a sharp drop of s∗. The rise of transit cost will incur
significant loss in ISP1’s revenue, which forces ISP1 to
increase its charge to CP , resulting in a rapid drop of the
sponsoring rate.

We now observe the total payoff of ISPs in cooperative
and non-cooperative cases. Figure 4a illustrates the results
and show that the ISPs obtain higher total payoff when they
collaborate. We also examine the impact of collaboration on
the individual payoff of ISP1 and ISP2. Figure 4b and c
shows that each ISP’s revenue portion in cooperative case
increases sharply and highly exceeds the revenue gained
without collaboration.

7 Conclusion

In this work, we studied the inter-pricing among ISPs that
jointly deliver the sponsored data from CP to EU. We
derived the best response of the EU, the CP, and the ISPs,
and analyzed their implications for the sponsoring strategy
of the CP. We investigate the interactions between strategic
EU, CP, and two interconnected ISPs through a sequential
Stackelberg game, and verify our results through numerical
simulations. Our results clarify the high impact of the transit
price of intermediate ISP on the sponsoring strategies of the
CP, and demonstrate in what scenarios sponsoring helps. We
then study the effect of cooperation between the ISPs and
show that the collaboration can improve the total payoff of
the ISPs and leads to a higher social welfare. Based on the
Shapley value mechanism, we further show that each ISP’s
revenue portion in cooperative case exceeds the revenue
gained without collaboration. In our future work, we will
consider the network with multiple ISPs for the service to
the EU or the CP which may result in competition between
the ISPs and change the system dynamics.
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