
©
Published online: 26 2018

Mobile Networks and Applications (2020) 25:1016–1022
https://doi.org/10.1007/s11036-018-1119-7

Learning for Smart Edge: Cognitive Learning-Based Computation
Offloading

Yixue Hao1 · Yinging Jiang1 ·M. Shamim Hossain2 ·Mohammed F. Alhamid2 · Syed Umar Amin3

Abstract
With the development of intelligent applications, more and more intelligent applications are computation intensive, data
intensive and delay sensitive. Compared with traditional cloud computing, edge computing can reduce communication delay
by offloading computing tasks to edge cloud. Furthermore, with the complexity of computing scenarios in edge cloud, deep
learning based on computation offloading scheme has attracted wide attention. However, all the learning-based offloading
scheme does not consider the where and how to run the offloading scheme itself. Thus, in this paper, we consider the
problem of running the learning-based computation offloading scheme for the first time and propose the learning for smart
edge architecture. Then, we give the computation offloading optimization problem of mobile devices under multi-user and
multi edge cloud scenarios. Furthermore, we propose cognitive learning-based computation offloading (CLCO) scheme for
this problem. Finally, experimental results show that compared with other offloading schemes, the CLCO scheme has lower
task duration and energy consumption.
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1 Introduction

With the rapid development of wireless technology and
cloud computing intelligent devices (such as smartphones
[1]) access to the wireless network [2, 3] increasing. Fur-
thermore, mobile devices will be more and more intelligent
and the applications in mobile devices will require extensive
computation power and persistent data processing [4–6].
However, the improvement of these emerging applications
is Limited by the computational power of mobile devices [7,
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8]. The computation-intensive task can be offloaded to the
cloud for execution by the cloud computing technology, so
as to compensate for the restrictions of inadequate compu-
ting capability in mobile terminals. However, the mobile
devices accessing to the cloud through wireless network
needs longer duration, so it is not applicable for the delay
sensitive task.These tasks include wearable virtual reality
(VR) etc [9].

The edge computing can provide the distributed comput-
ing and storage capabilities for mobile devices by deploy-
ing the server on the network edge [10], and accordingly
can support computing and storing the intensive intelligent
application and ensure the lower delay and higher perfor-
mance [11]. Based on the edge computing, network-based
information processing for distributed applications, such as
[12], can be realized. Thus, the edge computing has the
advantages of low delay, and is an important research direc-
tion of wireless communication in the future [13, 14]. Spe-
cially, there are two advantages to offload task to edge cloud
[15]. On the one hand, compared with mobile devices, edge
cloud has more computational resources [16–18]. On the
other hand, it can overcome larger delay caused by offload-
ing the computation-intensive task and data-intensive task to
cloud [19–21]. Thus, for delay-sensitive and computation-
intensive tasks, offloading to the edge cloud may achieve a
better tradeoff among delay and energy efficiency [22].
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For the task offloading based on edge cloud, there exist
the following three types of offloading scenes. (i) One
user and one server scene, i.e., one mobile user offloading
computation task to an edge cloud. (ii) Multi-users and one
server scene, i.e., manymobile users offloading the computing
task to an edge cloud. (iii) Multi-users and multi-servers
scene, i.e., many mobile devices offloading the computing
task to many edge clouds servers. In view of different
scenes, the researchers design different offloading schemes.
Moreover, the complexity of multi-users and multi-servers
scene and dense deployment of 5G network (i.e., 5G ultre-
dense cellular network) result in the diversification of edge
cloud deployment [23, 24]. Thus, the existing optimization-
based task offloading scheme is difficult to meet the optimal
solution. Fortunately, with the development of artificial
intelligence (AI) and especially the development of deep
learning, it makes breakthroughs in the field of computer
vision [25]. The researchers hope to combine the AI related
algorithm with the computation offloading, and enable the
edge computation offloading to be more intelligent. For
example, Chen et al [26] research the task offloading program
by Markov decision process in traditional machine learning
algorithm. The test result shows that, such task offloading
program has lower delay.

Furthermore, few scholars make task offloading scheme
by using deep learning algorithm. In view of computation
offloading problem under user’s mobility, Sun et al., put
forward the computation offloading scheme of minimizing
task duration based on multi-armed bandit theory [27].
Chen et al.,research the edge cloud task offloading program
by deep reinforcement learning. However, all above task
offloading schemes are running on the mobile device using
deep learning algorithm, and fail to consider the following
two limitations. (i) The operation of task offloading scheme

based on deep learning needs a lot of computing resources
of the mobile devices, i.e., the deep learning algorithm
is equivalent to the computing task. The existing task
offloading schemes pays close attention to designing the
delay and energy efficient algorithm for task offloading. It
ignore the computing problem of offloading algorithm. (ii)
The computing capability of the mobile device is limited.
The offloading scheme based on deep learning may not
be able to run, resulting in the failure of the optimal task
offloading scheme for the design. Therefore, where to run
the learning-based offloading scheme and how to offload
the task by deep learning is still a challenging problem.

To solve the above challenges, we focus on the com-
puting problem of task offloading algorithm, and pro-
pose the architecture of learning for smart edge. To be
specific, we first propose the smart layered based task
offloading architecture. Then we introduce the optimal task
offloading problem of the mobile device under multi-user
and multi-server. Furthermore, we provide the cognitive
learning-based computation offloading (CLCO) scheme.
Finally, the simulation experiment shows that, the task
offloading strategy proposed by us minimizes the task
processing delay, and enables the battery energy consump-
tion to be lower. The problem of this paper as shown in
Fig. 1.

The main contributions of this paper are summarized as
follows:

– We focus on the computing problem of task offloading
algorithm, and propose the architecture of learning for
smart edge. From two perspectives of computing task
offloading scheme learning and task offloading scheme,
we give where and how to run the learning-based task
offloading scheme.

Fig. 1 An illustration of computation offloading in edge cloud
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– In view of the specific task offloading problem, based on
cognitive learning, we give the optimal task offloading
scheme of the mobile device. The simulation experiment
result shows that, the CLCO scheme proposed by us has
lower task delay and energy consumption.

2 System architecture

In this section, we introduce the learning for smart edge
architecture from the perspectives of task offloading scheme
learning and task offloading scheme. This architecture
generally aims at two applications as follows, i.e., (i)
computation-intensive application, such as VR and AR,
(ii) data-intensive application, such as personalized video
service [28–30]. Moreover, these applications are generally
delay sensitive [31], and need real-time task offloading. This
architecture can make the utmost of computing, storage and
network resources of edge server, introduce the cognitive
learning method to computation offloading, and process the
task offloading scheme learning and task offloading scheme
both on the edge cloud, to reduce the computing task delay
and improve the quality of user service.

To be specific, we divide the learning for smart edge
architecture into three layers, i.e., edge resource cognitive
layer, computation task cognitive layer, and global man-
agement cognitive layer. The edge resource cognitive layer
includes physical resource cognitive layer [32] and virtual
resource cognitive layer. It first conducts the software defi-
nition on physical resource, data link resource and network
resource by the network function virtualization technology
[33]. In other words, the physical computing, storage and
communication resources are virtualized to form the vir-
tual resources. Then, the software defined virtual resources
are encapsulated, to form the edge-centered resource. The
computation task cognitive layer includes the offloading
task and mobile device cognition. Thus, it can cognizes
the required computation amount and transmission for the
task, as well as the power consumption of mobile device.
Different users generate different tasks, and have different
requirements of task delay. The global management cogni-
tive layer is responsible for task offloading learning and the
corresponding offloading strategy formulation. Specifically,
it formulates the corresponding task offloading strategy by
analyzing the offloading task feature and resource state of
edge clouds, offloads the task from the global perspective,
and accordingly reaches the optimal decision.

For the above mentioned architecture, the specific
learning based task offloading flow is shown as follows.

– Where to run the learning based task offloading
scheme. In this paper, we assume the learning based
task offloading schemes are running on the edge cloud

rather than mobile device. It can gain the task offloading
strategy on edge cloud based on deep learning algorithm
and existing task offloading data training.

– How to run the learning based task offloading
scheme. When the mobile user generates the task, the
mobile device firstly offloads the parameters. The edge
cloud learns the optimal task offloading scheme in
accordance with its own computing resources. After
the edge cloud determines the offloading scheme, it is
transmitted to the mobile device. The mobile device
offloads accordingly.

3 Systemmodel

We consider an edge cloud enabled network consisting M

edge clouds. Indexed by M = {1, 2, · · · , M}, Let N =
{1, 2, · · · , N} denote the set of mobile devices. In this
paper, we consider that each mobile device can be connect
to multiple edge clouds through wireless channel, and can
offload the task to its connected edge cloud. Denote Ai as
the set of edge clouds that provides computation offloading
services to the mobile device i. We also define fj and cj as
the maximum computation amount and storage capacity of
edge cloud j .

3.1 Taskmodel

We assume the computing task to be processed by the
mobile device i as Qi . Thereinto, Qi = {ωi, si}, where
ωi is the computational demand of the task Qi , i.e., the
CPU cycles and si is the size of computation task Qi ,
i.e., the input size of data contents. For example, as for
the emotion recognition task, ωi is the required computing
resource for emotion recognition algorithm (such as deep
learning algorithm), and si is the emotion data size. In this
paper, we assume that the task is separable, i.e. a part of
each task can be executed locally, and the other part can be
executed by offloading to edge cloud. We denote ui,j as the
ratio of computation amount offloaded by the user i to the
edge cloud j for the total amount of computation, where
j ∈ Ai .

3.2 Communicationmodel

We provide the communication model between mobile
device and edge cloud. Let pi denote transmission power
of mobile device i. Let hi,j denote channel power gain of
mobile device i and edge cloud j . Thus, the offloading rate
for Qi are defined as:

ri,j = B log2

(
1 + pihi,j

σ 2 + Ii,j

)
(1)
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where σ 2 is noise power, B is channel bandwidth, and Ii,j

denotes the interference power between edge clouds. Then,
the transmission delay of the mobile device i offloads the
task to the edge cloud j can be defined as:

T tra
i,j = ui,j si

ri,j
(2)

Furthermore, the energy consumption when the mobile
device i offloads the task Qi to the edge cloud j can be
defined as follows:

Eec
i,j = piui,j si

ri,j
(3)

3.3 Computationmodel

3.3.1 Local computation

For the computing task that runs locally, we define f l
i as the

local computing capability in cycle/second of mobile device
i. Thus, we can obtain the execution time of computing task
Qi locally as follows:

T l
i = (1 − ∑

j∈Ai
ui,j )ωi

f l
i

(4)

Also, the energy consumption of mobile device is defined
as follows:

El
i = κ(f l

i )
2

⎛
⎝1 −

∑
j∈Ai

ui,j

⎞
⎠ ωi (5)

where κ is a constant related to the chip architecture. In this
paper, we set κ = 10−25.

3.3.2 Edge cloud computation

We define f ec
j,i as CPU computing capability distributed

to the mobile device i by edge cloud j . Like in [14] the
task duration for task Qi executed on edge cloud j can be
defined as:

T ec
i,j = T tra

i,j + T
proc
i,j = ui,j si

ri,j
+ ui,jωi

f ec
j,i

(6)

Furthermore, the task duration when the task of mobile
device i is executed on edge cloud as follows:

T ec
i =

∑
j∈Ai

(T tra
i,j + T

proc
i,j ) =

∑
j∈Ai

(
ui,j si

ri,j
+ ui,jωi

f ec
j,i

)
(7)

In a similar way, we can obtain the energy consumption
when mobile device i offload the task on edge cloud as
follows:

Eec
i =

∑
j∈Ai

Eec
i,j =

∑
j∈Ai

piui,j si

ri,j
(8)

3.4 Problem formulation

According to above analysis, we can obtain the task duration
and energy consumption of the processing of mobile device
i task. Suppose that the mobile device i residual energy is
Ei . We are aimed at minimizing the task duration of all tasks
with the limited battery capacity. Our optimization variable
is ui,j . The optimization problem can be defined as follow:

minimize
ui,j

N∑
i=1

(T l
i + T ec

i )

subject to C1 : Eec
i + El

i ≤ Ei

C2 :
N∑

i=1

siui,j ≤ cj , j = 1, 2, · · · , M

C3 :
N∑

i=1

fj,i ≤ fj , j = 1, 2, · · · , M

C4 : ui,j ∈ [0, 1] (9)

where the objective function is minimizing the total duration
task duration. The first constraint (C1) shows that the energy
consumption of task offloading of mobile device i can not
be more than the residual energy consumption. Constraint
(C2) ensures the task offloading to the edge cloud can
not be more than total edge cloud storage capacity. The
third constraint (C3) indicates the amount of computation
offloaded to the edge cloud can not exceed the computing
capability of edge cloud. Constraint (C4) indicate that the
tasks are separable.

4 Cognitive learning-based computation
offloading

In this section, based on the system model, we introduce
the CLCO scheme. In view of the optimization problem
(9), the general solution of this problem is utilizing the
optimization theory (e.g., convex optimization). However,
solving by the optimization theory is based on the following
two assumed conditions. (i) From the perspective of mobile
device, the mobile device knows the state of edge cloud
or assumed to comply with some distribution. (ii) It is
assumed that the mobile device has the sufficient computing
capability to compute and obtain the optimal offloading
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scheme. However, in the 5G scene, such as in 5G ultra-
dense cellular network, each small cell is provided with
edge cloud [34]. Each mobile device may connect with
multiple edge clouds in the vicinity, and the resource state of
edge cloud is changed rapidly. Thus, these assumptions are
unrealistic.

Thus, we propose the CLCO scheme. The specific idea
is as follows. When the mobile device is idle, the pre-
computation offloading is conducted in advance, and the
pre-computation task offloading strategy is provided. When
the task is reached indeed, the reinforcement learning is
utilized to further optimize the problem. Suppose the CLCO
iteration for T times. The basic steps are as follows.

– We assume all mobile devices offload task to its connected
edge cloud.

– In t ∈ T iteration, the mobile device updates its
offloading strategy according to the state of edge cloud
in the previous iteration.

– In t ∈ T iteration, the edge cloud updates its state
according to the offloading strategy of mobile device.

– After iteration for T times, the mobile device provides
the optimal offloading strategy.

In the next, we give the CLCO scheme in detail.
Suppose interaction t ∈ {1, 2, · · · , T }. According to above
discussion, we define the state space of task offloading as
st = Et , where Et is the energy of mobile device in t

iteration. Thus, we can obtain:

st+1 = st − (El
i (t) + Eec

i (t)) (10)

where El
i (t) is the energy consumption of mobile device

i in local processing at iteration t . Eec
i (t) is the energy

consumption of mobile device when the task is processed
in edge cloud at iteration t . Meanwhile we define the action
space as:

at =
⎛
⎝

⎛
⎝1 −

∑
j∈Ai

ui,j (t)

⎞
⎠ ,

∑
j∈Ai

ui,j (t)

⎞
⎠ (11)

where (1 − ∑
j∈Ai

ui,j (t)) is processing locally, and
∑

j∈Ai

ui,j (t) is processing in the edge cloud. Next we will

give how to provide the offloading strategy by Q-learning.
When mobile device offload the task, it do not clear the

resource state and computation load of edge cloud, so the
state of edge cloud should be explored. In this paper, we
adopt the model-free Q-learning for the dynamic strategic
choice. Specifically, we define Q(st , at ) as Q-function,
showing the value of performing the action at when the

system state is st . For the choice of the action at , we adopt
ε-greedy search strategy, and choose a action among all
possible actions uniformly and randomly at the probability
of ε for exploration. Utilize the known best action (i.e.,
maximizing the Q-function) at the probability of 1 − ε. We
define the reward of performing the action as follows:

Rt = βt

T ec
i (t) − T l

i (t)

T l
i (t)

+ βe

Eec
i (t) − El

i (t)

El
i (t)

(12)

where βt and βe is the weight of mobile device for energy
consumption and task duration. In this paper, we adopt
Bellman equation to update Q-function, with the details as
follows.

Q(st , at ) ← Q(st , at )+
η

(
Rt + γ max

at+1
Q(st+1, at+1) − Q(st , at )

)

(13)

To sum up, we provide the specific algorithm as Algorithm 1.

5 Performance analysis

In this section, we consider the system involving 5 edge
clouds and 300 mobile devices. We set the transmission
bandwidth B of mobile device is 1 MHz, and the
transmitting power P is 0.2 W. The corresponding noise
power σ 2 and channel power gain h are 10−9 W and
10−5. We assume computation amount ωi and data size si
follow by a probability distribution. Specifically the task
computation demand and the input data size comply with
the normal distribution. The computing capability of edge
cloud and mobile device is 10 GHz and 1GHz, respectively.

We first study the CLCO scheme and compared the
following computation offloading strategies. (i) Random
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Fig. 2 Task duration achieved
by random offloading, uniform
offloading and CLCO for
various value of (a) the average
data size of per task and (b) the
average computations capacity
of per task

40 60 80 100 120

Average data size (MB)

1

1.5

2

2.5

T
as

k 
du

ra
tio

n 
(s

ec
on

ds
)

CLCO
Random offloading
Uniform offloading

(a)

0 1 2 3 4 5

Average computations per task (gigacycles)

0

0.5

1

1.5

2

2.5

3

3.5

4

T
as

k 
du

ra
tio

n 
(s

ec
on

ds
)

CLCO
Random offloading
Uniform offloading

(b)

offloading scheme: mobile device randomly offload the
computing task, till meeting the computing capacity of
edge cloud. (ii) Uniform offloading scheme: The mobile
device offloading the computation task uniform on the edge
cloud, till reaching the computation capacity of edge cloud.
Figure 2 shows the comparison of task duration among
random offloading, uniform offloading and CLCO scheme
under different data size and computation capacity of per
task. We observe that the CLCO scheme outperform the
random offloading and uniform offloading strategy when
the average data size and average computations per task is
increased. This can be explained by the fact that both the
random offloading and uniform offloading scheme does not
recognize the task.

Furthermore, we compare the CLCO strategy with the
local computing and edge computing strategy. Figure 3
shows the comparison of task duration among local
computation, edge cloud computation and CLCO scheme
under different data size and computation capacity of per
task. We observe that the CLCO scheme outperform the

local computation and edge cloud computation when the
average data size and average computations per task is
increased.

6 Conclusion

In this paper, we first introduce a new task offloading
architecture which include computation task cognitive layer,
edge resource cognitive layer and global management
cognitive layer. Then, we give the optimization problem of
computation offloading under multi-user and multi-server
scene. Furthermore, we propose the CLCO scheme. It
study about the computing problem of the learning-based
computation offloading algorithm. Experiments indicate
that the CLCO scheme outperforms several state-of-the-
art offloading scheme. In the future, we will do deeper
work about the optimization of learning-based computation
offloading scheme, and to further reduce the task duration
and energy consumption.

Fig. 3 Task duration achieved
by local computing, edge
computing and CLCO for
various value of (a) the average
data size of per task and (b) the
average computations capacity
of per task
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