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Abstract
Many devices share their data with the online world to derive global knowledge and information that have high business
value. Trillions of smart devices are connected together over the Internet, which are known as Internet-of-Things (IoT).
These devices generate enormous data on daily basis, in orders of Exabytes, which is called Big Data. Since cloud services
are used to handle the Big Data generated from these IoT devices, new architectures for handling smart devices are designed
through cloud enabled IoT networks. In this paper, we discuss in detail the issues of handling Big Data from an operational
perspective in this new cloud based IoT network architecture. We tackle the incurred price and overall efficiency for storing
and analyzing data for these networks on periodical basis. We propose an optimization model that address the price versus
performance while carrying out Big Data analysis in these cloud based IoT networks.

Keywords Internet of things (IoT) · Big data · Mobile cloud computing (MCC) · Cloud radio access network (C-RAN) ·
Software defined networks (SDN) · Network function virtualization (NFV)

1 Introduction

Internet of Things (IoT) are heterogeneous, fixed, mobile,
miniature, small, large, active, and passive radio frequency
based communicating data sources. They are embedded in
trillions of devices present in the surrounding environment,
which will generate Big Data [1]. For instance, it is now a
reality that most of the merchandize products are equipped
with radio frequency identification (RFID) tags. They send
information to a central tag reader, which is a wireless
base station that collects information on the goods such as
quantity, price, date of expiry, etc. Based on the collected
information, the supervisor in the store can order new
stock, place sale on items, re-arrange items in the store for
better public attraction, and take any other actions that will
enhance sales and profitability.
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Another eye catching reality is the new generation of smart
homes,which can bemanaged through an appropriate remote
controller or simply using an application on the mobile
phone. This is made possible with the help of smart sensors
embedded in home appliances. These sensors are capable of
regulating the home functionality such as adjusting the room
temperature, controlling home ventilation and lighting,
placing grocery orders to the nearest or selected store, etc.
Another impending application of smart IP devices installed
in homes is the remote health care to save human lives.
The devices adorned by humans will monitor their health
and periodically send critical health information to the
nearest concerning hospital or directly to a doctor’s device
depending on the type of emergency.

There are many applications of using smart sensors.
A survey of some of these applications can be obtained
from [2–4]. Many sensor devices generate data while
monitoring a specific activity. This data is used to create
new applications that save lives, improve quality of living,
enhance security, provide impetus for future lifestyles and
habits, and predict new demands. This means an explosive
growth in the number of sensor devices, possibly in
trillions, that are interconnected to each other and ultimately
to the Internet backbone. More importantly, is the huge
unstructured data that these dissimilar IoT devices generate
on daily basis in order of Exabyte.
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New challenges emerge while handling this data explo-
sion, termed as Big Data, produced by IoT devices around
the globe. New scalable and efficient architectures are
needed and should cater according to the public needs
such as social, industrial, business, scientific, and security
[5–10]. Big Data processing and analysis is challenging
because they need innovative solutions to process the huge
amount of data, which is in order of Exabyte, according
to the quality of service (QoS) requirements of the end
applications. Sometimes the processing should be done in
real-time, which needs appropriate software processing and
data management tools [11]. Traditional relational database
management system (RDBMS) tools are not sufficient to
handle such huge data, even when the data is adequately
structured. Therefore, this work does not delve in the actual
data processing and data mining techniques. However, it
considers the network requirements for achieving Big Data
analysis efficiently and cost effectively [12].

Network infrastructure has new challenges to face in
order to maintain the throughput and delay constraints
required by end applications analyzing Big Data. The trans-
mission control protocol (TCP), user datagram protocol
(UDP), and Internet protocol (IP) currently have many lim-
itations when handling streaming and elastic data traffic
according to required QoS constraints. Therefore, new scal-
able network architectures are needed to overcome these
limitations [13, 14]. These new architectures should address
massive storage requirements that are swift in perform-
ing reading and writing operations. The current storage
technologies are extremely slow compared to the available
processor speeds [15]. This is a main problem when huge
volumes of data has to be fetched and processed for real-
time analysis. This limitation has to be addressed through
some means of parallel storage and simultaneous retrieval
from several storage devices.

Another important concern is the intermittent network
failures that occur during processing and analysis of Big
Data [16]. It will be extremely time consuming to restart
processes of such large magnitudes, every time a network
failure occurs. Efficient and seamless recovery mechanisms
are essential while processing Big Data. The networks
should be highly adaptable and reconfigurable due to the
adhoc nature of the location of IoT devices, particularly in
scenarios where mobile devices constitute majority of the
IoT devices [17].

As standardization efforts are already taking place to
address IoT infrastructure communication needs [18], there
is a dire requirement for handling the enormous data
generated by the massive IoT infrastructure. This paper
focuses on how to handle the data generated from massive
IoT infrastructure that has high business value. In particular,
we investigate a cloud-based IoT network architecture to
improve price versus performance while carrying out Big

Data analysis. We provide intuitive analysis through a
practical example that helps understanding the necessity to
take critical decisions while performing data analysis. Also,
an optimization model is proposed to minimize the price
while satisfying the performance constraints.

The rest of the paper is organized as follows. Section 2
presents various applications, which illustrate the high value of
Big Data analysis. A cloud-based solution that addresses vari-
ous issues is discussed Section 3. All the issues that are
discussed above, including other challenges are discussed in
this section. Then, Section 4 discusses the various aspects
that must be considered while performing Big Data Analy-
sis. To effectively handle Big Data analysis, an optimization
model to minimize price versus performance is proposed in
Section 5. Finally, Section 6 concludes the paper.

2 Big data analysis in IoT networks

In order to understand the need for Big Data analysis,
we need to know from where the data is generated and
how critical and important is the data for human beings.
For instance, imagine a satellite providing raw data on the
potential meteoroids that will hit the earth. We immediately
understand the importance of the data because it is essential
to track such meteoroids and take proper action. Another
common day example is the data collected on surrounding
climate all over the planet. The data is useful in predicting
the climate changes, the changes in wind currents, and
ultimately the weather conditions. Another important aspect
is the health care sector where data is collected and
processed to predict any epidemic disease outbreak in
the country and take necessary precautions and prepare
immunizations accordingly. All these are prime examples
where data is collected through some means, processed,
and then analyzed. This sort of data analysis is now done
by business organizations to improve their product sales,
services, and support [19].

IoT devices such as sensors, RFIDs, and smart phones are
used to collect data to predict social behavior such as their
habits, favorite choices, and lifestyle. These IoT devices are
also used to provide security and manage chaotic conditions
during disaster recovery and any other social disturbances.
The data is also collected for scientific purposes to improve
product performance, safety, and reliability. Most of these
applications need the entire bulk of data for batch processing
and then analyzing the entire processed collected data. In
some situations, the data should be analyzed in real-time
such as market stocks and emergency operations.

The IoT devices are limited in storage and processing
capacities. They generate continuous smaller sized data. The
data should be forwarded to appropriate storage locations.
These locations either store data from many devices in
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raw form or correlate and process the collected data before
storing in the final form to remove any sort of redundancy.
Such form of collective processed data saves storage space
substantially. Still, the resultant data collected is huge,
therefore, it is generally stored in cloud network. This
historically collected data is then analyzed on a regular
basis using appropriate data analyzing application to derive
knowledge and information. The acquired knowledge and
information are applied to the end users’ business and
scientific processes to achieve better and desirable results.

It is well known that the three important characteristics
of the Big Data that is generated from these IoT devices
are the sheer volume, variety, and velocity (“3Vs”) [20].
These three characteristics must be understood and used
for the benefit of the society and human life improvement.
The applications have to be developed accordingly, looking
into the direct consumer needs. The common public should
benefit from the available Big Data and analysis tools.
More importantly, the appropriate data must be available
for access by the right people anywhere around the world.
Technologies must be capable of promoting such goal into
ultimate reality.

Some important wireless technologies that provide IoT
devices for general public usage, which will produce Big Data
are wireless multi-hop sensor/mesh networks, low power
personal area networks (6LoWPAN), wireless local
area networks (WLANs), 4G/5G/LTE-A and WiMAX
cellular networks, machine-to-machine/device-to-device
(M2M/D2D) networks, radio frequency identification
(RFID) tags, near field communications (NFC), Bluetooth,
and ZigBee [21–24]. The sample applications that are provi-
sioned over these kind of IoT networks and their associated
devices are shown in Fig. 1. Key applications are smart
homes, telemedicine, smart tags for inventory tracking, e-
commerce, social networks, health monitoring, terrestrial
and satellite based monitoring, aviation control, etc.

The main limitations of many IoT devices are the limited
battery life, limited storage, and less processing power. These
disparate sources of data will not be able to provide global
information and knowledge to large business organizations
and scientific research communities. During data analysis,
the need for global knowledge in these scenarios requires
services of a powerful platform having high processing
power and storage capacities. Therefore, IoT devices,
particularly the wireless-based ones, are connected to cloud
networks for back-end processing and data analysis [25].

3 Cloud based solution for IoT network
infrastructure

A general overview of cloud support to IoT technologies
is summarized in Table 1. The adoption of cloud solution

Internet of 

THINGS
Infrastructure

Fig. 1 Cloud based IoT technologies and applications. There are
many key applications to be mentioned. The figure shows applications
such as smart home, telemedicine, inventory tracking, satellite
communications, etc. Some of the applications have been summarized
in Table 1

has been recommended for elastic provisioning of its
services and handling the dynamic requirements of massive
data storage and processing. The cloud network as a
backbone for IoT infrastructure is ideal solution for
processing and storing massive data, which is at least in
the orders of Exabyte. In this line, a storage framework
for Big Data generated from IoT infrastructure using cloud
network is proposed in [26]. Similarly, a computational
architecture for cloud based IoT infrastructure consisting
of a manufacturing system is studied in [27]. The
communication and quality of service aspects for such cloud
based IoT infrastructure can be obtained from recent works
[28, 29].

However, all these works have overlooked the impact of
different policies of handling the massive data on the cost of
performing data analysis while satisfying other functionality
and green communication objectives. In this work, we
attempt to address these objectives in a very specific aspect.
Therefore, we adopt a generally applicable architecture for
a cloud centered IoT infrastructure.

A scenario for current IoT infrastructure is shown
in Fig. 2. IoT infrastructure consists of various kinds
of fixed as well as mobile embedded devices, sensors,
RFIDs, smart phones, and any other data sources with
limited storage and computational power. They forward
their data continuously to the nearest data sink through
a wired link or over a wireless radio frequency channel.
The data sink temporarily stores all the data that is
received from its associated IoT devices. Then the sink
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Fig. 2 Network scenario for
cloud based Big Data analysis
for arbitrary IoT infrastructure
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periodically forwards the collected data to the nearest cloud
network using the front haul network. All these cloud
networks are interconnected with each other by means of the
fastest available communication channel links in the current
technology. For example, presently single mode fiber links
with petabytes/s bandwidth are available. The central cloud
is a network of numerous geographically distributed cloud
networks that are equipped with commercial of-the-shelf
(COTS) based servers. Virtualization software based on
software defined network (SDN) paradigm runs these COTS
servers [30, 31]. All the network functions are realized in
the software as virtual network functions (VNFs) instead of
using specialized hardware to carry out switching and routing.
The cloud offers these COTS servers as simple bare metal
hardware services for network service provider (SP) to carry
out all operations. Also, it offers VNFs as a service to the SP
[32]. These SPs then offer network services to the end users,
which may be a large business organization or a simple
end user accessing information to acquire knowledge of a
particular aspect. Such a cloud centered IoT infrastructure
architecture offers solutions to many concerns raised during

handling Big Data from all these online devices [33]. The
following subsections addresses them one by one.

3.1 Benefits of cloud based IoT architecture

For devices with limited energy, storage, and computation
power that continuously generate data, a large repository
and powerful computing power are needed to collect
and process the data for daily analysis. Usually, the
data must be looked from global context and sometimes
correlated with other dissimilar data to observe patterns
in social behavior, market performance, global warming,
epidemic health crisis, and large scientific experiments. The
geographically distributed IoT devices can outsource their
data computation to the central cloud network for quick and
efficient analysis. The output results of data analysis can
be made accessible globally to the right people at the right
time. The privacy of the data can be maintained using tight
security measures applied to cloud networks as they are
maintained by the dedicated cloud service provider (CSP)
business organizations.
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3.2 Architecture for availability, reliability,
and scalability

Nowadays, high availability of online services is a main
concern where cloud should offer them anytime and
anywhere. IoT devices have many constraints but produce
huge data collectively. For the global availability of the data,
the cloud services should ensure that data is made accessible
to its right users with all privileges, everywhere, and at all
times. CSP business organizations determine that proper
backup mechanisms can ensure that the data, analyzed
results, and computation facilities (for any further analysis)
are available all the time.

From a properly established and robust backup mecha-
nism will come the next desired feature: reliability of the
offered service. The services that handle and manage Big
Data have to be highly reliable since many critical deci-
sions are based on the results of Big Data analysis. New
inferences and future projections will be based on the pro-
cess of huge historical data. Unreliable system can mislead
the study and analysis. Cloud networks offer accurate, pow-
erful data computation, and storage infrastructure. They
use software based on NFV and SDN paradigm to ensure
that the network functions use the latest upgrades in the
technology for reliable communication of data during dis-
tributed processing. As a result, the data analysis software
can use up-to-date technologies to become more accurate
and sophisticated.

Another inevitable requirement is the scalability of the
cloud services. IoT infrastructure is expanding tremen-
dously every year at an exponential rate, and the generated
Big Data by this infrastructure is humongous. This problem
is exacerbated with the need to store previous historical data
that cannot be discarded. Therefore, a cost-effective solution
that meets green communication objective is needed. Obvi-
ously, this needs constant technology upgrade with more stor-
age capacity than the previous technology can offer. Increas-
ing the computation power leads to power hungry technolo-
gies. Therefore, a systematic approach to the growing size
of the Big Data Handling System is required. Clearly, there
is no better way than moving to cloud network environment.
The CSP business organizations can constantly update their
technologies with greener and cost effective solutions as this
is their prime business operation: that is to offer improved
services to handle Big Data and its growth.

3.3 Green communication objective

Software domain architectures using NFV and SDN can
instantiate many virtual network functions (VNF) on a
single COTS server in central cloud network, where each
VNF belongs to a different business end user. Traditional
solutions require separate specialized hardware server

dedicated to each such business end user, which consumed
more energy and space. NFV and SDN based technologies
and advanced VNFs tremendously reduce communication
and processor’s energy consumption costs to meet green
communication objectives. Moving the data processing and
computation to the central cloud will substantially reduce
energy bills. Further, it is easier to maintain servers in a
single room or building connected to air conditioning units
to reduce energy bills. IoT devices that form the end nodes
consume lesser energy as they are less complex, leaving all
kinds of processing and intelligence to the central cloud.
The emerging cloud based radio access networks (C-RAN)
are based on the same concept [34].

3.4 Motivation and related work

Cloud computing promises pay-as-you-go, scalable, and
on-demand storage and compute services. With these
promises and with fast growth of the data volume, cloud
provides the best solution to store and process Big Data
while minimizing or maximizing certain metrics defined
in the service level agreement (SLA). Consequently, Big
Data are treated as set of cloud applications with huge
volume and will be scheduled accordingly on the best
node in the available cloud model. In order to provide
optimal deployments for data storage and processing, we
propose a mixed integer linear programming (MILP) model
that minimize the accompanied cost without violating the
performance defined in terms of computational resources
and linkage delays.

Big data is an interesting topic that has attracted many
research studies. However, the way to provide performance
management changes from one literature to another [35].
In [36], the authors propose a topology-aware resource
allocation model. It maps the data sets, applications’
VMs to servers while minimizing the execution time of
the MapReduce jobs in a static cloud environment. [37]
propose automated resource allocation and configuration
of MapReduce environment in the cloud. Using machine-
learning techniques, the model generates different Hadoop
jobs’ clusters and allocate them cloud resources based on
the proposed optimization model.

In [38] and [39], the authors use existing Hadoop
scheduling algorithms. With these algorithms, applica-
tions/data sets are scheduled in a homogeneous cloud
resources environment. They do not consider any cost con-
straints and the impact of data analytic frequency and
storage location on scheduling decision. On contrary, our
work studies the impact of different factors on schedul-
ing different Big Data sets. The proposed model minimizes
the storage and processing cost while finding the optimal
storage and processing location for these sets based on the
analytic frequency, delay, and resources requirements.
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In [40], the authors propose a model that provisions and
schedules the MapReduce jobs on the available cloud nodes
while minimizing the processing cost. It uses the data size
and the network throughput to generate the transfer time of
the data sets to the cloud and considers its impact on the
cost constraints. Although the authors propose a dynamic
scheduling solution while minimize the processing cost,
they discard the impact of the analytic frequency on the cost
calculation. Also, their SLA constraints do not consider the
delay constraints between the data storage and processing
location.

In [41], the authors propose a replication placement model.
The latter distributes different data replicas to maximize
data reliability, but it discards any cost and delay constraints.
In [42], the authors minimizes the communication cost
of the placement of Video on Demand files while
satisfying the SLA requirements based on the users’
experience. [43] generates an automated data placement
mechanism for cloud applications based on bandwidth
cost, resource capacity constraints, and data applications
interdependencies. The authors define an optimization
algorithm that helps analyzing the logs submitted by the
application and generating the best placement.

In [44], the authors propose a joint optimization model
that minimizes the operational cost of placing different Big
Data sets in multiple cloud sites. Using a two-dimensional
Markov chain and non-linear optimization model, the
authors distinguish multiple data processing methods and
their completion time. Although their model show efficient
results in terms of minimizing communication cost, the
authors discard other SLA requirements impact on the
placement decision such as the transmission and processing
delays. Besides, the existing literature focuses only on the
data processing location and the required computational
resources. However, in our work, it is shown that the
storage location affects the Big Data costs and processing
placement. Also, the proposed solution is based on an
optimization algorithm designed in form of MILP model
that minimizes overall processing and storage costs while
considering capacity constraints, analytic frequency effects,
and network delay requirements defined in the SLA with
end-users.

From the literature survey, it can be found that there are
many solutions that deploy services on virtual machines in
a cloud model, however, these solutions do not target Big
Data and its storage and processing costs. The latter costs
are evaluated based on the data size, delay, frequency of
data processing, and services’ renting time. In the existing
solutions that discard Big Data, cost of scheduling a service
is calculated in terms of delay or network traffic because the
cloud provides acceptable prices when it comes to small-
size data. Contrary, it is not the case when things are related
to huge-size data.

This work thus focuses on providing a model for finding
an optimal price and performance solutions to the Big Data
processing in the cloud environment. The proposed MILP
model can be used as a benchmark optimal solution based
on Big Data size and location characteristics of real life IoT
networks powered by huge cloud computing facilities. Since
massive data storage and analysis is involved, appropriate
advance reservation mechanism is assumed in the analysis.
Advanced resource reservation of the resources such as
link bandwidth is essential to avoid congestion in the
networks while handling massive data movement during
data analysis. Similar advance reservation models for cloud
environment have already been proposed in literature [45–
47].

4 Big datamanagement in cloud

This paper considers the central cloud network of IoT
infrastructure to be a network of different cloud networks
residing on different geographical locations. A typical
scenario of such generalized central cloud network is
shown in Fig. 3. The central cloud network consists of
three different cloud networks (CN1, CN2, and CN3)
connected with petabytes/s bandwidth capacity fiber optic
links (L1, L2, and L3). Each cloud network is operated by
different CSP; each offering different prices for storing and
processing the data on their cloud servers. Three different
network providers who offer different costs for transmitting
data on their links operate the three fiber optic links between
these cloud networks.

D Bytes of 
data per day

Cloud Network
CN1

Remote Cloud
CN2

Target user

Other users

Remote Cloud
CN3

Link L1

Link L2

Link L3

Fig. 3 Data management in cloud
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For simple intuitive analysis, let us consider that the
devices from IoT infrastructure directly connected to cloud
network CN1 generates data of D Gigabytes every day.
This data can be viewed and analyzed by the target user
connected to cloud network CN2. The stored data maintains
the history of 30 continuous days including the current day
when data analysis is performed. Before this period, all
past data is deleted. The analysis is carried only on the
data collected in the past 30 days. Now, our objective is to
determine where to store and process the data and how often
to move it around these three cloud networks such that the
overall cost of performing the data analysis is minimized.
First, we calculate the cost associated with each of the
different strategies or policies of storing, processing, and
moving the data for analysis. Also, we show how the cost of
each policy varies with the frequency of data analysis such
as every day, every week, or every month (30 days).

Suppose that the costs of storing a Gigabyte of data in
the server farms of cloud networks CN1, CN2, and CN3 are
Cs
1, C

s
2, and Cs

3 dollars respectively. The costs of processing
the same amount of data on servers of CN1, CN2, and
CN3 clouds are C

p

1 , C
p

2 , and C
p

3 dollars respectively.
Accordingly, the respective costs of transmitting a Gigabyte
of data on links L1, L2, and L3 are Cl

1, Cl
2, and Cl

3
dollars. Below are the various proposed pricing policies.
Although these linear models are not representative of an
industry-adopted policy, but they deliberately quantify costs
per gigabyte rather than time, which is subjective to the
technology in place. Additionally, a similar approach has
been adopted in [40] where the authors use simple and linear
model to evaluate the cost of processing a data set after
deploying it in a cloud environment.

4.1 Single-cloud, sc-policy: storing and processing
on same cloud

We first consider a policy where a particular cloud from
CN1, CN2, or CN3 is selected for both storing and
processing the data during data analysis. Suppose that f is
the frequency of data analysis. While f = 1 corresponds to
doing data analysis once every 30 days, f = 30 corresponds
to carrying out analysis every single day. In between values
such as f = 5 corresponds to carrying out this data analysis
5 times during a single month of 30 days.

With all of the above information in place, the overall
price of performing data analysis on CN1 (i.e., over a single
cloud or SC-policy) is given by (SC-policy1)

P SC
1 = 30 · D · (

Cs
1 + f · C

p

1

)
(1)

The above equation assumes that the size of the results from
data analysis is very small and insignificant. Consequently,
transmission costs of the results over L1 to the target user
located on CN2 is negligible.

The price of performing the same analysis through
another SC-policy where CN2 is used for both storing and
processing the data is given by (SC-policy2)

P SC
2 = 30 · D ·

(
Cs
2 + Cl

1 + f · C
p

2

)
(2)

In the same way, if the SC-policy decides to store and
process data on CN3, the overall price of performing data
analysis would be (SC-policy3)

P SC
3 = 30 · D ·

(
Cs
3 + Cl

3 + f · C
p

3

)
(3)

4.2 Multi-cloud, mc-policy: storing and processing
using different clouds

It is quite possible that CSPs offer competitive prices for
their services such as storage and computation to maintain
their dominance in the business market and at the same
time generate adequate revenue from their business to
remain profitable. It is possible that the storage cost of
one CSP is higher than the that of all other rival CSPs,
but this particular CSP may offer the least price for its
computational resources. In such a scenario, it is worth
investigating to find cost saving solutions through new
innovative data analysis policies that favor storing data
on one cloud but use computational resources from a
different cloud. This subsection investigates such multi-
cloud policies (MC-policy) for performing data analysis.

Suppose that CN1 is used for data storage and CN2 is
used for carrying out computational analysis (processing
the data). The overall price for performing data analysis
using this particular MC-policy is given by the following
expression. This is labeled as MC-policy1.

P MC
s1−p2 = 30 · D ·

(
Cs
1 + f · Cl

1 + f · C
p

2

)
(4)

For the MC-policy where CN1 is used for storage and data
analysis is done on CN3 (MC-policy2), the price of data
analysis would be

P MC
s1−p3 = 30 · D ·

(
Cs
1 + f · Cl

3 + f · C
p

3

)
(5)

The overall price when CN3 stores data and CN1 process
using MC-policy3 is

P MC
s3−p1 = 30 · D ·

(
Cs
3 + (f + 1) · Cl

3 + f · C
p

1

)
(6)

Similarly, the price when CN3 stores and CN2 processes
using MC-policy4 is given by the expression as

P MC
s3−p2 = 30 · D ·

(
Cs
3 + Cl

3 + f · Cl
2 + f · C

p

2

)
(7)

In the same way, the price when CN2 stores and CN1
processes using MC-policy5 is given as

P MC
s2−p1 = 30 · D ·

(
Cs
2 + (f + 1) · Cl

1 + f · C
p

1

)
(8)
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Finally, the price when CN2 stores and CN3 processes using
MC-policy6 is given by the following expression.

P MC
s2−p3 = 30 · D ·

(
Cs
2 + Cl

1 + f · Cl
2 + f · C

p

3

)
(9)

All the above equations in this subsection provide exhaus-
tive combinations of cloud networks using MC-policy.

4.3 Cost (P ) versus frequency (f ) of data analysis

For the sake of estimating the cost of performing data
analysis each month, we have used some representative cost
values for illustration as shown in Table 2. These costs are
not reflective of any cost model used either in theory or
practice but are useful in studying the effect of different
policies on the overall cost of data analysis. We have
calculated the overall cost of each data analysis policies
based on the frequency of such analysis, ranging from once
a month to everyday. We assume that the data generated
each day, D is 10 Gigabytes.

In this subsection, we study the incurred cost of various
SC and MC policies and see how they vary in each policy
when the frequency of analysis in a month varies. These
results are shown in Figs. 4 and 5 where f = 1 represents
once a month and f = 30 represents carrying out data
analysis everyday of the month.

From a look at Fig. 4, it can be seen that SC-policy1 that
uses CN1 for storage and analysis is very expensive under
lower frequency values of f . This is mainly because the
cost of storage on CN1 is very expensive when compared
with the cost of storage on CN2 and CN3. However,
the CN1 offers very low computational cost. When data
analysis is done more frequently, the selection of CN1 as a
data analysis policy provides economical solutions. This is
exactly what is seen in Fig. 4. For instance, if data analysis
is done every day, the SC-policy1 offers the cheapest price.
Both SC-policy2 and SC-policy3 offer similar prices that
are higher compared to the price of SC-policy1. Now, it is

worth to compare the price offered by SC-policy1 with the
introduced multi-cloud policies (MC-policies) to reduce the
overall price further.

The price performance of different multi-cloud data
analysis policies (MC-policies) with variation of the
frequency of data analysis f is shown in Fig. 5. It can be
clearly seen that MC-policy must be carefully chosen in
order to reduce the price further by carefully studying the
costs of resources of various service providers. If not chosen
properly, the price increases instead of reducing the existing
one. This can be seen clearly in Fig. 5 where not all policies
offer the same price and they vary tremendously with
frequency of analysis. Some are expensive while others are
lower in terms price. Of all the policies, MC-policy3 offers
the best price in all scenarios. This is because it combines
the storage, computation, and transmissions resources in
the best possible way to reduce the total cost so that the
price of performing data analysis is lower all the time.
This MC-policy3 is even lower compared to the best SC-
policy, i.e., SC-policy1 that is identified using single-cloud
based data analysis. In this section, we have considered only
the cost but not the performance, and we dealt with the
problem in the most simplified form. In the next section,
we also consider the performance of the system while
carrying out data analysis in a most cost effective way. In
particular, we model the problem as an optimization model
and solve it to obtain an optimal solution with regards to the
selection of resources from the perspective of both price and
performance.

5Model for price versus performance
optimization

Our intuitive study reveals that appropriate handling of
Big Data through an ideal policy is essential to keep
the costs low while performing data analysis. An optimal
way of achieving the minimal cost also needs to consider

Table 2 Various costs involved in Data Analysis for 1 month

Costs → Storage cost Processing cost Transmission cost

Cloud/Link ↓ (dollars per Gigabyte) (dollars per Gigabyte) (dollars per Gigabyte)

CN1 Cs
1 = 8.00 C

p

1 = 0.50 + 0.50/(f + f 2) –

CN2 Cs
2 = 4.00 C

p

2 = 0.80 + 0.50/(f + f 2) –

CN3 Cs
3 = 2.00 C

p

3 = 0.90 + 0.50/(f + f 2) –

L1 – – Cl
1 = 0.40 + 0.10/(f + f 3)

L2 – – Cl
2 = 0.10 + 0.10/(f + f 3)

L3 – – Cl
3 = 0.20 + 0.10/(f + f 3)

The values shown in the table are only for illustrative purposes and not representative of any charging model
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Fig. 4 The overall cost of data
analysis cost as a function of
frequency f using SC-policy
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performance. The model proposed in this section considers
all these aspects while meeting price and performance
objectives. These goals are the main requirements of an
end user who can be a simple service consumer or a big
enterprize.

Minimizing the cost of storing and processing Big Data
depends not only on the frequency of access but also on the
computational and delay requirements. The latter defines
the needed performance based on the SLA with end-users.
Therefore, it is necessary to have an optimization model
that minimizes this cost while satisfying the performance
constraints. With this model, different data sets are stored
and processed on same or different networks based on the
following constraints:

– Computation Resources Constraints: These constraints
ensure that the selected network should satisfy the
computational requirements of a certain data set. For
storing and processing purposes, the model searches for
network with enough storage size in terms of terabytes,
CPU cores, and power in terms of kilowatts (KW).

– Delay Constraints: With these constraints, the over-
all linkage delay F(Lnn′ , Lu

d) between the storage and
processing network should not exceed the one defined
in the SLA, otherwise, user might encounter service
degradation. This delay consists of both: the transmis-
sion delay that is determined using the packet length
and existing transmission rate and the processing delay
that depends on the distance between two cloud net-
works and the medium propagation speed. As for Fav

nn′ ,
it is the existing linkage delay, which must not exceed

the required delay threshold F sla
nn′ . The latter is defined

by the end-user in the SLA between the cloud provider
and cloud user. Refer to Table 3 for description of all
the notations used in the MILP model.

Additionally, these constraints differentiate between
three different types of data: hot or frequently accessed data,
warm or less-frequently accessed data, and cold or rarely
accessed data. Developing such constraints necessitates
indicators that refer to data type and consequently help
taking best decisions regarding storing and processing
that data. Therefore, we used frequency of access and
propagation delay as indicators to the data type and
performance. For instance, hot big data requires real-time
analysis and access in order to make instant decisions
when it is received. Since it is frequently accessed, the
propagation delay between storage and processing networks
of hot data should not exceed the threshold defined in SLA.
In our case, we assume that data is managed as follows:

– Cold Data: Data accessed less than or equal to 10 days
in a month.

– Warm Data: Data accessed between 11 days and 20
days in a month.

– Hot Data: Data accessed more than 21 days in a month.

5.1 Notations

It is assumed that the generated data is stored as one
chunk on a certain network. Since we consider independent
scheduled data sets, we assume that sequential processing
would be best solution. This is based on the fact that
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Fig. 5 The overall cost of data
analysis cost as a function of
frequency f using MC-policy.
The MC-policy results are
compared with SC-policy to
stress the importance of a proper
MC-policy for data analysis
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various data sources and providers indicate that sequential
processing might be faster than parallel one when it comes
to high data volume [48, 49]. However, parallel processing
can be always adopted depending on the data type, volume,
and available technologies. Moreover, this paper does not
deal data analysis/processing itself. It focuses on providing

a cost effective optimal solution that is concerned with the
networking aspects to support big data storage and analysis.
Different parameters are used to develop the MILP model.
Let Di be the data set to be stored and processed on cloud
network Ni . Table 3 shows the different notations used in
the MILP model.

Table 3 Variable Notations used in the model

Parameter Significance

Di Data set i where i = 1, 2, 3,...

Ni or CNi Cloud network i where i = 1, 2, 3,...

f Frequency of processing certain data set in a month

Cs or Cs
i Storing cost of a data set on a cloud network Ni

Cp or C
p
i Processing cost of a data set on a cloud network Ni

Ct or CL
i Transmission cost of a data set from a cloud network Ni to a cloud network N ′

i on link Li

Xs
dn Binary decision variable that ensures if data set d is stored on cloud network n

Y
p
dn Binary decision variable that ensures if data set d is processed on cloud network n

W
sp

dnn′ Binary decision variable that ensures if data set d is stored on cloud network n and processed on cloud network n′

Rs
dr Required resources to store data d on network n

Rs
dn Available storage resources on network n

R
p
dr Required resources to process data d on network n

R
p
dn Available processing resources on network n

Fav
nn′ Function generating the link delay between networks n and n′

F sla
nn′ Function defining the delay between networks n and n′ to maintain certain performance baseline without violating SLA

F(Lnn′ , Lu
d) Function defining the distance between n and n′ and the SLA distance between data storage network n and data

processing network n′
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As for the decision variables, they are defined as follows:

Xs
dn =

{
1 if d is stored on n

0 otherwise

Y
p
dn =

{
1 if d is processed on n

0 otherwise

W
sp

dnn′ =
{
2 if d is stored on n and processed on n′
0 otherwise

5.2 Mathematical model

The costs of storing Cs , processing Cp, and transmission
Ct of certain data sets are the measures of interest of
the MILP model. These three costs are related to the
previously defined costs of storing Cs

i and processing C
p
i

on a particular network Ni and the cost of transmitting Cl
i

on link Li . For the central cloud network scenario shown
in Fig. 3, these Cs

i , C
p
i , and Cl

i costs are already defined
using Eqs. 1-9, i.e. the model considers different storing
and processing policies before generating the optimal one,
which might be a single cloud or multiple cloud networks.
For instance, Cs , Cp, and Ct for data set d1, shown in Fig. 3,
are written as follows:

Cs = 30 · D ·
(
Cs
1 · Xs

d1n1
+ Cs

2 · Xs
d1n2

+ Cs
3 · Xs

d1n3

)

Cp = 30 · D · f ·
(
C

p

1 · X
p
d1n1

+ C
p

2 · X
p
d1n2

+ C
p

3 · X
p
d1n3

)

Ct = 30 · D ·
(
Cl
3 · f · W

sp
d1n1n3

+ Cl
1 · f · W

sp
d1n1n2

+ ... ...
)

In order to minimize Cs , Cp, and Ct , the objective function
and its constraints are formulated as follows:

min
∑

d

∑

n

∑

n′

(
(Cs × Xs

dn)+(Cp × Y
p
dn)+(Ct × W

sp

dnn′)
)

Subject to:

– Computation Resources Constraints:

∑
d(Xs

dn × Rs
dr) ≤ Rs

nr ∀n, r (10)

∑
d(Y

p
dn × R

p
dr) ≤ R

p
nr ∀n, r (11)

∑
n Xs

dn = 1 ∀d (12)

∑
n Y

p
dn = 1 ∀d (13)

∑
n

∑
n′ W

sp

dnn′ = 2 ∀d (14)

– Delay Constraints:

(Xs
dn + Y

p

dn′) ≤ (F sla
nn′ − Fav

nn′) ∀d, n, n′ (15)

(Xs
dn × (F (Lnn′ , Lu

d))) ≤ h × (1 − znn′)
(1 − Y

p

dn′) ≤ h × znn′ ∀d, n, n′, f ≥ 20
(16)

W
sp

dnn′ = Xs
dn + Y

p

dn′ ∀d, n, n′ (17)

Xs
dn, Y

p

dn′ , znn′ ∈ {0, 1} ∀d, n, n′ (18)

W
sp

dnn′ ∈ {0, 2} ∀d, n, n′ (19)

Both transmission and propagation delays are used to
calculate the overall linkage delays F(Lnn′ , Lu

d) and Fav
nn′ as

follows:

Linkage delay = dtrans + dprop = L/R + D/s (20)

Where dtrans is transmission delay, dprop is propagation
delay, L is the length of a packet in bits, R is the
transmission rate in bits per second, D is the distance
between two CNs in meters, and s is the propagation speed
of the media in meters per second. As for Fav

nn′ , it is the
required delay threshold, which must not be exceeded.
It is defined by the end-user in the SLA between cloud
provider and cloud user. Here any delay due to congestion
is not considered as we assume appropriate reservation of
transmission bandwidth resources in advance. As mentioned
earlier, advance resource reservation has been proposed in
the literature for cloud computing.

The proposed model minimizes the cost of storing and
processing data without violating the SLA with end users.
Computational resources, transmission and propagation
delay, and data type constraints affect this objective.
Regarding the resources constraints, Eqs. 10 and 11 ensure
that the requested resources to store and process certain data
set must not exceed the available resources on the selected
network. Constraint (12) determines that the data can be
stored on at most one network. Similarly, constraint (13)
determines that the data can be processed on at most one
network. As for constraint (14), it ensures that data stored on
network n is transmitted to network n′ and processed there.
Constraint (15) ensures that the delay between the network
storing Big Data and the network processing it should not
violate the transmission delay requirements defined in SLA.
Since hot and warm data are processed instantaneously
and on demand, the propagation delay between storage
and processing networks of these types should be within
baseline defined in SLA. This is reflected in constraint
(16). The storage, processing, and transmission costs are
reflected using X, Y , and W decision variables. When the
data is stored on network n and processed on network n′
then corresponding decision variables (X, Y ) = (1, 1).
Consequently, the data is transmitted from the storage
network to the processing one. This is shown in constraint
(17). Finally, boundary constraints (18) and (19) defines
binary and integer positive values for the decision variables
respectively.
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Table 4 Storage and processing
resources for different data sets Computation resources: Rs

dr and R
p
dr

Required resources → Data size CPU Power

Data sets ↓ (Terabyte/month) ( vcores) (kilo watts (KW))

D1 1 4 5

D2 2 6 11

D3 3 8 17

5.3 Performance evaluation results usingMILP
model

In order to study the performance results using our
proposed MILP optimization model, we consider the
network scenario given in Fig. 3. The network consists of
two sub-models: the data set sub-model where the MILP
is evaluated on 3 and 10 different data sets generated
from different sources and the cloud sub-model where
the data sets are distributed between three different cloud
networks each having its own computational resources.
With these sub-models, the optimization model minimizes
the cost of storing and processing data while finding the best
storage and analysis networks that satisfy the functionality
constraints. However, instead of a single data set D, we
consider three data sets D1, D2 and D3 that are injected
from IoT infrastructure into cloud networks CN1, CN2, and
CN3, which are represented in MILP model as N1, N2, and
N3 respectively. The resources required for these three data
sets and the available resources on different networks are
summarized in Tables 4 and 5. The computational resources
are estimated based on the ones existing the market [50, 51],
and [52].

All three data sets belong to different enterprize business
end users and are analyzed separately. Each data set consists
of different subsets coming from one data source. These sub-
sets represent one chunk of data to be scheduled on same
node. Consequently, correlated data are considered as one
chunk and scheduled on same node. Ultimately, indepen-
dent data sets are stored in chunks on different parts of
networks because they are generated in different locations
[53–55]. From networking perspective, the proposed model is
conserved with how much data is moved from one location

to the other and where it is processed, all measured in the
quantities of Gigabytes to avoid many technical issues and
to embrace new technologies. Additionally, proper mech-
anisms are adhered so that all the required resources are
dedicated to each data sets, and those resources are isolated
from each other to avoid any security and performance com-
promises. We carry out data analysis on these three data set
independently, from 5 times in 30 days period (a month) to
every day [51, 52]. So the frequency of analysis f is varied
from 5 to 30 in steps of 5.

The variation of cost in dollars for different frequency
of analysis for data set D1 is shown in Fig. 6. The
SLA agreement depends on the frequency of data access.
Therefore, it is kept at different delay values, making
it tighter as frequency of analysis is increased. It can
be seen that the network offered delay is always below
the corresponding SLA agreement. The result shows the
minimal achievable cost in dollars while satisfying the SLA
requirements, which are expressed in terms of maximum
affordable delay in data analysis. The total cost represents
the storage, processing, and transmission costs of data
set d = D1 while the delay represents transmission
and processing delays between storage network n and
processing network n′.

Similar performance results for data sets d = D2 and
d = D3 are shown in Figs. 7 and 8 respectively. It should be
noted that the amounts of resources required for these two
data sets is higher than those required for the previous data
set, while data set d = D3 consumes the highest resources.
It can be seen from the results that the incurred costs in
dollars are proportional to their consumption of resources
in the network. It can be seen that for any frequency of
data analysis, the SLA agreement is always satisfied. The

Table 5 Computation
resources for different networks Computation resources: Rs

dn and R
p
dn

Available resources → Available storage CPU Power

Cloud networks ↓ (Exabyte) (vcores) (kilo watts (KW))

N1 20 16 50

N2 30 32 70

N3 25 16 60
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Fig. 6 The price versus delay
performance of data set D1
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overall delay in performing data analysis is always within
the affordable latency values.

The model selects the best networks to store and process
data while minimizing the associated cost. For each data
set, the model is tested on different values of frequency
of access. It can be concluded that the total cost increases
as the data becomes frequently accessed. However, when
data is analyzed and accessed frequently, propagation
and transmission delays should be minimized to meet

the performance and SLA requirements. Whenever it is
processed frequently, it is preferable to store and process
the data on cloud networks that are close to each other.
Therefore as a robust network plan, we adopt a stringent
SLA policy for frequently accessed data. Due to this reason,
the SLA delay becomes lower when the frequency of
data access increases and consequently the SLA-agreement
curve drops with increase in frequency of data access in
all the presented results. It can be seen that the MILP

Fig. 7 The price versus delay
performance of data set D2
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Fig. 8 The price versus delay
performance of data set D3
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model always finds an optimal solution where the delay
between the storage and processing networks is below the
threshold delay defined in the SLA corresponding to that
particular frequency of data access. This is because with the
proposed MILP, the optimal placements for data processing
and storing is chosen while avoiding any SLA violation.
As for the observed delay generated using the MILP, it is
constant and meets the performance requirements due to the
static nature of the networks.

In order to extend our study to a larger network scenario,
we consider 10 different data sets injected in 10 different
cloud networks. All these cloud networks are connected
to each other through a fully connected mesh topology
of petabyte/s fiber optic links. The network capacities are
different from each other but can accommodate processing
of at least some of these data sets if not all of them. For
instance, the storage capacity of all networks is in order
of Exabyte while that of data sets requirement is only few
Terabyte. Similarly the processing and power requirements
of data sets are adequately met in these networks. However,
all these data sets require different amounts of network
resources for data analysis. In this scenario, we consider that
the frequency of analysis is f = 15, which means that the
analysis is done 15 times in a duration of one month (i.e., 30
days). The cost and delay performance of these 10 data sets
is summarized in Table 6.

5.4 MILP time complexity

A scheduling problem can be defined in terms of
the problem environment, problem constraints, and the

objective to be optimized. Since the proposed scheduling
work has d data sets to be assigned to n cloud networks
while minimizing storage, processing, and transmission
cost, it can be formulated as special case of transportation
problem. This case is known as the assignment problem
or the bipartite matching problem. The graph has two
nodes; n1 representing data sets and n2 representing cloud
networks. The decision variables Xs

dn, Y
p
dn, and W

sp

dnn′
defined in Section V represents the arc that maps data sets
of node n1 to networks of node n2. This scheduling problem
has NP-hard complexity hierarchy. The NP-hardness of
this MILP limits its feasibility to small data set and cloud
network models. In the evaluation environment, the number
of variables generated in CPLEX, the optimization solver is
6916.

Table 6 Price versus performance results of 10 data sets

Performance → Cost in dollars Delay in ms

Data sets ↓ (f = 15)

D1 320000 70

D2 290000 5

D3 280000 30

D4 190000 70

D5 290000 10

D6 380000 10

D7 410000 60

D8 280000 50

D9 300000 50

D10 300000 10

Mobile Netw Appl (2019) 24:1078–10941092



6 Conclusion

In this work the central network of clouds based architecture
was considered for the Internet of Things (IoT) infrastruc-
ture. We have investigated that different Big Data handling
policies would lead to different network costs owing to dif-
ferent levels of resource consumption. We have seen that
cost can be minimized using multi-cloud based Big Data
handling policies. This is mainly because different cloud
networks provide different costs to their services offered
as in many cases they are operated by different service
providers under different business models. Based on these
observations, we have proposed a MILP based optimization
model to reduce overall costs and in particular investigate
price versus performance characteristics of these networks.
The MILP model minimized the storage and processing cost
of a certain data set while finding the optimal location for
storing and processing data and satisfying the functionality
constraints defined in the SLA. These constraints included
the computational resources and delay requirements. We
have included up to 10 different cloud networks and 10 dif-
ferent data sets in terabyte sizes to carry out our study of
Big Data analysis. We have seen that optimal policies in Big
Data can be extended to meet green communication objec-
tives that are vital for upcoming IoT networks including 5G.
The proposed MILP optimization model can be used as a
benchmark to help operators make decisions on where to
store and analyze data while minimizing the accompanied
cost. In future, this work will be integrated with a heuris-
tic solution that shows its performance in more large-scale
scenarios.
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