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Abstract
One of the critical bottlenecks of high penetration of Electric Vehicles (EV) is uncoordinated, simultaneous charging of many
EVs that can potentially impact the electric distribution grid with unwanted peak load demand. V2G technology enables the
bidirectional flow of electric energy where EVs can also discharge energy to the grid from their batteries aiming to lower the peak
demand. Our V2G optimization approach employs mobility information to balance peak utilization among differently utilized
distribution segments by assigning each EV to an optimal Electric Vehicle Supply Equipment (EVSE) enabled parking lot. By
aggregating geographically dispersed EVs and micro-grids with renewable energy sources as a virtual power plant (VPP), we
proposed a scalable VPP based V2G optimization architecture integrated with VANET. Compared with existing solutions, our
convex optimization algorithm uses fewer variables, attains uniform utilization of grid nodes by optimal EV charging/discharging
profiles. By simulation, we showed that this novel mobility-aware, scalable V2G optimization algorithm can reduce or signif-
icantly postpone the need of expensive upgrade of power distribution infrastructure.
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1 Introduction

According to the U.S. Department of Energy (DOE), transpor-
tation contributes roughly one third of all CO2 emissions. In
this context Electric Vehicles (EV) can play a major role of
minimizing greenhouse gas emission. The EV market is grow-
ing rapidly and the penetration is forecasted as high as 26.9%
by 2023 and 72.7% by 2045 [1]. But electric energy and power
requirement of EVs are quite high. For example, a single EV
with 30 kWh daily energy usage is equivalent to average elec-
tricity consumption of a US residence. Uncontrolled use of
charging may increase risk of overburdening the existing dis-
tribution network grid such as undesirable peak demands [2].
The load demand varies with time of day, week etc. due to

weather, human activity and some random factors such as time
of using different household and commercial electrical appli-
ances. The most significant challenge of the power distribution
infrastructure is peak load demand. The designing of the capac-
ity of electricity infrastructure is based upon peak load demand
as it needs to deliver such amount when called upon. To cope
with peak demand increase, electric utility companies, even
after the intensive energy efficiency programs, often need to
undergo expensive capacity upgrading by installing new trans-
formers, reinforcing distribution feeders, transformers, etc., that
are projected to operate beyond 100% of their ratings [3]. A
critical bottleneck of deeper penetration of EVs into the auto-
motive market is that if large number of EVs draw current from
the grid during the high load situation, there can be significant
amount of increase in the peak demand triggering capacity
enhancement of existing electric infrastructure. This threat to
power grid also draws attention to Independent System
Operators of the electric power system and Regional
TransmissionOrganizations (ISO/RTO) [4]. To overcome these
challenges, smart grid technologies will be the primary means
tomanage electric vehicle charging by a proper communication
architecture between EVs and the grid. Extensive research is
underway to develop standards such as a framework released
by National Institute of Standards and Technology (NIST) for
Smart Grid covering interoperability standards to support
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electric vehicles [5]. Research on Smart Grid thrives to ensure
full coordination between generated and consumed energywith
advanced algorithms for forecasting generation and demand of
the distribution grid [6].

With the advent of Vehicle to Grid (V2G) technology, EVs
can also discharge power to the grid. Although discharging of
a single EV individually cannot contribute much for load
balancing and peak shaving, many EVs together can signifi-
cantly improve these characteristics with V2G optimization.
V2G application constitutes bidirectional power flow which
includes electricity discharging from vehicle to grid and the
charging EV with a rate control [7]. By utilizing the instant
response characteristics of battery packs installed on EVs as
distributed energy storage, V2G can offer ancillary services
such as demand-response, frequency regulation [8]. The opti-
mizations for maximizing the profit by utilizing EVs’ battery
resources for ancillary services are well studied. These opti-
mization approaches, however, assumed the EVswere already
connected to the Electric Vehicle Supply Equipment (EVSE)
stations. The knowledge of an EV’s mobility information such
as current location, battery status well before its arrival at the
EVSE station can be very advantageous in the V2G optimi-
zation problem. The utilization of this priori information of
EV’s mobility status by VANET communication has just be-
gun [9]. There are also extensive researches on Intelligent
Transportation System (ITS) and VANET that focus on accu-
rate and timely traffic flow information. With such VANET
system available, the optimization analysis can include priori
information from the EVuser at the beginning of its travel to a
destination.We propose an optimization algorithmwith a scal-
able architecture that takes this priori information into ac-
count. The motivation of our work is from the fact that in busy
commercial areas with high energy consumption, there are a
large number of commuters who drive to workplace and park
their cars in business hours. With higher EV market penetra-
tion, current parking lots will be converted to EVSE enabled
parking facilities. In that case, a certain part of the power
distribution network connected with one of those EVSE lots
can be over utilized while some other part is less utilized that
would cause expensive infrastructure upgrade. In Fig. 1 it can
be observed that there is difference of energy usage among
blocks of the neighborhood of a busy commercial area [10].
As shown in Fig. 1, within 500 m at the most, there are many
parking lots available (the locations of parking lots are collect-
ed from the google map). So, within preferred walking radius
of a commuter, an EV can be guided to the optimal EVSE
parking lot to balance the load utilization. Moreover, research
on autonomous local transportation such as V-charge project
[11] is accomplishing auto valet-parking of a vehicle after
dropping the commuter in his/her destination, which will en-
sure a larger radius of parking preference. Furthermore, EV-
batteries and other battery storage cells may serve as energy
storage system for intermittent photovoltaic (PV) generation

or wind turbines to timely match their peak output with the
peak load demand of the electric grid. Thus, by aggregating
geographically dispersed EVs and renewable energy based
micro-grids, a virtual power plant (VPP) can be created to
represent a new powerful tool to deal with power grid require-
ments. This paper provides a mobility-aware, scalable VPP
based V2G optimization architecture for balanced utilization
among electric nodes to maximize the lifetime of existing
infrastructure.

The remainder of this paper is organized as follows.
Section 2 describes the related works of V2G optimization;
section 3 describes scalable V2G optimization architecture;
section 4 explains optimization model; and section 5 presents
the performance analysis. Section 6 concludes the paper.

2 Related works of V2G optimization

Many works in the literature addressed V2G optimization for
ancillary services through coordinated charge/discharge sched-
uling among different EVs by bidirectional power flow model
between EVs and grid [12–14]. Centralized scheduling by an
aggregator is suggested with the concern of computational com-
plexity of existing solutions such as linear programming. In [15],
authors evaluate the large scale EV parking lots and analyze the
impact of aggregated load by several thousand EVs into grid
service under various charging scenarios. To tackle the compu-
tational challenge, some used metaheuristic approaches like
Particle Swarm Optimization (PSO) [16]. Monte Carlo simula-
tions are also used to evaluate the performance for practical
systems [17]. Importantly, however, all of these works are lim-
ited to the scenario that optimization parameters such as depar-
ture time, arrival state of charge and desired final state of charge
are only collected after EVs are already parked in EVSE facility.

Very few papers on V2G optimization addressed the
issue of mobility aspect of EV utilizing VANET. In [18]
authors include the VANET architecture in their V2G op-
timization work. They assumed that if an EV needs charg-
ing in the middle of its route, it can communicate with the
aggregator to inform its route, charging preferences using
the RSUs (road side units). With this provided information,
the arrival time at a charging station can be estimated and
aggregator can plan ahead about which charging station
can be chosen in the EV’s trajectory to minimize the aver-
age cost of charging. The range anxiety of mobile EVs are
also considered in [9] where VANET enhanced smart grid
is considered to provide an efficient coordinated charging
strategy to route mobile EVs to fast-charging stations.
These works, however, considered only the fast-charging
requirement and range anxiety issues of the EV users.
Also, their optimizations focused only on current grid sit-
uation rather than day-long load-profile optimization of
distribution network. Regarding VANET, extensive
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literatures reported on the research issues such as VANET
routing, medium access, traffic management, and a variety
of connected vehicle applications [19]. Road side units
(RSU) of VANET system can collect messages from vehi-
cles and forward this information to Traffic Management
Center (TMC) by backbone internet [20]. Survey of a va-
riety of traffic management approaches is reported in [21].
A central entity TMC plays the role of providing route
guidance, travel duration and other EV information re-
quired for the optimization of V2G services. It should also
be noted that in the near future, autonomous driving is
projected to become a key component in the transportation
industry [22]. Autonomous driving will filter out the ran-
domness of human behavior and can reach closer to deter-
ministic navigation system in the transportation network.

In contrast to existing VANET integrated V2G optimiza-
tion works, our work focuses on a VPP based scalable archi-
tecture. It deals with the issue of long period (business hours)
load-profile optimization in busy commercial areas by guiding
each EV to an optimal EVSE lot and thus balances EV loads
among different power network segments. This work also
proposed a least-square convex optimization technique with
fewer variables to minimize peak load at each particular
EVSE lot. The scalability is achieved by distributed local con-
trollers which solves the optimization independently.

3 Scalable V2G optimization architecture

Figure 2 presents the architecture of proposed mobility-aware
V2G optimization where VANET solution (WAVE or LTE-
D2D) provides the communication for EVs with the TMC
and VPP Central Controller (VCC). For scalability, each geo-
graphic domain is considered to have independent authority for

VANET and VPP and each authority again has its own hierar-
chical levels. The VPP Control Plane consists of VCC, Zone
Controller (ZC) and Local Controller (LC). In the distribution
network plane, each EVSE lot is controlled by an LC which is
the lowest level node in the control plane hierarchy. EVs are
interfaced with the distribution network through smart inverters
that can receive an external command from LC to draw/inject
power. An LC (located at the MV/LV transformer level) can
cover one or more transformers that are connected to EVSE lot.
A ZC connects the LCs within the same neighborhood; ZC
(located at the HV/MV transformer level) can be assumed to
cover several area substations. ZC coordinates and aggregates
optimization messages between LCs and VCC. At the start of a
travel, an EV contacts TMC via VANET informing its parking
preference, current energy status and intended departure time
and departure energy requirement. TMC’s role is to perform
real time traffic analysis and management by VANET system.
Through VANET communications the up-to-date information
such as required remaining travel time, any unexpected route
changes of an EV can also be tracked to reach a given destina-
tion. TMC reports required mobility information to VCCwhich
will be used as input parameters for optimization. VCC also
collects information of power distribution network from utility
control center for necessary optimization inputs such as fore-
casted load profile, capacity ratings at different segments. VCC
maintains the mapping of ZCs to relevant geographic areas. By
providing necessary inputs, VCC forwards the optimization
problem to the corresponding ZCs. ZC assigns the optimization
problem to the corresponding LCs by forwarding EV’s infor-
mation. LCs solve the optimization problem in parallel accord-
ing to the load profiles, input parameters of EVs assigned at
their individual nodes and send the optimization result to their
ZCs. After getting results from LCs, a ZC can determine the
optimal LC in its zone and forwards the selection information to

Fig. 1 Block-wise energy usage
pattern and availability of parking
lots in a busy commercial area of
Manhattan, NYC

1703Mobile Netw Appl (2019) 24:1 1
 

701– 712



VCC. As the optimization burden resides mainly in distributed
LCs which runs optimization in parallel, this architecture is
scalable and facilitates VCC to conduct necessary inter-
system communications with VANET and Power distribution
network.

4 Optimization model

Optimization in power distribution network mostly concerns
about lowering the peak demand which is much higher than
the average demand as shown in Fig. 3. For a given total
energy demand in a certain period, the lowest possible value
of peak demand can only be the average load demand when
the peak demand is constant throughout the duration. To

illustrate this as in Fig. 4, let us consider a base load, f0(t) at
a node of the distribution network connected to an EVSE lot.
Due to the additional energy requirement by the EVs, if these
EVs draw their average load demand altogether, the total load
demand also rises by the same amount from f0(t). To mini-
mize the peak, our optimization strategy will be focused on
valley filling (charging when f0(t) is lower than the total
average load demand) and peak shaving (discharging when
f0(t) is higher than the total average load demand) as
depicted in Fig. 4.

In this optimization model, at an LC node, f0(t) represents the
given forecasted load profile (excluding the electricity demand
by EVs), fm(t) for forecasted power profile of micro-grid such as
photovoltaic power of solar cells, and (f0(t)+fm(t)) for the base-
load profile of optimization. Different methods of deriving

Fig. 2 Optimization architecture

Fig. 3 Peak vs average load.
Source: NYISO [23]

1704 Mobile Netw Appl (2019) 24:1 1
 

701– 712



forecasted load profiles have been proposed in the literature such
as statistical analysis of historical data, Gray theory, artificial-
neural-network methods, etc. [24–26]. We expect higher accu-
racy of the forecasts possible in the era of smart grid. In this
paper, we assume that the forecasted load profile is given.

Average load demand (L ) at an LC node is the average of base
load (f0(t) + fm(t)) plus average demand of all assigned EVs. The
nomenclature of the terms used in optimizationmodel is defined
in Table 1. In our optimization scenario, an EV (EVi) at the time
TR, i informs VCC of its parking zone preference including
desired EF, i, TD, i. The VCC will also be informed about TA, i
and EA, i by TMC. VCC forwards these information to corre-
sponding ZC which in turn assigns the optimization problem to
relevant LCs. According to the architecture described in the
previous section we can divide our V2G optimization task in
three subtasks: i) Load profile optimization at LC ii) Optimal
EVSE lot selection at ZC iii) Final selection of EVSE lot at
VCC.

Load profile optimization at LC In the context of optimal val-
ley filling and peak shaving, we propose an efficient optimi-
zation approach at a particular LC. The optimization output
from that particular LC will be charge/discharge profile func-
tion gj(t) for each EV already assigned to this LC such that

combined EV load profile g(t) (¼ ∑i
j¼1g j tð ÞÞ satisfies (1). The

charge/discharge scheduling period is divided into timeslots,
each with a fixed duration Δt. The optimization is performed
at the arrival of one or more EVs’ requests within the current
timeslot and the scheduling horizon is from the next timeslot
to the final timeslot (TE) of the last departing EV among the
assigned EVs at this LC.

min
g tð Þ

∑
t

f 0 tð Þ þ f m tð Þ þ g tð Þð Þ−L
� �2

� �
ð1Þ

gj(t) function, the updated profile of EVj by optimization, is
defined in either TR, i ≤ t ≤ TD, j if TA, j ≤ TR, i or TA, j ≤ t ≤ TD, j

Time 

L
oa

d

Fig. 4 Illustration of valley filling
and peak shaving

Table 1 Nomenclature
f0(t) Given forecasted load profile (excluding the electricity demand by EVs)

fm(t) Given forecasted power profile of micro-grid

L Average Load Demand at LC

i, j Index i for requesting EV and index j for any EVassigned at LC

TR, x, TA, x, TD, x, TE Request, arrival, departure time of EVx and final (end) timslot of optimization

In calculation, TR, x is considered as the next timeslot of request time

EA, x, EP, x, EF, x Arrival, present and final state of battery energy of EVx
gx(t) Charge/discharge profile of EVx
min_currx, max_currx Minimum current (maximum discharge rate) and maximum current limit of EVx

min_Ex, max_Ex Minimum and maximum battery energy of EVx.
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if TA, j > TR, i . To simplify latter expressions, let us define Ti, j
and Ei, j as below:

Ti; j ¼ max TR;i; TA; j
� �

Ei; j ¼ EA; j if TA; j > TR;i

EP; j TR;i
� �

if TA; j≤TR;i

�

Present battery status, EP; j tð Þ ¼ EA; j þ ∑t
TA; j

g j tð Þ is the

amount of battery energy at t for an EVi which already arrived
at this LC. If all EVs would have arrived and departed at the

same time, L will be simply f 0 tð Þ þ f m tð Þ þ g tð Þ
� �

. But

since EVs will arrive and depart at different times we adapted

a weighted average for L as (2):

L ¼
∑i

j¼1 g j tð Þ þ f j tð Þ
� �

� TD; j−Ti; j
� �� �

∑i
j¼1 TD; j−Ti; j

� � ð2Þ

Where, g j tð Þ ¼
E F; j−Ei; jð Þ
TD; j−Ti; jð Þ and f j tð Þ ¼

∑
TD; j
Ti; j

f 0 tð Þþ f m tð Þð Þ
TD; j−Ti; jð Þ :

The constraints for this optimization include maximum
limit of charge and discharge rate of an EV, the required en-
ergy at the departure, allowedmaximum andminimum thresh-
old of battery energy at any instant, maximum rating (R) of the
relevant electrical element (feeder cable/transformer) at this
node. These constraints are listed in (3).

min curr j < g j tð Þ < max curr j ∀EV j ∀t∈ Ti; j; TD; j
� �

∑TD; j
T i; j

g j tð Þ ¼ EF; j−Ei; j ∀EV j

min E j < EP; j tð Þ < max E j ∀EV j;∀t∈ Ti; j; TD; j
� �

f 0 tð Þ þ f m tð Þ þ g tð Þ < R ∀t∈ TR;i; TE
� �

9>>>=
>>>;

ð3Þ

The common method of finding the solution is by dividing
the total scheduling horizon in some number of timeslots and
solving the optimal charging/discharging rate schedule using
the rate at each timeslot as a variable. However this approach
requires to solve many variables and hence not very scalable.
For example with a granularity of 1 min and a scheduling
period from 7:30 am to 5:30 pm, this common method will
require to solve 600 variables for each EV. For a practical
mobility aware V2G application where VCC needs to quickly
respond back to the EV user, a V2G optimization approach

with fewer number of variables is required. To address this
scalability issue, we seek to obtain each individual EV’s
charging/discharging profile i.e. gj(t) function with only four
variables as in eq. (4). Themotivation of proposed gj(t) model-
ling is that the EVj should charge or discharge proportional to
the difference D(t) between the base load (f0(t) + fm(t)) and
average load demand L hence the variables xj2 and xj4. By
addition of offset variables xj1, xj3 in gj(t), this model guaran-
tees energy requirement by an EV. The two sets of variables
(xj1, xj2) and (xj3, xj4) are to apply different rates in valley
filling phase and peak shaving phase respectively for the same
amount of deviation D(t) while satisfying constraints men-
tioned above.

g j tð Þ ¼
x j1 þ x j2D tð Þ if D tð Þ≥0
x j3 þ x j4D tð Þ Otherwise

�

Where D tð Þ ¼ L− f 0 tð Þ− f m tð Þ

ð4Þ

Thus the optimization will solve only four variables xj1, xj2,
xj3, xj4 for each EV which models the EV’s charge/discharge
rate profile for its whole parking duration. With this modeling
of gj(t) our optimization problem can be constructed as the
least-square convex optimization problem as (5).

min
x

Cx−dk k22 Subject toAx≤b ð5Þ

Where x is the variable matrix to be solved at this LC. The
objective (1) needs to be constructed as the objective of opti-
mization problem (5) for exact interpretation of least square
convex optimization problem. In (5), C,d,A,b are constant
matrix and x is variable matrix to solve. To verify the con-
struction, (6) is obtained by plugging charge/discharge func-
tion gj(t) in (4) into the objective (1).

min
g tð Þ ∑t ∑i

j¼1 x j1 þ x j2D tð Þ� �þ x j3 þ x j4D tð Þ� �� �
−D tð Þ

� �2

if D tð Þ≤0; x j1 ¼ 0; x j2 ¼ 0;

otherwise; x j3 ¼ 0; x j4 ¼ 0

ð6Þ

C matrix can be formed as:

c1;1 c1;2 c1;3 c1;4 ⋯ ⋯ c1;4 i−1ð Þþ1 c1;4 i−1ð Þþ2 c1;4 i−1ð Þþ3 c1;4 i−1ð Þþ4

⋮ ⋱ ⋮
cT ;1 cT ;2 cT ;3 cT ;4 ⋯ ⋯ cT ;4 i−1ð Þþ1 cT ;4 i−1ð Þþ2 cT ;4 i−1ð Þþ3 cT ;4 i−1ð Þþ4

0
@

1
A
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C matrix has 4i entries in each row; four times number of
EVs at this LC. Each column has T entries which is the num-
ber of timeslots starting from TR, i to the TE. Elements of C

matrix corresponding to timeslot ′t′ (defined in TR, i ≤ t ≤ TE)
and′EVj

′ are as follows:
If t’th timeslot falls in EVj’s parking duration

ct−TR;iþ1;4 j−1ð Þþ1 ¼ 1; D tð Þ≥0
0; otherwise

�
ct−TR;iþ1;4 j−1ð Þþ2 ¼ D tð Þ; D tð Þ≥0

0; otherwise

�

ct−TR;iþ1;4 j−1ð Þþ3 ¼ 1; D tð Þ < 0
0; otherwise

�
t−TR;iþ1;4 j−1ð Þþ4 ¼ D tð Þ; D tð Þ < 0

0; otherwise

�

If t’th timeslot does not fall in EVj’s parking duration, cor-
responding entries will be zero.

Constant matrix d can be formed as d¼ d1 d2 d3…dT½ � 0

where dt−TR;iþ1 ¼ D tð Þ for TR, i ≤ t ≤ TE. Variable matrix, x =
[x11 x12 x13 x14,…, xj1 xj2 xj3 xj4,…, xi1 xi2 xi3 xi4]

′. Prior
to optimization, D(t) is calculated by the knowledge of fore-
cast and inputs of EV information. Hence C,d are constant
matrices and x is the variable matrix and thus the construction
conforms to the form of (5). Similarly the constant matrices
A,b which are coefficients of constraints can be constructed.
After solving for x, LC is ready to update/allocate each EV’s
charge/discharge profile if EVi is finally selected for this LC. If
this isBk^-th LC under the corresponding ZC, after calculating
optimal g(t), LCk will report the maximum utilization (Uk)
including EVi. Ukcan be found as follows:

Uk ¼
max

t
f 0 tð Þ þ f m tð Þ þ g tð Þð Þ

Rk

Where Rk is the rated capacity at LCk.

Optimal EVSE lot selection at ZC The novelty of our mobility-
aware optimization lies in the fact that it can guide EVs to
EVSE lots so that peak utilization among LCs can be mini-
mum, i.e., a min-max problem. The ZC will compare each
LC’s new peak utilization by adding this EVi and select the
one for which maximum of peak utilization among all LCs

becomesminimum. Suppose at this ZC, {LC1, LC2, LC3,…,
LCk,…, LCm} is the set of LC nodes corresponding to this
(EVi) user’s preferred parking spots. Let us define, when

LCk is chosen, PU 1
k is the highest of {U1,U2,U3,…,Uk,

… ,Um}, PU 2
k is the next highest and so on. It is to be noted

that for selecting LCk, only Uk value is updated; other values
of U1 to Um remains unchanged. The selection matrix for
choosing optimal LC is:

SM ¼

PU1
1 PU 2

1⋯ PUm
1

: :
PU1

k PU 2
k⋯ PUm

k
: :

PU1
m PU 2

m⋯ PUm
m

0
BBBBBB@

1
CCCCCCA

The searching for optimal LC will be conducted column-
wise starting from 1st column in SM matrix. Suppose MPv is
the minimum of column "v" of SM matrix. Selection of the
optimal LCk is based on two criteria: i) for some column"v"

and any previous column"w" of column"v" in SM, there is
exactly one row "k" for which PUv

k ¼ MPv
� �

AND
PUw

k ¼ MPw
� �

ii) if one specific "k" is not found from 1st
criteria, random selection of "k" from those "r" such
that for all w ∈ {1, 2,…,m}, PUw

r ¼ MPw
� �

. After the selec-
tion, ZC reports the optimal LC for thisEVi in its zone to VCC.

Fig. 5 Photovoltaic output power
profile
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Final selection of EVSE lot at VCC Since the division of ZCs
will be done geographically, a user’s preference spots will be
most likely inside the same zone. In this case, VCC will de-
termine the selection of the ZC as designated LC for this EVi.
For any such case of an EVi’s preferred spots fall in more than
one ZC, VCC selects the optimal LC from the final selections
of those ZCs by same method as described for ZC in previous
part. After final selection at VCC, the user of EVi knows its
designated EVSE lot via TMC.

5 Performance analysis

The simulation of proposed optimization model was conduct-
ed using MATLAB/Simulink platform. Simscape Power
Systems package for Simulink was used to simulate electric
power flow of two primary feeders. One-Line diagram of the
first primary feeder (PF1) is presented in Fig. 5 where LC1,
LC2 and LC3 represent the LCs of three EVSE lots connected
to the corresponding electrical nodes 1, 2, and 3. The second
primary feeder (PF2) has the same configuration as PF1 where
LC4, LC5, LC6 are connected to nodes 4, 5, and 6. For

comparison these two feeders were assumed equally designed
but differently loaded. To represent high and low utilization,
the peak of the loads for the nodes 1, 2, and 3 of PF1 is set to
80% of the rated power of transformer and 40% for the nodes
4, 5, and 6 of PF2. Maximal load of 80% of the rated power of
the transformers is above the n-1 criteria level which means if
one transformer fails the other transformer cannot take the
load. This typically happens in areas with very high load den-
sity and constant load growth over years. Photovoltaic (PV)
generator is connected to node 2 and 4 with same PVoutput
power profile; the maximum output is scaled to 1 MW. To
investigate the V2G optimization performance with respect
to PV power generation in different solar radiation situations,
both sunny and intermittent cloudy day PV profiles as shown
in Fig. 6 are used. These PV generation profiles were directly
measured by one of the authors at a 500 KW PV power plant.
The profiles are showing typical behavior of a multi kW PV
power plant. All EVs of this simulation are assumed to prefer
to park in any EVSE lot connected to these six nodes. CVX
package for MATLAB was used to solve the convex optimi-
zation problem (5). We constructed our optimization problem
according to the Disciplined Convex Programming method of

a)  Sunny Day b)  Intermittent Cloudy Day 
Fig. 6 Photovoltaic output power profile

Table 2 Simulation parameters
EV battery 30 kWh capacity, 30A max charge / discharge rate

Number of EVs 4000

Arrival time Normal Distribution, Mean 8:30 am, variance 1.2

Departure time Normal Distribution, Mean 5:30 pm, variance 1.2

Arrival/Departure Energy
(% of Battery Capacity)

Uniform Distribution.

70% users: 10% to 50% arrival energy, 50% to 90% departure energy

30% users: 70% to 90% arrival energy, 50% to 70% departure energy

Energy threshold Max: 95%, Min: 5% of Battery Capacity

EVSE lots 6 lots, each with maximum accommodation of 700 EVs

Load capacity rating As shown in Fig. 5

1708 Mobile Netw Appl (2019) 24:1 1
 

701– 712



CVX tool [27]. The simulation parameters are listed in
Table 2. We considered that 30% users will have extra energy
at arrival than they need at departure time. This is because EV
users can also charge at their homes after midnight at cheaper
rates when the energy demand is very low. Users who do not
live far away from their working place will not consume much
energy for the travel and can get better incentive for this

energy selling. To represent forecasted load profile, actual
daily load data at each hour of New York City on a certain
day is collected from NYISO [28].

Load profiles for the six nodes are made by interpolating
hourly data for timeslot resolutionΔt=1min and by scaling the
load profiles with peak load value of 80% and 40% of trans-
former rating as mentioned above.

Fig. 7 Load profiles at six nodes with sunny day PV DATA
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We investigated three scenarios in this simulation: (i)
Average Draw: each EV goes randomly to any of 6 nodes
and draws its required energy at average rate (ii) V2G
Optimization without VANET: each EV goes randomly to
any of 6 nodes and draws according to the provided optimal
profile (iii) V2G Optimization with VANET: each EV goes to
the node guided by VCC and draws according to the provided
optimal profile. In these simulation scenarios the performance

metric is the minimum of maximum peak utilization among 6
nodes after optimization. In Fig. 7 we plotted the base load
profile, aggregated EV load profile and total load profile at
six LC nodes for each of these scenarios with sunny day PV
profile. Note that in this figure right side y-axis is used to show
percent utilization. It can be observed that average draw case
increases the peak load in all nodes which signifies the peak
demand increase introduced by uncontrolled EVs; particularly

Fig. 8 Load profiles at six nodes cloudy day PV data
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the worst situation is at nodes 1 and 3 which are experiencing
about 95% utilization. Additional loads incurred by uncon-
trolled EVs is increasing the peak load to the limit of the infra-
structure. This would cause expensive enhancement to guaran-
tee reliable grid services and prevent outages caused by equip-
ment overloading. Although V2G optimization without
VANET has significantly lower peak load than average draw
case, due to lack of mobility-awareness optimization outcome
still suffers from very high utilization. Optimization with
VANET achieves the minimum of maximum peak utilization
among nodes. We can observe that for this case the maximum
peak utilization is even lower than the utilization of the base
load. This signifies the advantage of V2G optimization with
the integration of mobility. The range of peak utilization is
about 55% to 75% among six nodes for this mobility-aware
optimization case while it is about 35% to 87% for optimiza-
tion without VANET case. This shows the strength of the pro-
posed model in minimizing maximum of peak utilization
through balancing utilization among these nodes. Since the
base load profile at node 1 and 3 are same, optimization with
VANET case creates almost similar load profiles; same is for
node 4 and node 6. Node 2 and Node 5’s profiles are different
due to the presence of PV generation at these nodes. By ob-
serving the aggregated EV load profile at different nodes, it can
be noted that proposed model accomplishes highest
discharging in high utilized nodes (node 1,3) and highest
charging at the lowest utilized node (node 5) to achieve optimal
balance of utilization. Resultant profiles from another simula-
tion is plotted in Fig. 8 which is done only by changing PV
profile to intermittent cloudy day. It can be observed that al-
though there were frequent fluctuations in PV output power
due to intermittent clouds, our proposed optimization scheme
could overcome this effect and experiences nearly the same
maximum peak utilization as the case of sunny day. In this
cloudy profile situation, we can even observe more than
100% utilization at node 2 for average draw case. Figure 9a
and b plot the bar chart of peak utilization for sunny day and
cloudy day PV data respectively. It can also be noted that even

with mobility awareness V2G optimization cannot make the
peak utilization at each node equal. This limitation is due to
real-world constraints of the number of EVs and the accom-
modation capacity at parking lots. Another simulation is done
with 8000 EVs and no accommodation restriction to verify the
performance of this optimization model without these con-
straints. The utilization bar-chart of this simulation is plotted
in Fig. 9c. Here we can observe without accommodation limit
and for higher number of EVs proposed optimization model
completely balances peak utilization among all six nodes.

6 Conclusion and future works

This paper proposed a mobility-aware, scalable V2G optimi-
zation architecture in VPP context, and an optimization tech-
nique with fewer variables than conventional approaches, re-
ducing computational complexity. By incorporating EV mo-
bility, our algorithm can optimally mitigate peak demand and
thus defer or prolong capacity upgrades for power distribution
network. For scalability, the task of optimization is distributed
locally at Local Controllers, Zone Controller makes optimal
selection, and VCC performs the communication with
VANET and Power distribution network. As our future work,
we plan to focus on optimal incentive planning among differ-
ent elements of the proposed architecture such as utility oper-
ator, EVSE lot and EVowners.

References

1. Duan Z, Gutierrez B, Wang L (2014) Forecasting plug-in electric
vehicle sales and the diurnal recharging load curve. In: Smart grid,
IEEE Transactions on, vol. 5, no. 1, p 527–535

2. Sortomme E, Hindi MM, James MacPherson SD, Venkata SS
(2011) Coordinated charging of plug-in hybrid electric vehicles to
minimize distribution system losses. IEEE Trans Smart Grid 2(1):
198–205

a)  4000 EVs, Sunny Day PV profile b)  4000 EVs, Cloudy Day PV profile c)  8000 EVs, No accommodation limit

Fig. 9 Peak utilization at six nodes

1711Mobile Netw Appl (2019) 24:1 1
 

701– 712



3. Con Edison Report. http://www.coned.com/messages/LICReport/
Overview.pdf

4. ISO/RTO Council (IRC) (2010) Assessment of plug-in electric ve-
hicle integration with ISO/RTO systems, p 31. http://www.rmi.org/
Content/Files/RTO%20Systems.pdf

5. NIST Framework and Roadmap for Smart Grid Interoperability
Standards, Release 3.0, Sep 2014. http://www.nist.gov/smartgrid/
upload/NIST-SP-1108r3.pdf

6. Baimel D, Tapuchi S, Baimel N (2016) Smart grid communication
technologies- overview, research challenges and opportunities. 2016
International Symposium on Power Electronics, Electrical Drives,
Automation and Motion (SPEEDAM), Anacapri, p 116–120

7. Sortomme E, El-Sharkawi MA (2011) Optimal charging strategies for
unidirectional vehicle-to-grid. IEEE Trans Smart Grid 2(1):131–138

8. Lin J, Leung K-C, Li VOK (2014) Optimal scheduling with
vehicle-to-grid regulation service. In: Internet of Things Journal,
IEEE, vol. 1, no. 6, pp 556–569

9. Wang M, Liang H, Zhang R, Deng R, Shen X (2014) Mobility-
aware coordinated charging for electric vehicles in VANET-
enhanced smart grid. In: Selected Areas in Communications,
IEEE Journal on, vol. 32, no. 7, pp 1344–1360

10. Estimated lot level energy consumption: http://qsel.columbia.edu/
nycenergy/

11. V-Charge, Automated Valet Parking and Charging for e-Mobility.
http://www.v-charge.eu/

12. HeY, Venkatesh B, Guan L (2012) Optimal scheduling for charging
and discharging of electric vehicles. IEEE Trans Smart Grid 3(3):
1095–1105

13. Khodayar ME,Wu L, ShahidehpourM (2012) Hourly coordination
of electric vehicle operation and volatile wind power generation in
scuc. IEEE Trans Smart Grid 3(3):1271–1279

14. Sortomme E, El-Sharkawi MA (2012) Optimal scheduling of
vehicle-to-grid energy and ancillary services. In: Smart Grid,
IEEE Transactions on, vol. 3, no. 1, pp. 351–359

15. Su W, Chow M-Y (2011) Investigating a large-scale PHEV/EV
parking deck in a smart grid environment. In: North American
power symposium (NAPS), 2011, vol., no., p 1–6

16. Su W, Chow M-Y (2011) Performance evaluation of a PHEV
parking station using particle swarm optimization. In: Proc.
2011 I.E. power and energy society general meeting, Detroit,
Michigan, U.S.A. July 24–29, 2011

17. SuW, ChowM-Y (2011) Evaluation on Large-scale PHEV Parking
Deck using Monte Carlo Simulation. In: Proc, The Fourth
International Conference on Electric Utility Deregulation and
Restructuring and Power Technologies (DRPT2011), Shandong,
China, July 6-9, 2011

18. Mukherjee JC, Gupta A (2014) A mobility aware scheduler for low
cost charging of electric vehicles in smart grid. In: Communication
Systems and Networks (COMSNETS), 2014 Sixth International
Conference on, vol., no., p 1–8, 6–10 Jan. 2014

19. da Cunha FD, Boukerche A, Villas L, Viana AC, Loureiro AAF
(2014) Data communication in VANETs: a survey, challenges and
applications. RR-8498, INRIA Saclay; INRIA

20. Dedicated Short Range Communications (DSRC) (2009) Message
set dictionary, SAE Std. J2735

21. Kamal H, PiconeM, Amoretti M (2014) A survey and taxonomy of
urban traffic management: towards vehicular networks. http://arxiv.
org/abs/1409.4388

22. Okuda R, Kajiwara Y, Terashima K (2014) A survey of technical
trend of ADAS and autonomous driving. In: VLSI Technology,
Systems and Application (VLSI-TSA), Proceedings of Technical
Program −2014 international symposium on, vol., no., p 1–4, 28–
30 April 2014

23. NewYork Independent SystemOperator (ISO) Power Trends 2014,
Evolution of Grid. http://www.nyiso.com/public/webdocs/media_
room/publications_presentations/Power_Trends/Power_Trends/
ptrends_2014_final_jun2014_final.pdf

24. Rui Y (2006) Research on the mathematical method and its appli-
cation in electric load forecast,^ Ph.D. dissertation, Dept. Mech.
Elect. Eng., Central South University, Hunan, China

25. Cui K, Li JR, Chen W, Zhang HY (2009) Research on load fore-
casting methods of urban power grid. Elect Power Technol Econ
21:33–38

26. Yao G, Chen ZS, Li XZ (2011) BP network based on particle swarm
optimization of short-term electric load forecasting. J Guangdong
Univ Petrochem Technol 21:47–50

27. Grant M, Boyd S (2007) BCVX^ MATLAB| software for disci-
plined convex programming, version 1.1 (September 2007),
http://www.stanford.edu/~boyd/cvx/

28. NYISO (New York Independent System Operator) Hourly actual
load data http://www.energyonline.com/Data/GenericData.aspx?
DataId=13&NYISO___Hourly_Actual_Load

1712 Mobile Netw Appl (2019) 24:1 1
 

701– 712

http://www.coned.com/messages/LICReport/Overview.pdf
http://www.coned.com/messages/LICReport/Overview.pdf
http://www.rmi.org/Content/Files/RTO%20Systems.pdf
http://www.rmi.org/Content/Files/RTO%20Systems.pdf
http://www.nist.gov/smartgrid/upload/NIST-SP-1108r3.pdf
http://www.nist.gov/smartgrid/upload/NIST-SP-1108r3.pdf
http://qsel.columbia.edu/nycenergy/
http://qsel.columbia.edu/nycenergy/
http://www.v-charge.eu/
http://arxiv.org/abs/1409.4388
http://arxiv.org/abs/1409.4388
http://www.nyiso.com/public/webdocs/media_room/publications_presentations/Power_Trends/Power_Trends/ptrends_2014_final_jun2014_final.pdf
http://www.nyiso.com/public/webdocs/media_room/publications_presentations/Power_Trends/Power_Trends/ptrends_2014_final_jun2014_final.pdf
http://www.nyiso.com/public/webdocs/media_room/publications_presentations/Power_Trends/Power_Trends/ptrends_2014_final_jun2014_final.pdf
http://www.stanford.edu/~boyd/cvx/
http://www.energyonline.com/Data/GenericData.aspx?DataId=13&NYISO___Hourly_Actual_Load
http://www.energyonline.com/Data/GenericData.aspx?DataId=13&NYISO___Hourly_Actual_Load

	Mobility-Aware Vehicle-to-Grid (V2G) Optimization for Uniform Utilization in Smart Grid Based Power Distribution Network
	Abstract
	Introduction
	Related works of V2G optimization
	Scalable V2G optimization architecture
	Optimization model
	Performance analysis
	Conclusion and future works
	References




