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Abstract
Humanfall detection has attracted broad attentions as sensors and mobile devices are increasingly adopted in real-life scenarios
such as smart homes. The complexity of activities in home environments pose severe challenges to the fall detection research
with respect to the detection accuracy. We propose a collaborative detection platform that combines two subsystems: a threshold-
based fall detection subsystem using mobile phones and a support vector machine (SVM)-based fall detection subsystem using
Kinects. Both subsystems have their respective confidence models and the platform detects falls by fusing the data of both
subsystems using two methods: the logical rules-based and D-S evidence fusion theory-based methods. We have validated the
two confidence models based onmobile phone and Kinect, which achieve the accuracy of 84.17% and 97.08%, respectively. Our
collaborative fall detection approach achieves the best accuracy of 100%.
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1 Introduction

The world has entered the ageing society where many old
people live in solitary with diseases or difficulty getting about.
Home accidents such as falls surge in recent years and account
for a large portion of medical cost worldwide. The lack and
high expense of aged care call for automatic detection of home
accidents like falls. Fortunately, the advances of network and
embedded technologies have made it possible to detect acci-
dental falls of elderly people via portable electronic devices.
Generally, a system detect human falls by implementing fall
detection algorithms that analyze the signals of those devices:
when the elderly exhibits an abnormal behavior, the system

immediately pushes an alert with the collected information to the
monitoring personnel or rescue center throughwireless networks.
In this way, the system can request for treatment of any injuries
caused by falls automatically and thereby reduce damages to the
elderly regardless of their locations and living conditions.

Although the concept of fall is a common sense of humans,
describing falls for machines can be difficult, making the de-
tection of falls by machines even more difficult. Currently,
most fall detection systems use a single device or a number
of homogeneous sensors to monitor human activities. For this
reason, the fall detection accuracy of these systems is strictly
confined by the limitations of a single device type (e.g., a
Kinect might be occluded by an object and an intelligent de-
vice can be restricted by its deployed location). In contrast,
collaborative sensing, i.e., fusing the data from multiple types
of devices, can potentially yield more reliable detection re-
sults. A typical collaborative sensing procedure may involve
collecting data from different types of sensors, fusing these
data, feeding data to an integral algorithm, and finally, apply-
ing some predefined threshold is to detect falls based on the
algorithm’s results.

Among the existing fall detection approaches, non-
wearable devices have attracted increasing attentions in
the field of collaborative fall detection. Non-wearable de-
vices avoid people from the inconvenience of wearing var-
ious devices on bodies and address the low accuracy of fall
detection caused by using only a single type of devices: it is
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uncommon for people to wear multiple types of devices all
serving the same purpose whereas not the case for non-
wearable devices in practice. Based on the above insights,
we aim to leverage the advantages of different types of de-
vices for more accurate fall detection in complex home en-
vironments. In particular, we propose a collaborative fall
detection approach that collects data and extract features
from different types of devices. The approach builds confi-
dence models to give the data from each sensor type a con-
fidence value and detects falls by combining the confidence
values from different sensor types at the decision layer. To
put this idea into reality, we have established a collaborative
detection platform, which includes two subsystems: a
threshold-based fall detection subsystem using mobile
phones and a SVM-based fall detection subsystem using
Kinects. Each subsystem has its own confidence model
and the platform uses data fusion methods to detect fall
based on the results of the two subsystems collaboratively.
In a nutshell, we make the following contributions in this
paper:

1. We proposed a collaborative system that leverages two
types of devices, namely mobile phones and Kinects, to
address the fall detection problem in a home environment;

2. We evaluate our proposed approach via experiments in
real-world scenarios and show the improved fall detection
accuracy and reduced false alarm rate of the proposed
approach when compared to the approaches using single
types of devices.

The remainder of this paper is organized as follows.
We review the related work in Section 2. Section 3 pre-
sents our collaborative fall detection approach that use
confidence models to leverage the merits of multiple sen-
sor types. Section 4 repots the experiments and discusses
the experimental results. Finally, Section 5 gives the con-
cluding remarks.

2 Related work

A typical fall detection system has three parts: sensor data
collection, fall detection, and action after successful fall detec-
tion. A real-time fall detection system works as follows: first,
devices send motion data to the processing unit; next, the fall
detection system uses algorithms to capture falls; finally, the
system takes actions such as playing certain tones to attract
attention from nearby or sending alert information to the fam-
ily members or caregivers. This alert information should in-
clude the event, location, direction, falling state (conscious/
unconscious), and timestamp [1]. The performance of a fall
detection system is usually measured by sensitivity (SE) and
specificity (SP) [2–4].

2.1 Devices

There are three categories of devices commonly used for fall
detection: wearable or carried sensors, vision-based sensors,
and environment sensors. Wearable and carried devices (e.g.,
smart mobiles) use embedded three-axis acceleration sensors
to monitor static state and postures [5] or to detect falls [6, 7];
vision-based sensors perceive the change of an object’s state
as well as the space and time to analyze whether a person falls
[8]. At present, cameras [9–11] and Kinect [12, 13] are two
most popular types of visual devices used to detect falls; en-
vironment sensors generally use vibration [14], audio [15, 16],
or radio frequency technologies (such as RFID [17]) for fall
detection. For example, the work in [18, 19] analyzes the
signal strength of the RFID devices to recognize activities of
elderly people.

2.2 Fall detection methods

There are several types of multi-sensor data fusion algorithms:
missing data fusion, associated data fusion, inconsistent data
fusion, and heterogeneous data fusion [20, 21]. The work in
[22] summarizes the challenges faced in multi-sensor based
fall detection and analyzes the current detection methods and
data fusion methods. The method in [23] first judges if the
angular velocity is greater than the threshold, and then fuse the
acceleration sensor data and angular velocity sensor data (in
the form of 0 or 1) to distinguish falls from other daily activ-
ities. Multi-wavelet pixel level fusion and D-S evidence the-
ory decision level fusion are proposed and applied to recog-
nition systems in [24]. A new method based on multi-sensor
fusion is also proposed based on [25] and applied to measure
soil moisture content. The work in [26] studies analyses mas-
sive, heterogeneous, real-time, and uncertainty networking
data and puts forward an algorithm based on the weighted
D-S evidence theory for Internet of Things heterogeneous
sensor data fusion. An improved D-S theory is applied to the
field of water quality monitoring and fire monitoring [27, 28].

2.3 Collaborative fall detection

Our surveys show that existing fall detection systems are
based on either a single device or multiple homogeneous sen-
sors and most of the fall detection system experiments are
carried out in laboratory environments. Generally, these sys-
tems fuse the multiple sensor data into a single algorithm and
use the threshold method to carry out activity recognition [29,
30]. The work in [31] proposes to use three types of devices,
3D camera, wearable MEMS acceleration sensor, and micro-
phone to detect falls in smart homes, but it gives no details
about the fusion of data from the different devices. The work
in [32] combines the three-axis acceleration sensor and an
atmospheric pressure sensor for fall detection, which uses
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the threshold method to combine the sensor data. The work in
[23] propose a multi-sensor data fusion method that deter-
mines whether the value of the angular velocity exceeds a
given threshold before fusing the acceleration sensor and an-
gular velocity sensor data to classify daily activities. In [20],
multi-sensor data fusion algorithms are classified into fusion
of defect data, fusion of associated data, fusion of non-
uniform data, and fusion of different types of data. The work
in [33] detect falls using multiple devices, but the devices used
are all of the same type rather than of different types. For this
reason, the work cannot overcome the short comings of a
single device type.

3 Method

As afore mentioned, a single type of device have limitations
for fall detection. Therefore, we proposed to collaboratively
use two types of devices, namely mobile phones and
Microsoft Kinects, for fall detection in our approach.

Our multi-device collaborative fall detection system con-
sists of two subsystems: the smart phone-based fall detection
subsystem and the Kinect-based fall detection subsystem. The
two subsystems collect and analyze their respective data using
different algorithms. After that, the calculated data and confi-
dence values are sent to the Netty server through the Internet.
Finally, the system uses these data and the confidence model
for data fusion and judges whether the elderly has encountered
an abnormal behavior and whether to take emergency mea-
sures. Figure 1 shows the workflow of our proposed collabo-
rative fall detection system.

3.1 Threshold based fall detection using smartphone

The smart phone-based fall detection algorithms collect hu-
man activity data from smart phones’ built-in three-axis accel-
eration sensors. The collected data are smoothed using media
filters to reduce noises, external shocks, and collision. The
algorithm calculates three feature values using the acceleration
data: Signal Magnitude Area (SMA), Signal Magnitude
Vector (SMV), and Tilt Angle (TA) [34, 35].

The details as following:

SMA: this feature depicts the magnitude of the change
in human activity and is used to distinguish the time
interval between user activity and rest. The greater the
value, the greater the change of movement.

SMA ¼ 1

t
∫t0 x tð Þj jdt þ ∫t0 y tð Þj jdt þ ∫t0 z tð Þj jdt
� �

where X (T), y (T) and Z (T) represent the sampling values of
X, y, and Z axes, respectively.

SMV: the characteristic test results determine the most
suitable parameter as the threshold of SMV, which repre-
sents the instantaneous activity intensity.

SMV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i þ z2i

q

TA: the angle between the Y axis and the vertical direc-
tion. If TA is below the threshold of 40 degrees, it is
classified as falling or lying.

TA ¼ arcsin
yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2i þ y2i þ z2i
p

 !

We use the MATLAB simulation software to simulate the
values of SMA, SMV and TA, and statistical methods to de-
termine their thresholds. The algorithm uses the thresholds for
real-time fall detection. Since the objective is to detect falls,
other activities such as standing, lying or vertical activities are
considered false positives.

3.2 SVM-based fall detection using Kinect

3.2.1 SVM-based fall detection

We use support vector machine (SVM), the frequently used
classification method in the machine learning field, for fall
detection using Kinect. For a given training set label pair (xi,
yi), where i =1…n, xi ∈ Rn, yi ∈ {1, −1}, there are the following
optimization problems:

If the training set is linearly separable, the hyper
plane can be directly solved by the maximum dis-
tance. Otherwise, the data needs to be mapped from
low-dimensional space to high-dimensional space to
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complete the data conversion process and to solve the
optimal hyper plane.

min
w;b;ε

1

2
wTwþ C ∑

l

i¼1
ξi ð1Þ

s:t:yi w
Tφ xið Þ þ b

� �
≥1−ξi

ξi≥0
ð2Þ

where C > 0 is the penalty parameter for the misclassification
and ξ is the slack variable.

There are four basic functions for mapping low-
dimensional spatial data to high-dimensional spatial data for
the SVM:

(1) Linear kernel function: K(xi, xj) =xTi x j.
(2) Polynomial kernel function:K xi; x j

� � ¼ exp −γxTi x j þ r
� �

d; γ > 0
(3) Radial Basis Function (RBF):K(xi, xj) = exp(−γ‖xi −

xj‖
2), γ > 0

(4) Multi-layer perceptual kernel function (sigmoid):
K xi; x j
� � ¼ tanh γxTi x j þ r

� �
We use the libSVM library developed by

Professor Lin Zhiren [36] and SVM’s default radial
basis function as the kernel function. The radial basis
function has the following advantages: 1) it can well
handle the non-linear relationship between the sam-
ple labels and attributes; 2) it has a relatively small
number of parameters and requires little effect and
complexity to calculate; 3) the numerical constraints
have less influence on the use of the radial basis
kernel function due to 0 < K(xi, xj) ≤ 1, the polynomi-
al kernel funct ion value may not converge
(γxTi x j þ r > 1 or γxTi x j þ r < 0 ), and the multilayer
perception kernel function is restricted due to trigo-
nometric function definition; otherwise, it would be
meaningless at some point [37].

3.2.2 Fall detection using Kinect

The fall detection method uses a USB interface to connect to a
PC to process the sensor data from Kinect. To detect the head
movement and analyze the head speed, the data from Kinect
must be converted into geographical coordinates. Since the
Kinect can convert the color and the depth information to
geographical coordinates based on the camera coordinate sys-
tem, the Kinect-based detection method can directly use the
head coordinate information extracted from the RGB image
and the depth image. Initially, the coordinates of the head are
the same as the coordinates of the camera coordinate system.
Based on the coordinates of the head, the coordinate system
performs behavior recognition according to the human head’s
movement speed. The calculation of speed is based on track-
ing the trajectory of the head of the human skeleton.
Therefore, the system continuously detects both heads to cal-
culate the speed and then use this speed to judge whether the
elderly person has fallen.

The calculation of head speed follows the following steps:

(1) Coordinate transformation: this step extracts the coordi-
nates of the camera coordinate system from the Kinect
depth information, thereby converting the coordinates of
the camera coordinate system to geographical coordi-
nates. Suppose the camera head under the frame of ref-
erence coordinates are [x, y, z], then the geographical
coordinates are [X, Y, Z]. Depending to the camera po-
sition, there might be two coordinate system
transformations.

(2) Speed calculation: the speed is calculated by comparing
the displacement between the two head coordinates di-
vided by the time difference between the two head coor-
dinates. First, the system obtains data of the converted
coordinate system and determines whether there are pre-
vious data. If true, two coordinate system data will be
compared and calculated through the z-axis and xy plane
displacement data and divided by the time difference
between the two datasets. After that, we obtain the speed

Fig. 1 Workflow of the collaborative fall detection system
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value for the z-axis and xy axis, and use the SVM algo-
rithm to judge the behavior of the elderly according to
the calculated speed data.

The system adopts SVM to analyze speed characteristics
and identify the human behavior to tell whether the human
body is falling. The overall functional block diagram of the
Kinect detection system is shown in Fig. 2.

3.3 Data fusion model

The data fusion aims to process data from multiple data
sources to overcome the unreliability issue caused by one-
side observation of a single data source. Such unreliability
may cause instability and inaccuracy of the processing system.
Multi-sensor data fusion can avoid these problems or reduce
the impact of these problems. Therefore, the decision-making
system based on multi-sensor data generally have better accu-
racy and have a more comprehensive judgment to monitor the
target. The following describes the principles and levels of
data fusion, as well as common data fusion algorithms.

(1) The principles of data fusion

Data fusion collects sensor data from different sources,
extracts features from these data, and correlated the features
related to the same observation target to fuse the original data
using data fusion algorithms [38].

(2) The level of data fusion

A typical multi-sensor data fusion technology has three
levels of integration: data layer integration, feature layer inte-
gration, and decision-making integration.

(3) Common data fusion algorithm

There are several categories of multi-sensor data fusion
methods: the statistical inference method, the decision theory

method, signal processing and the estimation theory method,
the geometric method, the information theory method, and the
artificial intelligence method. Statistical inference methods
include Bayesian inference, D-S evidence reasoning, etc.
The methods of signal processing and estimation include the
weighted average method and the Kalman filter. The informa-
tion theory method includes the entropy method and the min-
imum description length method. Typical artificial intelli-
gence methods include neural network and rule-based
reasoning.

Considering the difference between the two kinds of
sensor data, we adopts the decision-making data fusion
method to integrate the data. In this paper, two concrete
methods of decision-making fusion are used. The first is
the result-oriented, logical, rule-based, collaborative data
fusion method. The second is to use the D-S evidence
theory to calculate fall data.

3.4 Confidence model

Using a single device has limitations in fall detection. For
example, the Kinect can be restricted by shade objects and
smart phones can be restricted by location restrictions.
Since different fall detection algorithms can be affected
by varied factors, we define confidence models to com-
bine them. In our proposed approach, each device extracts
the features of the collected data and obtain a result ac-
cording to the respective algorithm. After then, the
decision-making data fusion based on the evidence theory
or logical rule is used to fuse the statistics and the result
data of each sensor.

Since the data sent from each subsystem to the PC
monitoring side may not be always credible, we establish
a confidence model to calibrate the collect data. A confi-
dence value is represented as a percentage value in the
range of [0, 1]. A higher conference value indicates the
higher performance of the device. Devices in different
data collection environments may have different confi-
dence because the sensors have different efficacy and
the confidence model enables the data from different sen-
sors to compensate the vulnerability of one another for the
higher overall credibility.

3.5 Collaborative fall detection

3.5.1 Logical rules-based collaborative fall detection

According to the physical condition of the elder in the family
and the specific needs of the corresponding technical services,
our collaborative fall detection system are designed with two
service models: Bfall dully^ and Bfall sensitively ,̂ and the

Fig. 2 The overall functional block diagram of the Kinect detection
system
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collaborative fall detection system should meet the needs of
various family members.

Fall sensitively: this situation may avoid omission but
mistake daily activities as falls. Guardians in this situa-
tion need only lift the alarm. This model is suitable for
those with osteoporosis, a fear of falling, or poor phys-
ical condition.

Fall dully: This situation may reduce the false alarm
rate but miss falls. This model is suitable for the elder
whose physical condition is better or the elder who is
more able to exercise independently.

Suppose we derive the fall detection result of each de-
vice as one of two status values, Bfall^ and Bnon-fall^. The
results of different devices can be fused using simple logi-
cal operations. Suppose there are n devices, the result of the
fall test for the i-th device is Ri, with a fall being set to True,

and a non-fall being set to False. The i-th device performs
the fall detection accurate rate as Adi, and descends with the
Adi. The results are fused using two devices with high ac-
curacy of fall detection, assumed to beAd1 and Ad2. For the
user choses ‘Fall sensitively,’ the result of the t-th result Rt

¼ RAd1 jRAd2 is the final fusion result; conversely, if the user
choses ‘Fall dully,’ the result of the t-th result is
Rt ¼ RAd1&RAd2 . If the fusion result is False, the result
whose detection accuracy which is the highest will act as
the t-th test results, and will otherwise output fusion results.
The system will be based on the user’s choice to serve the
user.

The confidence model is applied to the rule-based
collaborative fall detection algorithm. The algorithm is
described in the following.

The rule-based collaborative fall detection algorithm:

According to the logic rules of the collaborative fall
detection method, the confidence model is able to identify
and predict falls based on the real-time monitoring results
of the situation, calculate the accuracy of the fall, change
the corresponding confidence, and to forecast for the next
step.

3.5.2 D-S evidence theory based collaborative fall detection

The D-S evidence theory is a decision-making data fu-
sion method. It defines a series of operations and con-
cepts to enable the system to work strictly under uncer-
tain conditions. The method can combine the confidence

Input: The user inputs serviceMode Device set D, fall detection result set R
Output: collaborative fall detection results

For each di D 
Calculate the di fall detection accuracy as Adi, according to the confidence model

End for;
Sort <Ad1, Ad2,…> in descending order

If serviceMode == “Fall sensitively” then

1 2
|t Ad AdR R R

Else if serviceMode == “Fall dully” then

1 2
&t Ad AdR R R

If Rt == False  then

1t AdR R

End if;
End else if;

End if;
Return fusion results Rt.
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values from various sources [39] to fuse data in a col-
laborative system. In view of the advantages of the D-S
evidence theory in handling uncertain data information,
we uses this method to carry out the fall data fusion.
The following describes the general method of D-S ev-
idence theory.

Suppose each sensor has two state values A and B,
and all possible state values are denoted by Θ, then Θ
can be expressed by the following Eq. (3):

Θ ¼ A;B; A;Bf g; ϕf gf g ð3Þ
where the subset {A, B} represents either A or B. Each
subset gives a certain weight, representing the probabil-
ity that the state is correct. For the sensor data, the
probability value is related to the sensor itself. The
probability of A is represented by m(A), as defined in
Eq. (4).

m Φð Þ ¼ 0
∑
A∈Θ

m Að Þ ¼ 1

(
ð4Þ

There are two other computational methods, beliefs and
plausibility for the elements in Θ. The specific calculation is
shown by Eq. (5) and (6).

Belief Að Þ ¼ ∑
Ek⊆A

m Ekð Þ ð5Þ

Plausibility Að Þ ¼ ∑
Ek∩A¼ϕ

m Ekð Þ ð6Þ

where the probability falls in the range of [Belief(A),
Plausibility(A)].

In the data fusion environment, each sensor has three mea-
surement methods, for each element A in Θ, there are proba-
bility m(A), belief(A), and plausibility(A). The values of the
different sensors can be fused with the authority of the
Dempster-Shafer rule, as shown in Eq. (7).

mi⊕mj
� �

Að Þ ¼
∑

Ek∩Ek
0 ¼A

mi Ekð Þmj Ek
0

� �
1− ∑

Ek∩Ek
0 ¼Φ

mi Ekð Þmj Ek
0

� � ð7Þ

Since Eq. (7) is controversial in validity and produces
counter-intuitive results in face of conflicts among sources,
we defile rules in Eq. (8) to alleviate the limitations of the
Dempster-Shafer theory.

m
0
Að Þ ¼ 1− 1−mi Að Þð Þ 1−mj Að Þ� �

1þ 1−mi Að Þð Þ 1−mj Að Þ� �
mi⊕mj
� �

Að Þ ¼ m
0
Að Þ

∑m0 Að Þ

8>>><
>>>:

ð8Þ

Based on the experimental results, the confidence model
takes the accuracy of the device fall detection as the initial
value. Then it updates the device’s fall detection preparation
rate and finally uses the D-S evidence theory to carry out the
fall test results of data fusion and make the final decisions If
the user changes the location of the device after the monitor
is started, the update confidence module can still work ac-
cording to the set process to obtain the new detection accu-
racy rate.

The workflow of the D-S evidence theory combined with
the confidence model is described in Fig. 3.

4 Evaluation

In this section, we report our experiments in a smart home
environment to test the accuracy of the collaborative plat-
form in detecting falls. The following subsections will in-
troduce the experimental settings using students as testers,
the evaluation of different fall detection subsystems, and the
evaluation of different methods for collaborative fall detec-
tion, respectively.

4.1 Experiment settings

We simulated a smart home environment using smart phones
and Kinects to verify the effectiveness of our approach in real-
world scenes. The information of sensors is shown in Table 1.
Sensor information. (we show all the tables in the Appendix
for better clarity). For the experiments, the same person fell

Fig. 3 The D-S evidence theory combined with the confidence model
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and performed other daily activities about 500 times, and these
activities included Forward fall, Backward fall, Left falls,
Right falls, Squat stand up, and Walking.

4.2 Evaluation methods

We use the criteria (https://en.wikipedia.org/wiki/Evaluation_
of_binary_classifiers) to evaluate the performance of the fall
detection method.

4.2.1 Threshold based fall detection using the smartphone
subsystem

The smart phone was installed in the pocket and tied to the
waist, and the program would be done for each action twice.
The acceleration information was stored in the SQLite data-
base, and we used the data in the database and MATLAB for
simulation. In this experiment, we set the sampling frequency
of the mobile phone acceleration sensor which was50Hz,

because the daily main operating frequency was lower than
20 Hz.

The experimenter was asked to complete two consecu-
tive movements within 10s. Using the result of MATLAB
simulation, we calculated the Signal Magnitude Area
(SMA), SMV, and Tilt Angle (TA), which are shown in
Fig. 4a, b, and c, respectively. The results of the following
simulation are the number of data acquisition points, where
the vertical axis is the specific value and the Tilt Angle is the
radian value. Both the Signal Magnitude Area and the
Signal Magnitude Vector are calculated.

Figure 4 is in accordance with the experimental program
to do the normal action simulation map, from these figures
can be roughly differentiated behavioral action. To better
determine the threshold of each eigenvalue, we tried to sam-
ple the two actions of fast squat and quick sit-down because
of the similarity of the eigenvalues of fast squatting, fast
sitting and falling. The sampling results were simulated
using MATLAB, as shown in Fig. 5. The results can be seen
from Fig. 4, the angle of inclination of fast squat and fast sit

(a) Signal Magnitude Area (SMA) (b) Signal Magnitude Vector (SMV) 

(c) Tilt Angle (TA)
Fig. 4 a Signal Magnitude Area (SMA). b Signal Magnitude Vector (SMV). c Tilt Angle (TA)
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is greater than 0.6 (radian). From the experimental data, we
can see that the SMV value of the fast squat and fast sit down
will be relatively large, which is similar with the SMV value
when falling, so it may produce miscarriage of judgement.

The threshold of the three eigenvalues is obtained by
statistics over the simulation results and used to carry out

the fall test and to test the performance of the method. In
accordance with the experimental design for four different
falls, each action was done 30 times. Recording the actual
fall but did not detect the number of times, and then perform
a single performance test according to the performance of
the evaluation algorithm.

Kinect and smart phones test the fall detection at the same
time, the phone was placed on various parts of the body in
the experiment, and the results of the fall test were counted
respectively. Table 2. Fall detection results (smart phone
tied to the waist). shows the statistics of the mobile phone
on the waist. The statistics of the mobile phone placed in the
loose trousers pocket are shown in Table 3. The statistical
results of the mobile phone placed in the tight trousers pock-
et are shown in Table 4. The statistics of the mobile phone
placed in the pocket are shown in Table 5.

4.2.2 SVM based fall detection using the Kinect subsystem

This paper captured the fall and non-fall data of the 2000
times respectively, the figure was drawn by MATLAB as
shown in Fig. 6, which counts the fall and non-fall speed

(a) Tilt Angle (TA). (b) Signal Magnitude Area (SMA).

(c) Signal Magnitude Vector (SMV).

Fig. 5 a Tilt Angle (TA). b Signal Magnitude Area (SMA). c Signal Magnitude Vector (SMV)

Fig. 6 Fall and non-fall speed statistics
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characteristics. The figure shows that the fall and non-fall
speed characteristics are relatively obvious, so it can use the
support vector machine method to carry out the clas-
sification of behavior.

First, this experiment recorded the speed of the exper-
imental staff movement of the head according to the ex-
perimental staff doing different actions, the characteristics
of this experiment are Z-axis speed Vz and X-axis and Y-
axis of the combined speed Vxy, the classification was judged
according to the two features. The type of action has four types
of labels that fall and non-fall. And then this system uses SVM
to study these two features, the model was in accordance with
behavior prediction. Because this system uses support vector
machines and Radial kernel function, it is necessary to deter-
mine the parameters C and γ through experiments.

This paper captured the fall and non-fall data of the 2000
times respectively, the non-fall data as a group, fall data as a
group, using libSVM svm scale to normalize the data. Through
the grid.py to optimize the training set Parameter selection, and

get the fall and non-fall C, γ values and recognition rate, the
result is shown in Fig. 7. The system uses the optimization
parameters, and they are used in SVM training the model. At
last, we use the model to predict real-time behavior.

Using the model developed to predict results, the fall exper-
iment was conducted according to experimental design.
Forward falls, backward falls, left falls, right falls and Squat
stand up were conducted 30 times respectively when the
Kinect is within the recommended range in 4min, andwe record
the results. And then we performed the performance test accord-
ing to the method of the evaluation algorithm performance. The
performance test results are shown in Table 6. This table is the
statistics of Kinect overall fall detection accuracy, because the
mobile phone was used together with the fall detection in the
experiment, so when the phone placed in various locations, they
are corresponding to the different fall detection performance.

From the table also can be seen, the walking behavior has
the phenomenon of false positives, on one hand, the reason is
for the SVM algorithm, the amount of data trained by smaller

Fig. 7 Fall and non-fall C and γ
values and recognition rates

Fig. 8 Data fusion procedure
based on the D-S evidence theory
for fall detection

784 Mobile Netw Appl (2018) 23:775–788



data, on the other hand, in the experiment, due to experimental
equipment placed, Kinect can only shoot to Upper body.

4.2.3 Logical rules based collaborative fall detection

The data are processed according to the collaborative method
described below.

If the user selects the ‘Fall sensitively’ mode, the fusion
results in the four cases are shown in Table 7.

If the user selects the ‘Fall dully’mode, the fusion results in
the four cases are shown in Table 8.

The above fusion results show that when the fall sensitively
mode is selected, the accuracy of the fall detection is obvious-
ly improved, the equipment with higher accuracy is improved,
the false alarm rate is improved, the equipment with lower
accuracy rate, the false alarm rate reduces. However, when
the ‘Fall dully’ is chosen, the method assumes higher detec-
tion accuracy of equipment, leading to the improved accuracy
and reduced false alarm rate.

4.2.4 D-S evidence theory based collaborative fall detection

In this section, we present the fall detection method based on
D-S evidence theory to fuse the data from various devices and
to improve the accuracy of the fall detection. The data fusion
process based on the D-S Evidence Theory for fall detection is
shown in Fig. 8.

First, the mobile phone’s built-in acceleration sensor col-
lects acceleration data and extracts features, followed by the
threshold method determining whether the user falls. In par-
ticular, the system gives the threshold of a decision value
while calculating the confidence of the phone in a specific
position, where this confidence is the mobile phone fall
down detection accuracy. Meanwhile, Kinect begins to col-
lect the movement of human skeletal head node speed and
extract the speed Vxy and Vz these two eigen values. The
two eigen values are used for training. Finally, SVM is used
to predict the two kinds of features, and the results of the fall
detection are obtained, and the accuracy of Kinect fall de-
tection is calculated. Table 9 shows the detection accuracy
when the mobile phone is placed at different parts of the
body and Kinect corresponding to the detection accuracy
of the fall. This accuracy rate can provide evidence to the
evidence theory for applying this method for data fusion.

For the fall detection, this paper is only concerned
about the falls of home users, so the identification of
home users is Θ = {A, B}, where A is the fall behavior,
and B is the non-fall behavior. According to the D-S ev-
idence theory formula, the final fusion result is shown as
Table 10.

4.3 Discussion

The comparison shows the fusion method based on logical
rules and D-S evidence theory achieve good accuracy and
false positive rate. Considering the fusion results of our exper-
imental data and fusion methods, the rule-based fusion results
have higher fall detection accuracy and lower false alarm rate.
The premise is that these two devices can have better comple-
mentarity in the fall detection process, i.e., if a device does not
detect the fall, while another device does. The accuracy of data
fusion based on the D-S evidence theory is determined by not
only this complementarity but also the accuracy of each de-
vice itself.

In summary, by differentiating the confidence on the two
types of devices according to their detection results, the col-
laborative approach is able to fuse their results and achieve
better performance. In the next step, we want to create the
model, which can use confidence values (smart phone,
Kinect, or both) adaptively according to location of the
elderly.

5 Conclusion

In this paper, we present a novel collaborative fall detec-
tion method that uses different types of sensors, namely
smart phones and Kinects, based on confidence models.
Given a complex home environment with isolated devices,
we address the deficiencies of existing approaches by es-
tablishing a platform for collaborative fall detection, which
can collaborate with a variety of devices to detect falls and
to provide users more convenient and reliable fall detection
services. Our proposed approach has the following
advantages:

& Reasonable fusion of multiple sensors can significantly
improve the accuracy and reduce the false alarms.

& The fusion is straightforward and thus has low complexity
(we only use the basic decision results to fuse).

& Our approach represents a promising approach for multi-
sensor integration and collaboration under the circum-
stance of the increasing use and diversity of sensors.

For the future work, we will consider overcoming the lim-
itations of devices by selecting the appropriate types of de-
vices and data fusion methods. Besides, fall detection is only
the first step towards a collaborative complex family environ-
ment. We plan to further improve the system to enable adap-
tive settings and fall detection.
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Appendix

Table 1 Sensor information

Name Version Application Description Quantity

Smart phone Mi2 Collect human movementacceleration information Using TCP communication 1

Microsoft Kinect Kinect 1517 Collect the head of the person movement speed Using TCP communication 1

Table 2 Fall detection results
(smart phone tied to the waist) Action TP FN FP TN SE SP AC

Forward fall 26 4 0 0 86.67% 0 86.67%

Backward fall 25 5 0 0 83.33% 0 83.33%

Left falls 26 4 0 0 86.67% 0 86.67%

Right falls 24 6 0 0 80% 0 80%

Squat stand up 0 0 2 28 0 93.33% 93.33%

Walking 0 0 0 Walking 1 min – – –

Table 3 Fall detection results (smart phone placed in a loose trousers pocket)

Action TP FN FP TN SE SP AC

Forward fall 15 15 0 0 50% 0 50%

Backward fall 30 0 0 0 100% 0 100%

Left falls 15 15 0 0 50% 0 50%

Right falls 22 8 0 0 73.33% 0 73.33%

Squat stand up 0 0 3 27 0 90% 90%

Walking 0 0 0 Walking 1 min – – –

Table 4 Fall detection results
(smart phones placed in a tight
trousers pocket)

Action TP FN FP TN SE SP AC

Forward fall 22 8 0 0 73.33% 0 73.33%

Backward fall 30 0 0 0 100% 0 100%

Left falls 19 11 0 0 63.33% 0 63.33%

Right falls 11 19 0 0 36.67% 0 36.67%

Squat stand up 0 0 2 28 0 93.33% 93.33%

Walking 0 0 0 Walking 1 min – – –

Table 5 Fall detection results
(smart phone placed in a coat
pocket)

Action TP FN FP TN SE SP AC

Forward fall 20 10 0 0 66.67% 0 66.67%

Backward fall 23 7 0 0 76.67% 0 76.67%

Left falls 19 11 0 0 63.33% 0 63.33%

Right falls 16 14 0 0 53.33% 0 53.33%

Squat stand up 0 0 7 23 0 76.67% 76.67%

Walking 0 0 0 Walking 1 min – – –

786 Mobile Netw Appl (2018) 23:775–788



Table 6 Fall detection results
using the Kinect Action TP FN FP TN SE SP AC

Forward fall 116 4 0 0 96.67% 0 96.67%

Backward fall 120 0 0 0 100% 0 100%

Left falls 116 4 0 0 96.67% 0 96.67%

Right falls 114 6 0 0 95.00% 0 95.00%

Squat stand up 0 0 14 106 0 88.33% 88.33%

Walking 0 0 0 Walking4min – – –

Table 7 Fall sensitively
collaborative statistical results Methods and their statistical

indicators
Waist Loose trousers

pocket
Tight trousers
pocket

Coat
pocket

Kinect accuracy 97.5% 96.67% 95.83% 98.33%

Kinect fallfalse rate 3.33% 4.44% 6.11% 1.67%

The smart phone accuracy 84.17% 68.33% 68.33% 65.00%

The smart phone fall false rate 11.67% 22.78% 22.22% 27.22%

Logical rules accuracy 100% 98.33% 99.17% 100%

Logical rulesfall false rate 2.78% 5.00% 4.44% 4.44%

Table 8 Fall dully collaborative
statistical results Methods and their statistical

indicators
Waist Loose trousers

pocket
Tight trousers
pocket

Coat
pocket

Kinect accuracy 97.5% 96.67% 95.83% 98.33%

Kinect fallfalse rate 3.33% 4.44% 5.56% 1.67%

The smart phone accuracy 84.17% 68.33% 68.33% 65%

The smart phone fall false rate 11.67% 22.78% 22.22% 27.22%

Logical rules accuracy 97.5% 96.67% 95.83% 98.33%

Logical rulesfall false rate 3.33% 4.44% 5.56% 1.67%

Table 9 The accuracy of the two
methods in different situations Methods and their statistical

indicators
Waist Loose trousers

pocket
Tight trousers
pocket

Coat
pocket

The Kinect 97.08% 97.08% 97.08% 97.08%

The smart phones 84.17% 68.33% 68.33% 65%

Table 10 The accuracy of D-S
evidence theory fusion results Methods and their statistical indicators Waist Loose trousers

pocket
Tight trousers
pocket

Coat
pocket

Based on D-S evidence fusion results accuracy 97.5% 96.67% 95.83% 98.33%

Based on D-S evidence fusion results errone-
ous judgement

3.33% 4.44% 5.56% 1.67%
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