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Abstract From the point of view of the control theory,
the literature indicates that stealthy and accurate cyber-
physical attacks on Networked Control System (NCS) must
be planned based on an accurate knowledge about the
model of the attacked system. However, most literature
about these attacks does not indicate how such knowl-
edge is obtained by the attacker. So, to fill this hiatus,
an Active System Identification attack is proposed in this
paper, where the attacker injects data on the NCS to learn
about its model. The attack is implemented based on two
bio-inspired metaheuristics: Backtracking Search Optimiza-
tion Algorithm (BSA) and Particle Swarm Optimization
(PSO). To improve the accuracy of the estimated mod-
els, a statistical refinement is proposed for the outcomes
of the two optimization algorithms. Additionally, a set of
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data injection attacks are shown in order to demonstrate the
capability of the proposed attack in supporting the design
of other sophisticated attacks. The results indicate a better
performance of the BSA-based attacks, especially when the
captured signals contain white Gaussian noise. The goal of
this paper is to demonstrate the degree of accuracy that this
System Identification attack may achieve, highlighting the
potential impacts and encouraging the research of possible
countermeasures.

Keywords Security · Cyber-physical systems · Networked
control systems · System identification · Backtracking
search algorithm · Particle swarm optimization

1 Introduction

System identification, i.e. the action of building mathemat-
ical models of dynamic systems, is often used to obtain the
model of physical processes aiming to support the design
of their respective control systems. However, it can also
be considered a key step for the execution of accurate
and stealth – or covert, as mentioned in [7, 20, 21, 24] –
attacks against Networked Control Systems (NCS). Indeed,
to reduce the probability to be detected by algorithms that
monitor the dynamics of the controlled plant, the attacker
must have an accurate model of the targeted system, such as
demonstrated in [21, 24].

A possible strategy to obtain information about the model
of the targeted system is through passive System Identi-
fication attacks, as reported in [7]. In that technique, the
attacker eavesdrops the communications between the con-
troller, actuators and sensors of the NCS until enough
information is collected to determine the parameters of the
plant and its control system. Such passive approach can
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make the system identification more time consuming, until
meaningful information transits at the eavesdropped com-
munication links. The situation is even worse if the system
is in steady state because no meaningful information may
transit through the NCS’s communication links for a long
time. The information content of the signals measured under
steady operating conditions is often insufficient for iden-
tification purposes [26]. This attacker’s constraint may be
overcome by the Active System Identification Attack herein
proposed, which, as far as we know, is not reported in the
literature.1

Our approach was inspired by the classic active crypt-
analytic attacks (chosen plaintext and chosen cyphertext),
where the attacker inserts messages in the crypto-engine
to deduce the secret key. Note that this is the opposite of
the passive attacks (cyphertext only and known plaintext),
where the attacker simply listens the communication channels
and passively collects information to recover the secret key [23].

In the attack presented in this work, a specially tailored
signal is inserted by the attacker in an NCS communication
channel. After that, by observing the behavior of the sys-
tem in closed-loop, the attacker determines the parameters
of its open-loop transfer function. To do so, the attacker only
needs to intercept one communication channel of the NCS,
where the attacker both inserts the attack signal and listens
the consequent system response.

If an attack signal a(k) and the consequent response
ya(k) of an NCS are known, the open-loop transfer function
can be assessed by applying a(k) in an estimated model,
which is adjusted until its estimated output ŷa(k) matches
ya(k). The Backtracking Search Optimization algorithm
(BSA) [4] and the Particle Swarm Optimization (PSO) [12]
are herein used to iteratively adjust the parameters of the
estimated model, by minimizing a specific fitness function
until the estimated model converges to the actual model of
the NCS. The BSA and the PSO are chosen to perform
this task due to their capability to converge to good solu-
tions, such as demonstrated in [10, 11, 16, 27] specifically
for control system problems. Given the stochastic nature
of the used algorithms (BSA and PSO), the results need to
be statistically analyzed in order to perform a refinement of
the estimated model. In this work, the statistical refinement
used in [6] is improved, leading to a more accurate estimated
model than the results obtained in [6].

The knowledge of the NCS’s open-loop transfer func-
tion obtained by the Active System Identification attack is
useful for the design of other sophisticated attacks [7, 21].

1A preliminary version of this work was presented in the 10th EAI
International Conference on Bio-inspired Information and Communi-
cations Technologies (BICT 2017) and published in the proceedings of
the event [6]. The present paper proposes a refinement for the system
identification method described in [6] and simulates a data injection
attack using the data obtained after this refinement.

To demonstrate this usefulness from the attacker point of
view, this paper includes the simulation of a set of data
injection attacks designed based on the data gathered by the
Active System Identification attack. In these simulations,
not presented in [6], the attacker accurately induces an over-
shoot on the attacked plant, which may cause stress and
possible damages [8, 25], reducing its mean time between
failure (MTBF).

It is worth mentioning that the Active System Identifi-
cation attack herein proposed is different from the active
attacks performed to identify vulnerabilities of protocols
and applications within the layers of the OSI model, such
as the active scanning process used to identify network ser-
vices [2]. The attack herein proposed aims to identify the
physical model of a plant that, in an NCS, lies above the
application layer of the OSI model.

Note that the applications of NCSs can range from coop-
erative control of vehicles using mobile networks [15, 17]
to large Pressurized Heavy Water Reactors (PHWR) [5] or
water canal systems [1, 21] controlled by wired NCSs. This
include a vast number of potential – sometimes critical –
targets for the attack herein proposed. In this sense, the goal
of this paper is to demonstrate the degree of accuracy that
the present attack may achieve, highlighting its potential
impacts and encouraging the research of countermeasures
capable to prevent or detect its execution.

In summary, the main contributions of this paper, with
regard to the preliminary version of this work [6], are:

– The review on the taxonomy presented in [7], in order
to encompass the Active System Identification attack
in the context of the Cyber-Physical Intelligence (CPI)
attacks. Also, it sets the role that the proposed attack
– as a CPI attack – plays in building model-dependent
attacks.

– The proposal of a new statistical refinement method
for the outcomes provided by the bio-inspired meta-
heuristics. The results demonstrate that this refinement
improves the quality of the information produced by the
identification attack.

– The novel joint operation of the Active System Identi-
fication Attack and a Controlled Data Injection Attack,
which allows the evaluation on how a model-dependent
attack can benefit from the intelligence obtained by the
Active System Identification Attack. The results indicate
that the referred model-dependent attack can achieve
high accuracy when supported by the Active System
Identification Attack, specially when the latter is statis-
tically refined by the method introduced in this paper.

The remainder of this paper is organized as follows. In
Section 2, we review the literature of NCS attacks, with
focus on the intelligence gathered to support their design.
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In Section 3, we discuss and review the taxonomy presented
in [7] in order to encompass the attack herein proposed. In
Sections 4 and 5, we provide brief descriptions of the BSA
and PSO, respectively. In Section 6, the Active System Iden-
tification attack, herein proposed, is described. Section 7
presents the results achieved by the proposed attack, com-
paring both metaheuristics in simulations where the NCS is
constituted by a DC motor and a proportional-integral (PI)
controller. Also, Section 7 quantitatively demonstrates the
accuracy that a data injection attack may achieve, when sup-
ported by the proposed Active System Identification attack.
Section 8 contains our final considerations.

2 Related works

The possibility of large impact cyber-physical attacks
became unprecedentedly concrete after the launch of the
Stuxnet worm [13] and has been motivating researches con-
cerning the security of NCSs. In this section, a review of the
literature related to this subject is presented.

In [14] the authors propose two queuing models that are
used to evaluate the impact of delay jitter and packet loss in
an NCS under attack. The attack is not designed taking into
account the models of the controller and the physical plant.
Such models are unknown by the attacker. Thus, to affect the
plant’s behavior, the attacker arbitrarily floods the network
with traffic, causing jitter and packet loss. In this method
of attack, the excess of packets in the network can reduce
the stealthiness of the attack, allowing the adoption of coun-
termeasures, such as packet filtering [14] or blocking the
malicious traffic on its origin [22]. Moreover, the arbitrary
intervention in a system which the models are unknown may
lead the plant to an extreme physical behavior, which is not
desired if a stealth attack is intended [7].

In [9], a testbed for Supervisory Control and Data Acqui-
sition (SCADA) using TrueTime (a MATLAB/ Simulink
based tool) is presented. The authors demonstrate an attack
where a malicious agent transmits false signals to the
controller and actuator of an NCS. The false signals are
randomly generated, aiming to make a DC motor lose its
stability. This kind of attack does not require a previous
knowledge about the plant and controller of the NCS. The
drawback is that the desired physical effect and the stealth-
iness of the attack cannot be ensured due to unpredictable
consequences from the application of random false signals
to a system which the model is not known.

A general framework for the analysis of a wide variety
of attacks over NCSs is provided in [24]. The authors clas-
sify and establish the requirements for the attacks in terms
of model knowledge, disclosure and disruption resources.
In their work, it is stated that covert attacks require high
level of knowledge about the model of the targeted system.

Examples of covert attacks that agree with this statement
are provided in [20, 21]. In these works, the attacks are per-
formed by a man-in-the-middle (MitM), where the attacker
needs to know the model of the plant under attack and
also inject false data in both forward and feedback streams.
The stealthiness of the attacks described in [20, 21] is ana-
lyzed from the perspective of the signals arriving to the
controller and depends on the difference between the actual
model of the plant and the model known by the attacker.
In [1], another stealth attack is demonstrated. The attacker,
aware of the system’s model, injects an attack signal in the
NCS to steal water from the Gignac canal system located in
Southern France.

In [1, 20, 21, 24], where a previous knowledge about
the models of the NCS under attack is required, it is not
described how this knowledge is obtained by the attacker. It
is just stated that a model is previously known to support the
design of the attack. More recently, in [7], the authors pro-
pose a System Identification attack to fill this hiatus. They
demonstrate how the data required for the design of Denial-
of-Service (DoS) or Service Degradation (SD) attacks may
be obtained through a passive System Identification attack.
The attack proposed in [7] does not need to inject signals on
the NCS to estimate its models. However, it depends on the
occurrence of events, that are not controlled by the attacker,
to produce signals that carry meaningful information for the
system identification algorithm. The Active System Identi-
fication attack, herein proposed, constitutes an alternative to
the passive System Identification attacks in situations where
the attacker may not wait so long for the occurrence of such
meaningful signals. A synthesis of the characteristics of the
attacks referred in this section is presented in Table 1.

3 Taxonomy

In [7], the authors propose a taxonomy that encompasses
three main classes of attack – Denial-of-Service (DoS),
Service Degradation (SD), and Cyber-Physical Intelligence
(CPI) – in which the service to be attacked/ protected is
the work performed by the physical process controlled by
an NCS. According to that taxonomy, the DoS attacks are
intended to interrupt the execution of the work performed by
the controlled plant, or even destroy the plant in a short term.
On the other hand, the SD attacks aims to reduce the effi-
ciency of the physical process, or even reduce the mean time
between failure (MTBF) of the plant in mid/long term. Yet,
according to that taxonomy, the CPI attacks are intended to
gather information of the NCS basically through two kinds of
attack – eavesdropping, and System Identification attacks –,
in order to provide the information necessary for planning
and designing DoS and SD controlled attacks. The referred
taxonomy establishes the requirements for each attack of
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Table 1 Synthesis of the
related attacks Attack Method System knowledge How the knowledge is obtained

Stuxnet worm [13] Modifications in the PLC code Yes Experiments in a real system

Long, et al. [14] Inducing jitter and packet loss None N/A

Farooqui, et al. [9] Data injection None N/A

Smith [20, 21] Data injection Yes Not described

Teixeira [24] Packet loss None N/A

Data injection Yes Not described

Amin [1] Data injection Yes Not described

SD-Controlled [7] Data injection Yes Passive system identification

these three main classes and, above all, explains how model-
dependent attacks, such as the DoS and SD controlled
attacks can benefit from the information provided by CPI
attacks.

The attacks belonging to the first two classes, i.e. DoS
and SD, are premised active, once they act through the
induction of jitter, data loss or data injection on the NCS.
On the other hand, according to that taxonomy, the attacks
belonging to the CPI class of attacks do not impact or
interfere on the NCS, once they only need to listen the con-
trol signals that flow through the NCS. The eavesdropping
attack simply capture the control signals that flow through
the network. The System Identification attack, according to
[7], collects the data that flows through the input and out-
put of the NCS devices, i.e. controllers and plants, and uses
the collected information to passively estimate the model of
such devices.

However, the results achieved by the present work lead
us to review the taxonomy proposed in [7], specifically with
regard to the System Identification attacks. Different from
the System Identification attack defined in [7], the attack
proposed in this paper requires the injection of an attack sig-
nal in the NCS, in order to estimate its model through the
analysis of its consequent response. Thus, it is necessary
to expand the taxonomy related to System Identification
attacks, that are now divided within two kinds, as shown in
Fig. 1:

– The Passive System Identification attacks: this kind of
attack estimates the model of an NCS based on the anal-
ysis of the signals collected from the input and output
of the system’s devices. This kind of attack analyzes
signals that typically flow through the NCS, as a result
of its normal operation. In this case, both input and

Fig. 1 Classification and
requirements of the
cyber-physical attacks that act in
the control loop of an NCS
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output signals must carry meaningful information – i.e.
information enough to estimate the transfer function of
the attacked system/device –, and it is not necessary to
inject signals into the attacked system.

– The Active System Identification attack: in this kind of
attack, aim of this work, the attacker injects a signal
into the system and estimates its model based on the
system’s response in face of the attack signal. From the
attacker point of view, this attack is useful, for example,
when the system is in steady state and the attacker can-
not wait for a signal carrying meaningful information
for the identification process.

It is noteworthy that an Active System Identification
attack is less stealthy than a Passive System Identification
attack, given that the former needs to interfere in the system
and the latter just needs to listen its signals. In this sense,
when performing an Active System Identification attack,
the attacker must choose signals that, when injected on the
NCS, are more difficult to be perceived by a defense system.
From the defender perspective, it is important to be aware
of this kind of attack and also learn about the stealthiness
of Active System Identification attacks, in order to develop
techniques to identify and avoid them.

4 Backtracking search algorithm

In this section, the basic concepts of the BSA are described
in order to provide a clear comprehension regarding to the
parameters of the algorithm that are adjusted for the attack.
The BSA is a bio-inspired metaheuristic that searches for
solutions of optimization problems using the information
obtained by past generations – or iterations. According to
[4], its search process is metaphorically analogous to the
behavior of a social group of animals that, at random inter-
vals, returns to hunting areas previously visited for food
foraging. The general evolutionary structure of the BSA is
shown in Algorithm 1.

Algorithm 1 BSA

begin
Initialization;
repeat

Selection-I;
Generate new population

Mutation;
Crossover;

end
Selection-II;

until Stopping Condition;

end

At the Initialization stage, the algorithm generates and
evaluates the initial population P0 and sets the historical
population Phist . The latter constitutes the BSA’s mem-
ory that, in Selection-I stage, is updated with historical
coordinates visited by the individuals.

During the first selection stage (Selection-I), the algo-
rithm randomly determines, based on an uniform distribu-
tion U , whether the current population P should be kept as
the new historical population and, therefore, replace Phist

(i.e. if a < b|a, b ∼ U(0, 1), then Phist = P ). Subse-
quently, at every iteration, it shuffles the individuals of Phist

– having Phist been replaced or not.
The mutation operator creates Pmod , which is the pre-

liminary version of the new population Pnew). It does so
according to Eq. 1:

Pmod = P + η · �(Phist − P), (1)

wherein η is empirically adjusted through simulations and
� ∼ N(0, 1), with N being a normal standard distribution.
Therefore, Pmod is the result of the movement of P’s indi-
viduals in the directions established by vector (Phist − P)

and η controls the displacements’ amplitude.
In order to create the final version of Pnew, the crossover

operator randomly combines, also following a uniform dis-
tribution, individuals from Pmod and others from P .

At the second selection stage (Selection-II), the algo-
rithm firstly evaluates the individuals of Pnew using a fitness
function f . After that, individuals of P (i.e. individuals
before applying the mutation and crossover operators) are
replaced by individuals of Pnew (i.e. individuals obtained
after mutation and crossover) with better fitness. Therefore,
P includes only new individuals that evolved. While the
stopping condition has not yet been reached, the algorithm
iterates. Otherwise, it returns the best solution found.

Note that the algorithm has two parameters that are
empirically adjusted: the size |P| of its population P; and η,
that establishes the amplitude of the movements of the indi-
viduals of P . The parameter η must be adjusted to assign
good exploration and exploitation capabilities to the algo-
rithm. With these parameters set, the BSA is used to search
for the global minimum of the fitness function described in
Section 6.

5 Particle swarm optimization

PSO has roots in the collective behavior of social models
such as bird flocking and fish schooling. A particle, i.e. the
basic element of the algorithm, represents a possible solu-
tion of a problem. Therefore, the swarm represents a set of
possible solutions. At each iterative cycle, the position of
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each particle is updated according to Eq. 2, where xj and vj

are the position and velocity of particle j , respectively.

xj (t + 1) = xj (t) + vj (t + 1) (2)

The computation of vj considers three terms: the parti-
cle’s inertia; the particle’s cognition, which is based on the
best solution found by the particle so far; and social term,
which is based on global best solution found by the swarm.
The velocity of particle j , at each dimension d, is defined in
Eq. 3:

vjd(t + 1) = ωvjd(t) + ϕ1r1d(t)(mjd − xjd(t))

+ϕ2r2d(t)(mgd − xjd(t)), (3)

wherein ω is a parameter that weighs the inertia of the par-
ticle, ϕ1 and ϕ2 are parameters that weigh the cognitive and
social terms, respectively, r1 and r2 are random numbers in
[0,1], mj is the best position visited by particle j so far, and
mg is the best position discovered by the swarm consider-
ing the experience of all the particles. To obtain mj and mg

the algorithm evaluates, at each iteration, the position xj of
each particle j using a fitness function f (x).

In order to better explore multi-dimensional search
spaces, a velocity limit is imposed for each dimension d, as
in Eq. 4:

0 ≤ vjd ≤ δ(maxd − mind), (4)

wherein maxd and mind are the maximum and minimum
limits of the search space at each dimension d and δ ∈
[0, 1]. The overall computation that the PSO performs to
minimize a fitness function f (x) is given in Algorithm 2,
where x is the particle position and S is the swarm size.

Algorithm 2 PSO algorithm

begin
for each particle , 1 do

Set randomly position and velocity ;
;

end
, 1 ;

repeat
for each particle , 1 do

Update velocity , as in Eqs. 3 and 4;
Update position , as in Eq. 2;

;
, whenever ;
, whenever ;

end
until Stopping condition;
return ;

end

6 The active system identification attack

The Active System Identification attack, herein proposed,
is intended to assess the coefficients of a transfer function
G(z) = C(z)P (z) of an NCS, wherein C(z) is the con-
troller’s control function and P(z) is the plant’s transfer
function, as shown in Fig. 2. The transfer functions are all
linear time-invariant (LTI). This attack is performed by a
MitM that may be located either in the forward or in the
feedback link. For the sake of clarity of the analysis presen-
tation, but without loss of generality, we focus on the case
where the MitM is in the feedback link, i.e. between the
plant’s sensors and the controller’s input. To estimate the
model of the attacked NCS, the attacker injects an attack
signal a(k) and measures the response of the system to such
signal.

The complete response of the generic NCS shown in
Fig. 2, considering only the inputs R(z) = Z[r(k)] and
A(z) = Z[a(k)], is expressed in the z domain by Eq. 5:

Y (z) = G(z)

1 + G(z)
R(z) − G(z)

1 + G(z)
A(z), (5)

wherein Y (z) = Z[y(k)]. Z represents the Z-transform
operation. As a premise, in a normal condition, it is con-
sidered that a(k) = 0 and the system is designed to make
y(k) → q, in such way that y(k) ≈ q∀k > ks , i.e. the out-
put y(k) of the NCS converges and stabilizes at a constant
value q after a certain amount of samples ks . Indeed, it is
usually one of the main aims of a control system. Now, con-
sidering a(k) �= 0, the output y(k), ∀k > ks , may be defined
approximately as Eq. 6:

y(k) = q − Z−1
[

G(z)

1 + G(z)
A(z)

]
, ∀k > ks. (6)

Thus, after ks , the portion of y(k) caused by r(k) can be
eliminated by just subtracting q from Eq. 6, which leads to
Eq. 7:

ya(k) = y(k)−q = −Z−1
[

G(z)

1 + G(z)
A(z)

]
, ∀k > ks. (7)
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Fig. 2 Active System Identification attack with a MitM in the feed-
back link
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wherein ya(k) represents the portion of y(k) caused by the
attack signal a(k). The value of q can be assessed by the
attacker through an eavesdropping attack in the feedback
stream, by just capturing y(k) after the stabilization of the
NCS. The subtraction of q after ks makes the system iden-
tification attack independent of r(k) ∀k > ks . The Active
System Identification attack now just relies on the attack
signal a(k), which can be chosen, and the response of the
system to the attack ya(k) can be obtained in accordance
with Eq. 7. The signal ya(k) starts with the injection of a(k)

and has the size of a monitoring period T .
If the attack input a(k) and its consequent output ya(k)

are known, the model of G(z) can be assessed by applying
the known a(k) in an estimated system, defined by Eq. 8:

ŷa(k) = −Z−1
[

Ge(z)

1 + Ge(z)

]
∗ a(k), (8)

wherein Ge(z) is the estimation of G(z) and ŷa(k) is the out-
put of the estimated system in face of Ge(z). By comparing
ŷa(k) with ya(k), the attacker is capable to evaluate whether
Ge(z) is equal/approximately G(z). Note that Ge(z) is a
generic transfer function represented by Eq. 9:

Ge(z) = αnz
n + αn−1z

n−1 + . . . + α1z
1 + α0

zm + βm−1zm−1 + . . . + β1z1 + β0
, (9)

wherein n and m are the order of the numerator and the
denominator, respectively, while [αn, αn−1, . . . α1, α0] and
[βm−1, βm−2, . . . β1, β0] are the coefficients of the numer-
ator and the denominator, respectively, that are intended to
be found by this Active System Identification attack. There-
fore, to find G(z), the coefficients of Ge(z) are adjusted
until the estimated output ŷa(k) converges to the known
ya(k).

In this sense, the BSA and the PSO are used to itera-
tively adjust the estimated model, by minimizing a specific
fitness function presented in this section until the estimated
model Ge(z) converges to the actual G(z) of the real NCS.
To compute the fitness of the individuals of the optimiza-
tion algorithm (i.e. the BSA or PSO), the same attack signal
a(k) that caused ya(k) is applied on the estimated system
defined by Eqs. 8 and 9, where the coefficients of Ge(z) are
the coordinates xj = [αn,j , αn−1,j , . . . α1,j , α0,j , βm−1,j ,
βm−2,j , . . . β1,j , β0,j ] of an individual j of the BSA/PSO.
The output ŷaj (k) is the response of the estimated model
(8, 9) in face of a(k), when the coefficients of Ge(z) are
xj . Then, the fitness fj of each individual j is obtained
comparing ŷaj (k) with ya(k), according to Eq. 10:

fj =

N∑
k=0

(ya(k) − ŷaj (k))2

N
, (10)

wherein N is the number of samples that exist dur-
ing the monitoring period T of ya(k). Note that,

if no other inputs – perturbation or noise – occur
in the NCS during T , then min fj = 0 when
[αn,j , αn−1,j , . . . α1,j , α0,j , βm−1,j , βm−2,j , . . . β1,j , β0,j ] =
[αn, αn−1, . . . α1, α0, βm−1, βm−2, . . . β1, β0], i.e. when the
estimated Ge(z) converges to G(z).

An analogy may be established between this Active
System Identification attack and the Chosen Plaintext
cryptanalytic attack [23], wherein a(k) corresponds to
the chosen plaintext, ya(k) represents the ciphertext, the
Eqs. 8 and 9 together correspond to the encryption algo-
rithm, and the actual coefficients [αn, αn−1, . . . α1, α0] and
[βm−1, βm−2, . . . β1, β0] of Ge(z) correspond to the secret
key.

It is worth mentioning that this attack requires the pre-
vious knowledge about the order of the numerator and
denominator of Eq. 9 (n and m, respectively). Using the
analogy with the Chosen Plaintext cryptanalytic attack, it is
equivalent to require the knowledge about the size of the
secret key of the encryption algorithm. In this Active System
Identification attack, the information of n and m is neces-
sary to define the number of dimensions of the search space
of the BSA – or the number of unknown coefficients of G(z)

– which must be set to n + m − 1. Although this is a con-
straint of the attack, this information may be inferred if the
attacker, at least, knows what the attacked plant is and what
type of controller is being used.

7 Results

In Section 7.1, the results obtained by both BSA-based and
PSO-based Active System Identification attacks are ana-
lyzed and statistically refined in order to provide a demon-
stration of the degree of accuracy that the attacker may
obtain with the proposed attack. Additionally, Section 7.2
presents a set of data injection attacks designed based on the
models estimated by the Active System Identification pro-
cess. The purpose of the simulations of these data injection
attacks is to demonstrate how an Active System Identi-
fication attack may contribute for the accuracy of other
sophisticated attacks.

7.1 Active system identification attack

The attacked system, shown in Fig. 3, consists of a
DC motor whose rotational speed is controlled by a
Proportional-Integral (PI) controller. This example is chosen
due to the use of DC motors in a vast number of real world
control systems. Moreover, DC motors has been widely
used in previous works about NCS [3, 7, 14, 18, 19]. It is
noteworthy that the model herein chosen as an example does
not exhaust the potential targets for this attack. NCSs com-
posed by another kinds of LTI devices may also be a target.
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However, it must be taken into account that the computa-
tional cost of the attack, when launched over different LTI
systems, may vary with the number of their unknown coef-
ficients – i.e. the number of dimensions of the search space
explored by the optimization algorithms (BSA or PSO, in
this paper).

The PI control function C(z) and the DC motor trans-
fer function P(z), obtained from [14], are represented by
Eqs. 11 and 12, respectively:

C(z) = 0.1701z − 0.1673

z − 1
, (11)

P(z) = 0.3379z + 0.2793

z2 − 1.5462z + 0.5646
. (12)

Thereby, the transfer function to be identified G(z) –
which is also the open-loop transfer function of the NCS –
is defined by Eq. 13:

G(z) = C(z)P (z) = g1z
2 + g2z + g3

z3 + g4z2 + g5z + g6
, (13)

wherein g1 = 0.0575, g2 = −0.0090, g3 = −0.0467, g4 =
−2.5462, g5 = 2.1108 and g6 = −0.5646. The sample rate
of the system is 50 samples/s and the set point r(k) is an
unitary step function. Network delay and packet loss are not
taken into account in the simulations of this paper.

The structure of the Eqs. 11 and 12, and so the structure
of Eq. 13, are previously known by the attacker once that, as
a premise, it is known that the target is an NCS that controls
a DC motor using a PI controller. Thus, in these simula-
tions, the goal of the Active System Identification attack is
to discover g1, g2, g3, g4, g5 and g6.

The chosen attack signal a(k) is a discrete-time unit
impulse (14):

a(k) =
{

1 if k = ka;
0 otherwise,

(14)

wherein ka is the single sample in which the attacker inter-
fere in the system by adding 1 to the feedback stream. Note
that the discrete-time unit impulse is chosen to excite the

NCS due to its short active time – i.e. one sample –, which
increases the stealthiness of the attack in the time domain.
Moreover, the Fourier transform of an impulse function has
an uniform – flat – density in the frequency domain , which
is easily masked by the frequency distribution of a white
Gaussian noise. This fact also increases the stealthiness of
the attack signal in the frequency domain.

The effectiveness of the Active System Identification
attack is evaluated with and without noise. To simulate the
noise, w(k) ∼ N(μ, σ) is inserted in the NCS as indi-
cated in Fig. 3. Note that w(k) is a white Gaussian noise
wherein N is a normal distribution, μ is its mean and σ is
its standard deviation. In all simulations, the mean is μ = 0
rad/s. The standard deviation is adjusted in such manner
that 95% of the amplitudes of w(k) are within ±I (I = 2σ ).
The simulations consider four different noise intensities I :
0 (no noise), 0.0025 rad/s, 0.005 rad/s and 0.01 rad/s.
For each noise intensity I , 100 different simulations are exe-
cuted using each of the mentioned metaheuristics. In each
simulation, the feedback stream is captured by the attacker
during a period T = 2s (100 samples), starting at sample
ka + 1.

The attack model was implemented in MATLAB, where
the simulations were carried out. The SIMULINK tool was
used to compute ya(k) and ŷaj (k) – the latter, for each
individual j of the optimization algorithms. The parame-
ters of the BSA and PSO described in Sections 4 and 5,
respectively, were empirically adjusted through a set of sim-
ulations without noise (I = 0). These parameters are then
used for all noise conditions. In the BSA-based attacks, the
parameter η is set to 1. In the PSO-based attacks, the fol-
lowing parameters configuration is used: ω = 0.4, ϕ1 =
ϕ2 = 1.5 and δ = 0.1. In both algorithms, the population
is set to 100 individuals and the limits of each dimension of
the search space are [−10, 10]. In each simulation, the BSA
and the PSO are executed for 4500 iterations.

Let Su be the solution of an attack simulation u, and
gi,u the value estimated for the ith coefficient of G(z) in
the uth attack simulation. Each attack simulation provides
a solution Su = [g1,u, g2,u, g3,u, g4,u, g5,u, g6,u] contain-
ing estimated values for the six coefficients of G(z). In [6],
for a given coefficient gi of G(z), if an estimated value gi,u

is beyond two standard deviation from the mean, then gi,u

is considered an outlier and eliminated from the set of val-
ues found for gi . After that, the estimated value of each
gi is assumed to be the mean of the remaining gi,u. How-
ever, in the present work, to improve the accuracy of the
estimated model, this statistical refinement is modified. In
this paper, if an estimated value gi,u is beyond two standard
deviation from the mean, the whole solution Su (to which
gi,u belongs) is considered as an outlier and eliminated from
the set of solutions. Doing so, the estimated value of each
gi is assumed to be mean of all gi,u contained in the set of
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Table 2 Mean estimated coefficients of G(z) after the statistical refinement

Mean of the coefficients statistically refined in [6] Mean of the coefficients statistically refined in the present work

Noise ( ) )( )( )( )( )( )( )( )(1 10 2
2 10 3

3 10 2
4 5 6 10 3

1 10 2
2 10 3

3 10 2
4 5 6 10 1

BSA 0 5.7756 9.3337 4.6261 2.5431 2.1063 5.6319 5.7750 9.3128 4.6268 2.5431 2.1063 5.6319

0.0025 5.7736 9.2001 4.6301 2.5428 2.1058 5.6305 5.7714 9.2299 4.6294 2.5428 2.1059 5.6306

0.005 5.7826 9.0411 4.5528 2.5345 2.0937 5.5924 5.7628 8.6145 4.5870 2.5350 2.0944 5.5931

0.0075 5.8215 0.7908 3.4930 2.4023 1.8911 4.7857 5.7843 4.0346 4.1886 2.4578 1.9761 5.1824

0.01 5.8561 20.7982 2.5371 2.0906 1.3852 3.1095 5.8763 15.6817 2.6009 2.1322 1.4738 3.4164

PSO 0 5.8799 10.6784 4.4361 2.5341 2.0940 5.5989 5.8799 10.6784 4.4361 2.5341 2.0940 5.5989

0.0025 5.8987 19.7038 2.1653 2.0568 1.3567 2.9982 5.8987 19.7038 2.1653 2.0568 1.3567 2.9982

0.005 5.9148 28.7309 1.6431 1.9242 1.1493 2.2507 5.9148 28.7309 1.6431 1.9242 1.1493 2.2507

0.0075 5.9357 34.5026 1.2472 1.8347 1.0102 1.7552 5.9357 34.5026 1.2472 1.8347 1.0102 1.7552

0.01 5.9288 43.4950 0.6878 1.7036 0.8073 1.0370 5.9288 43.4950 0.6878 1.7036 0.8073 1.0370

remaining Su. Table 2 presents a summary that compares the
results achieved in this work with the results obtained in [6],
in both BSA-based and PSO-based attacks. The most accu-
rate results are highlighted. Note that in all cases the most
accurate results were achieved by the BSA-based attacks.
According to Table 2, the statistical refinement used in the
present work in general improves the accuracy of the results
obtained by the BSA-based attacks. This improvement is
more evident in Section 7.2, where the performance of
other attacks designed with the data presented in Table 2 is
analyzed. Note that the results shown in Table 2 for the PSO-
based attacks are the same as the results of [6]. This occurs
because in PSO-based attacks all outlier coefficients belong
to solutions wherein all other coefficients are also outliers –
i.e. beyond two standard deviations from their means. Thus,
in the PSO-based attacks, the whole solution Su which con-
tains an outlier is eliminated from the set of solutions even
when the statistical refinement of [6] is applied.

The mean estimated values of g1, g2, g3, g4, g5 and g6,
statistically refined as proposed in this work, are shown in
Fig. 4 with a Confidence Interval (CI) of 95%, for differ-
ent values of noise intensity I . Note that the actual values of
these coefficients are also depicted in Fig. 4. In this Figure,
it is possible to compare the results achieved by the BSA-
based and the PSO-based attacks. According with Fig. 4, it
is possible to verify that, for all coefficients of G(z), both
the BSA-based and PSO-based attacks present good accu-
racy when I = 0 (i.e. without noise, the mean values of
the estimated coefficients are close to their actual values).
Despite the similar and accurate performance of the two
metaheuristics without noise, it is possible to state that the
BSA presented a slightly better performance than the PSO
in this noise condition (I = 0), specially with regard to the
coefficients g1, g2 and g3. Note that the performance of the
PSO-based attack is degraded when noise is added to the
system. This performance degradation of the PSO occurs

for I ≥ 0.0025 and tends to be more expressive with the
increase of I . On the other hand, it is possible to verify in
Fig. 4 that the BSA-based attack still present good accuracy
for noise intensities up to 0.005. When I ≤ 0.005, all coef-
ficients estimated by the BSA-based attack present a mean
close to their actual values and with a small CI. When I ≥
0.0075, the performance of the BSA-based attack decreases
with the raise of noise in a more expressive way, being at its
worst when I = 0.01. In general, among the six coefficients
of G(z), the estimation of g2 presents the lowest accuracy
for both BSA-based and PSO-based attacks. This behavior
is attributed to a lower sensitivity that the output ŷa(k) of
the estimated system has to the variation of g2. This means
that, in this problem, fj grows faster for errors in g1, g3, g4,
g5 and g6 than for errors in g2, making the BSA population
converge less accurately in dimension g2.

The performance of the attacks can also be evaluated in
the k domain through the examples provided in Fig. 5, con-
sidering two different intensities of noise: without noise, in
Fig. 5a; and with I = 0.005, in Fig. 5b and c. Figure 5b
shows that, without noise, the response of the system esti-
mated by both BSA-based and PSO-based attacks matches
the response of the actual system with high accuracy. In
Fig. 5b, even with a noise intensity of I = 0.005, the
response of the system estimated by the BSA-based attack
still matches the response of the actual system, indicating
the convergence of Ge(z) to G(z) and ratifying the statistics
shown in Fig. 4 for the BSA with such noise intensity. On
the other hand, when applying the PSO-based attack with
the same noise, as exemplified in Fig. 5c, there is a slight
difference between the response of the estimated system
and the response of the actual system, produced by the mis-
match of the estimated coefficients in the presence of such
noise intensity. This exemplifies the worse performance of
the PSO-based attacks, when compared with the BSA-based
attacks, in face of the same noise intensities.
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To synthesize the error of each solution found, |Eg| is
computed according to Eq. 15:

|Eg| =
√√√√ 6∑

i=1

(gi − gei)
2, (15)

wherein gi and gei are the actual and estimated coefficients
of the attacked system, respectively, and i is the index
number of each of the six coefficients of the model being
assessed. Note that |Eg| is the module of a vector composed
by the error of each coefficient found, which represents
another metric to evaluate the performance of each attack.

The histograms of |Eg| are presented in Fig. 6, consider-
ing the mentioned noise intensities. It graphically shows
that higher values of |Eg| tend to appear more frequently
as the noise intensity grows, in both BSA-based and PSO-
based attacks. However, based on these histograms it is
possible to verify that the mode of |Eg| is close to zero for
all noise intensities, using both metaheuristics. This indi-
cates that, even in the presence of noise, most solutions
present low deviations from the actual coefficients. Note
that, for all noise intensities, the BSA-based attacks pro-
vide more results in the modal class – where |Eg| is close
to zero – than the PSO-based attacks. Moreover, the worst
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Fig. 6 Histograms of |Eg | for different noise intensities

results of the BSA-based attacks have an |Eg| of about
4 when I ≥ 0.005, while the worst results of the PSO-
based attacks have an |Eg| > 20 when I ≥ 0.0025.

These results, together with the statistics shown in Fig. 4,
indicate that the performance of the Active System Identi-
fication attack is better when implemented with the BSA
than with the PSO. It is worth mentioning that, to achieve
these results, the BSA-based attacks consumed an average
processing time (6.68 ± 0.47)% higher than the PSO-based
attacks.

In general, the outcomes indicate that, for the same
amplitude of attack signal a(k), the performance of the
attack tends to decrease as the noise intensity increases (i.e.
when the attack signal-to-noise ratio decreases). The min-
imum length of the attack signal in terms of number of
manipulated samples (i.e. one single sample) improves the
stealthiness of the attack in the k domain. On the other hand,
a minimum attack signal-to-noise ratio required to guaran-
tee the performance of this attack is a drawback with respect
to its stealthiness, from the attacker’s point of view. This
issue makes more difficult for the attacker to approximate
the amplitude of a(k) to the noise amplitude or to noise val-
ues that have higher probability to occur, which should help
to increase the stealthiness of the attack signal in terms of
amplitude.

7.2 Data injection attack

The proposed Active System Identification attack is an use-
ful tool – from the attacker point of view – for the design
of other sophisticated and accurate attacks. To demonstrate
this capability, this section presents a set of data injec-
tion attacks, all designed based on the models estimated
in Section 7.1 by the Active System Identification attacks.
These data injection attacks aim to cause an overshoot of
50% on the rotational speed of the DC motor during its
transient response. As mentioned in Section 1, this physi-
cally covert interference [7] may cause stress and possibly
damages to the plant, reducing its MTBF.

Table 3 Values of a, b and the overshoot obtained with the data injection attacks

Noise (I ) during the system identification attack

0 0.0025 0.005 0.0075 0.01

(I) a 0.25316 0.25485 0.25523 0.58959 0.53297

b 0.74679 0.74515 0.74477 −0.07354 0.5911

Overshoot 49.53% 49.49% 49.65% (*) (*)

(II) a 0.25318 0.25286 0.2551 0.27652 0.31407

b 0.74682 0.74714 0.7449 0.72348 0.68593

Overshoot 49.52% 49.78% 49.67% 46.91% 42.42%

(III) a 0.26801 0.32328 0.32816 0.33074 0.33204

b 0.73199 0.67672 0.67184 0.66926 0.66796

Overshoot 47.43% 40.70% 40.37% 40.30% 40.38%

(*) The inaccuracy of the data injection attack caused a collateral effect: an expressive steady state error in the motor’s rotational speed
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Fig. 7 Data injection attack
using models estimated by a
BSA-based attack and refined as
in [6]
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Aware of the estimated model of the NCS, the attacker –
acting as an MitM – executes the attack function defined by
Eq. 16:

y′(k) = ay(k − 1) + by′(k − 1). (16)

wherein a and b are adjusted through a root locus analysis,
considering an estimated open-loop transfer function. Note
that the attacker is still on the NCS’s feedback stream once
that, according with Fig. 3, y(k) is the sensor’s output and
y′(k) is the controller’s input.

The models used to design these data injection attacks are
built with the mean estimated coefficients shown in Table 2.
Note that a and b have to be adjusted for each estimated
model which, in turn, vary with the noise condition, the used
optimization algorithm and the applied statistical refine-
ment, as shown in Table 2. The values of a and b used in
each data injection attack are shown in Table 3, as well as the
respective overshoots achieved with the attack. In Table 3,
the row (I) contains the data injection attacks designed
with the models estimated by the BSA-based attacks using
the statistical refinement of [6]. Row (II) contains the data
injection attacks designed with the models estimated by the
BSA-based attacks using the statistical refinement proposed
in this work. As described in Section 7.1, the models esti-
mated in this work and in [6] by the PSO-based attacks do
not change due to the statistical refinement method. Thus,

in Table 3, the attacks designed with the models estimated
by the PSO-based attacks – statistically refined by either of
the two methods – are contained in row (III).

Examples of the data injection attacks shown in Table 3
are depicted, in the time domain, in Figs. 7, 8 and 9. In these
figures, the curves named as estimated attack represent the
results predicted by the attacker when applying the designed
attack function (16) on the estimated model – i.e. the model
provided by the Active System Identification attack. On the
other hand, the curves referred as actual attack represent
the response of the actual system in face of the same attack
function (16). In other words, the curve estimated attack
is the result achieved in a first moment, during the design
stage of the attack, and the curve actual attack is the result
obtained in a second moment, when the designed attack is
launched over the actual system.

In rows (I) and (II) of Table 3, it is possible to see that,
when 0 ≤ I ≤ 0.005, the data provided by the BSA-based
Active System Identification attacks produce accurate data
injection attacks, either with the statistical refinement of [6]
or the statistical refinement proposed in the present work.
In these data injection attacks, all overshoots lie between
49.49 and 49.78% – i.e. close to the goal of 50%. However,
for 0.0075 ≤ I ≤ 0.01, the data injection attacks of row
(I) – i.e. using the models estimated by BSA-based attacks
and refined as in [6] – produce a collateral behavior on the
attacked system. They cause expressive steady state errors
in the motor’s rotational speed, as indicated, for instance,

Fig. 8 Data injection attack
using models estimated by a
BSA-based attack and refined as
herein proposed
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Fig. 9 Data injection attack
using models estimated by a
PSO-based attack and
statistically refined
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in Fig. 7b. On the other hand, for 0.0075 ≤ I ≤ 0.01,
when the statistical refinement proposed in the present work
is applied to the BSA-based Active System Identification
attacks, the estimated models eliminate the mentioned col-
lateral effects on the data injection attacks. This can be seen
in the example shown in Fig. 8b, for I = 0.0075, where
the response of the actual attack is close to the response
of the estimated attack, without a steady state error and
with an overshoot of 46.91%. The reason for these different
performances is explained by the impact of the statistical
refinement in the root locus analysis. When only an outlier
coefficient gi,u is eliminated – as in [6] –, instead of elim-
inating the whole solution Su from where it belongs – as
herein proposed –, the roots of the open-loop transfer func-
tion suffer a distortion. For instance, in these simulations,
when 0.0075 ≤ I ≤ 0.01, the statistical refinement of [6]
modifies a pole of G(z) that should be 1. This pole exists
due to the use of the PI controller – a premise known by the
attacker – and, when modified, influences the adjustment of
a and b of Eq. 16. On the other hand, by eliminating the
whole solution Su containing an outlier coefficient gi,u, the
mean estimated coefficients of G(z) preserve the interde-
pendencies necessary to produce less distorted roots. Note
that, as shown in row (III) of Table 3 and in Fig. 9, the PSO-
based attacks produce less accurate data injection attacks
than the BSA-based attacks statistically refined as proposed
in this work. It is worth mentioning that the data injection
attacks designed with the models estimated by the PSO-
based attacks do not present any collateral effects, using any
of the two statistical refinement methods. In both cases, as
explained in Section 7.1, the whole solution Su containing
an outlier is eliminated from the set of solutions, producing
less distortion in the roots of G(z).

Moreover, with the exception of the attacks of row (I)
for 0.0075 ≤ I ≤ 0.01, all data injection attacks achieved
satisfactory results. However, it is shown that the accuracy
of the data injection attack, in general, decreases as the noise
intensity increases during the Active System Identification
attack.

8 Conclusion

The present work defines and proposes an Active System
Identification attack that may be launched over NCSs. The
proposed attack is implemented based on two bio-inspired
algorithms: the BSA and the PSO. This work demonstrates
that the proposed Active System Identification attack is
capable to accurately support the design of other sophisti-
cated cyber-physical attacks in NCSs. The results show that
the best performance, in general, is achieved by the BSA-
based attacks when statistically refined with the method
proposed in this paper, specially in the presence of the
higher noise intensities.

The capability of the attack to achieve its goal is demon-
strated even when: no meaningful information is passing
through the NCS’s communication links (i.e. when the sys-
tem had achieved a steady state); the attacker intercepts the
communication of the NCS at a single point; and the NCS
is noisy.

For future work, we plan to investigate possible tech-
niques to improve the performance of the attack in face
of higher noise intensities. Also, we plan – and encour-
age other researchers – to investigate countermeasures to
identify and prevent Active System Identification attacks.

Last, but not least, we plan to improve proposed attack to
make it capable to identify systems with uncertain number
of unknown coefficients. Preliminary results indicate that,
when the number of coefficients is smaller than in the actual
system, the algorithm is not able to make the estimated out-
put ŷa(k) converge to the known ya(k). In this case, it is
not possible to have min fj = 0, and the global minimum
values found by the metaheuristics tends to be high. From
the point of view of the attacker, this may be an indicative
that the number of coefficients – or dimensions of the meta-
heuristic – have to be increased, in order to allow ŷa(k) to
match ya(k). On the other hand, when the number of coef-
ficients is higher than in the actual system, it is possible to
have min fj ≈ 0. However, simulations indicate that, even
when min fj ≈ 0, the exceeding coefficients does not tend
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to 0. In this case, the analysis to eliminate the unnecessary
coefficients is not straightforward and still has to be devel-
oped, in order to make the algorithm robust to uncertainty
with respect to the number of unknown coefficients.
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