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Abstract Optical underwater images often demonstrate low
contrast, heavy scatter, and color distortion. Contrast enhance-
ment methods have been proposed to solve these issues.
However, such methods typically do not consider high-level
inhomogeneous scatter removal and do not focus on real-
scene color restoration. We proposed a hierarchical transmis-
sion fusion method and a color-line ambient light estimation
method for image de-scattering from a single input image. Our
proposed method can be summarized into three steps. Firstly,
we take the dark channel as prior information to estimating the
preliminary transmission and ambient light. In the second
step, we then use color lines to estimate the refined ambient
light in selected patches. The refined transmission is obtained
by hierarchical transmission maps using maximum local
energy-based fusion at different turbidity levels. We then use
a joint normalized filter to obtain the final transmission.
Finally, a chromatic color correction method and de-blurring
algorithm are used to recover the scene color. Experimental
results demonstrate that the accurate estimation of the depth
map and ambient light by the proposed method can recover
visually appealing images with sharp details.

Keywords Ocean optics . De-scattering . Image
enhancement . Color correction

1 Introduction

Underwater optical cameras are used to capture images in
unfamiliar ocean environments. The captured underwater im-
ages often suffer from low contrast, color distortion, and
heavy noise. For underwater images, the different absorption
rate for light with different wavelengths causes color shifting,
the forward-scattering leads to blurring, backward-scattering
effect limits the contrast, and the artificial light causes non-
uniform illumination. Consequently, it is necessary to improve
the quality of underwater images.

In recent years, underwater image restoration has been
studied by many researchers, and many effective restoration
methods have been proposed. These methods can be divided
into hardware and non-hardware-based approaches.
Hardware-based approaches require special equipment, such
as computational imaging [1], range-gated imaging [2], and
stereo imaging [3] equipment.

1.1 Imaging methods

1.1.1 Computational imaging

Schechner et al. [1] used a polarization filter attached to a
camera to restore images taken at significantly different scene
distances. Treibitz et al. [4] proposed a fluorescence light-
based imaging method to eliminate scatter. However, these
methods cannot attenuate the transmission of radiance through
polarization filters, particularly for time-variations that affect
visibility and illumination conditions.

1.1.2 Range-gated imaging

Tan et al. [2] proposed a sample plot of the timing of a range-
gated imaging system to capture images in turbid water.
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Ouyang et al. [5] proposed a pulsed laser line scan imaging
system for underwater imaging. However, range-gated imag-
ing methods are easily affected by sediment and the power of
the laser. In addition, processing images with range-gated im-
aging methods is time consuming.

1.1.3 Stereo imaging

Martin et al. combined a stereo matching and light attenuation
model to recover visibility under water [3]. Lee et al. proposed a
stereo image de-hazing method that used a stereo image pair to
estimate scattering parameters [6]. However, obtaining a high
quality depth map with stereo matching is difficult because the
input images are significantly distorted due to scattering.

Non-hardware-based approaches have been proposed to
overcome the limitations of hardware-based approaches.
Non-hardware-based approaches use only digital signal pro-
cessing tools, such as histogram equalization [7, 8], statistical
modeling [9, 10], and unsharp masking [11], to enhance un-
derwater images.

1.2 Image processing methods

1.2.1 Image enhancement

Garcia et al. [7] proposed local histogram equalization to ad-
dress non-uniform lighting and haze. Zuiderveld et al. [8]
proposed contrast limited adaptive histogram equalization to
adjust the target region according to interpolation between the
histograms of neighboring regions. However, local equaliza-
tion is very time consuming and causes additional noise.

1.2.2 Image restoration

The physical based image restoration methods are also studied
in recent years. Lu et al. proposed the physical based model to
restore the underwater images, such as physical wavelength
[12], spectral characteristics [13].

1.3 Recognizing methods

1.3.1 Statistical modeling

Fattal [9] designed a color-lines method to estimate the turbid-
ity of haze, and then used a Markov Random Field model to
recover clean images. He et al. proposed using a dark channel
prior to estimating the depth map. Then, they employed soft
matting to refine the depth map and obtain clear images [10].
The subsequent image enhancement resulted in regional con-
trast stretching that could cause halos or aliasing.

1.3.2 Unsharp masking

Unsharp masking improves images by emphasizing high-
frequency components [11]. Although this method is easy to
implement, it is very sensitive to noise and causes digitization
effects and blocking artifacts.

All of the abovementioned methods can improve the qual-
ity of underwater images. However, an integrated underwater
image restoration method has not yet been developed.
Moreover, most physical imaging models that attempt to im-
prove image quality function according to a simple assump-
tion, i.e., parameters are constant; thus, they can only remove
homogeneous scatters.

In this paper, we propose an underwater light propagation
model and a corresponding restoration method to improve the
quality of underwater images. The proposed imaging model is
considered the effects of scattering, absorption, and blurring.
We estimate the scattering coefficient using color histogram
distance (CHD). Then, we employ hierarchical transmission
fusion to refine the transmission. After estimating scene radi-
ance, we use a spectrometer to estimate the absorption rate and
recover the real scene color. Finally, a clean image is obtained
through de-blurring.

The reminder of this paper is organized as follows.
Section 2 reviews related work. Section 3 describes the pro-
posed underwater light propagation model and image restora-
tion method. Section 4 presents a simulation evaluation of the
proposed approach and experiments using real-world under-
water images. Finally, Section 5 summarizes the paper and
describes future research.

2 Related works

Many underwater image contrast enhancement methods have
been proposed in recent years. Bazeille et al. proposed an
image preprocessing scheme to enhance images captured in
turbid water [14]. This method uses contrast enhancement,
anisotropic filtering, and wavelet filtering to recover an under-
water scene. However, this method causes color distortion.
Nicholas et al. [15] improved the dark channel prior and
graph-cut method to refine the transmissionmap. This method
achieves better results for low turbidity underwater images.
However, using graph cuts is time consuming. Chiang et al.
[16] considered the effects of variations in wavelength on
underwater imaging and obtained a reconstructed image using
a dark channel prior. However, the piecewise function for
estimating the transmission map and the use of constant depth
information for color correction cause the scatters residues and
color distortion. Ancuti et al. [17] used an exposed fusion
method in a turbid medium to reconstruct a clear image.
This method also performs well for processing images in
low turbidity water. However, it is ineffective for images
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captured in highly turbid water and does not deal with non-
uniformly distributed scatter. Galdran et al. [18] proposed a
red channel-based underwater image restoration method. This
method assumes that the red color channel fades quickly in
ocean water. However, according to previous work, red color
does not always fade faster than other colors [19]. In turbid
water or in places with high plankton concentration, red light
may transmit better than blue light. Thus, Lu et al. proposed an
underwater dual-dark channel prior [13]. Lu’s work employs
the red and blue channels to calculate a transmission map;
however, a locally adaptive cross filter may cause additional
noise. In addition, this method cannot remove non-uniform
scatter. Emberton et al. [20] proposed a hierarchical rank-
based veiling light estimation method to estimate ambient
light. This method can avoid mistaking bright objects (e.g.,
bubbles) for ambient light in water. However, this method is
time consuming and cannot be employed directly in underwa-
ter vehicles. Lu et al. [12] proposed a robust atmospheric light
estimation method for de-hazing. This method first removes
highlights (e.g., flickers and bubbles) in the image and then
uses the underwater dark channel prior for de-hazing.
Codevilla et al. [21] evaluated multiple feature detectors in
an underwater environment relative to varying turbidity.
Regrettably, image restoration methods were not mentioned
in this work. Gibson et al. [22] considered noise, scattering,
and blurring in imaging models. However, they relied on a
contrast enhancement turbulence mitigation method, which
does not consider many characteristics of water.

In this study, we attempt to address non-uniform scatter and
blurring caused by sensor movement. In the proposed underwa-
ter imaging model, we consider scatter effects, light absorption,
and motion blur. We also propose methods to estimate the scat-
ter coefficient, color distortion coefficient, and transmission
map. The following sessions show the details for processing.

3 Proposed method

3.1 Imaging model

The Koschmieder model [19], which describes the atmospher-
ic effects of weather on an observer, is used in the proposed
method. In turbid water, radiance from a scene point will at-
tenuate in the line of sight and scatter ambient light towards
the observer (Fig. 1). In addition, simply operating a camera
typically results in blurring. Therefore, the Koschmieder mod-
el has been adapted for underwater imaging conditions. The
adapted model can be expressed as

Ic ¼ I∞c zð ÞρT dð Þ þ I∞c zð Þ 1−T dð Þð Þ þ n ð1Þ
where transmission map T(d) = e−β(λ)d,I∞c zð Þ is the ambient
light intensity at depth z, ρ is the normalized radiance of a

scene point, d is the distance from the scene point to the cam-
era, β(λ)is the total nonlinear beam attenuation coefficient
with wavelength λ, n is the noise, and c is the color channel.
The ambient illumination at depth z is subject to light attenu-
ation in the following form

I∞c zð Þ ¼ H* αI0ce
−β λð Þz

� �
ð2Þ

where I0c is the atmospheric intensity at the surface of the
water, H is the degradation matrix, and α is the transmis-
sion coefficient at the surface of the water. Most previous
research [16, 18, 19] [38] has assumed that the total non-
linear beam attenuation coefficient, normalized radiance,
and transmission coefficient are constant. In real ocean
waters, the scattering and absorption coefficients are
non-negligible. Therefore, these coefficients must be ap-
proximated from the wavelength. The proposed pipeline
is shown in Fig. 2. In the following sections, we introduce
the information required to solve Eq. (1).

3.2 Estimating coefficients

3.2.1 Scattering coefficient β(λ) estimation

To estimate the scattering coefficient, we use CHD to measure
the amount of scatter between patches at different positions.
The CHD ismodeled as an ellipsoid characterized by a sample
mean μ and a sample covariance∑. The mean of a scattered
patch is scaled by transmission and shifted by ambient light
using Eq. (1).

μIc ¼ e−β λð Þd ⋅μI∞c zð Þρ þ 1−e−β λð Þd
� �

⋅I∞c zð Þ ð3Þ

Fig. 1 Underwater imaging model
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The covariance is scaled by squared transmission as follows.

∑Ic ¼ e−β λð Þd
h i2

⋅∑I∞c zð Þρ ð4Þ

The rectangle and volume of a cluster imply how much
haze is present in a patch with respect to distance. Since scat-
tering is homogeneous in a small patch, the size of two clusters
is only dependent on the corresponding distance. The attenu-
ated variances of two patches in a circular window are de-
scribed as follows:

∑Ic;1 ¼ t21⋅∑I∞c zð Þρ ð5Þ
∑Ic;2 ¼ t22⋅∑I∞c zð Þρ ð6Þ

where t = e−β(λ)d. Thus, the estimated scattering coefficient
β(λ) is computed using the relationship of transmission with
distance as follows:

β λð Þ ¼ ln t21=t
2
2

� �
2jd1−d2j

ð7Þ

where d1 and d2 are the distance of the scene points from the
camera. The series transmissions of the entire scattered image
can be simply calculated as follows:

Ti dið Þ ¼ e−βi λð Þdi ; i∈ 1; 2;⋯;Nf g ð8Þ
where i is the number of circular windows in the scattered
image. We obtain transmissions for different levels of
scatter. However, each transmission map corresponds to
each scatter level; thus, a final clear scene transmission
map is required. In the following sections, we propose a
fusion method to fuse different transmission maps to a
single clean transmission map.

3.2.2 Hierarchical transmission fusion

The transmission maps can be considered different fo-
cused images. We introduce the multi-frame fusion meth-
od to obtain a final clean transmission map. In a frequen-
cy domain, such as wavelet and curvelet transform do-
mains, transmission maps are decomposed to low and

high frequencies. Thus, the criteria used to select appro-
priate low and high-frequency coefficients are important.
In this paper, wavelet transform is applied to two images
to obtain the coefficients. Then, the coefficients are proc-
essed at low and high frequencies prior to fusing the im-
ages. Finally, a clear transmission map is obtained by
inverse wavelet transform.

We use maximum local energy [23] to measure low
frequency coefficients. The maximum energy (in a local
3 × 3 region) of two source images is selected as the
output. Due to human visual perception characteristics
and the relationship of decomposition of local correlation
coefficients, the statistical characteristics of neighbors
should be considered. Therefore, the statistical algorithm
is based on a 3 × 3 sliding window. The energy is de-
scribed as follows:

E j m; nð Þ ¼ ∑
m0∈M ;n0∈N

L mþ m
0
; nþ n

0
� �

⋅ f 0ð Þ2
j mþ m

0
; nþ n

0
� �

ð9Þ

where L is the local filtering operator, M and N represent
the scope of the local window, j is the number of different

level transmission maps, f 0ð Þ
j

**
� �

represents the low fre-

quency coefficients, and m’ and n’ are variables.
Local energy (LE) is expressed as follows:

El;k
j m; nð Þ ¼ L1*f

0ð Þ2
j m; nð Þ þ L2*f

0ð Þ2
j m; nð Þ þ⋯

þ LK*f
0ð Þ2
j m; nð Þ ð10Þ

where L1, L2,…, LK-1 and LK are the filter operators in K
different directions, and l and k are the scale and direction of
the transform, respectively.

L1 ¼
−1 −1 −1
2 2 2
−1 −1 −1

2
4

3
5; L2 ¼

−1 2 −1
−1 2 −1
−1 2 −1

2
4

3
5; L3

¼
−1 0 −1
0 4 0
−1 0 −1

2
4

3
5 ð11Þ

Fig. 2 Example of the proposed
approach to recover images in
non-uniform turbid water
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Here, Cl;k
j;L m; nð Þ, Cl;k

jþ1;L m; nð Þ, and Cl;k
L m; nð Þ denote the

low frequency coefficients of the source and fused images.
The proposed local energy-based fusion rule can be expressed
as follows.

Cl;k
L m; nð Þ ¼ Cl;k

j;L m; nð Þ; if El;k
j m; nð Þ≥El;k

jþ1 m; nð Þ
Cl;k

jþ1;L m; nð Þ; if El;k
j m; nð Þ < El;k

jþ1 m; nð Þ

(

ð12Þ

Assuming that the image details are contained in the high-
frequency coefficients in the multi-scale domain, typically, the
fusion rule is a maximum-based rule that selects high-
frequency coefficients with the maximum absolute value.
Recently, measurements, such as energy of gradient, spatial
frequency, Tenengrad, Laplacian energy, and sum-modified-
Laplacian (SML), have been used. In this study, we use SML
to determine the high-frequency coefficients.

A focus measure is defined as a maximum for the focused
image. Therefore, for multifocal image fusion, the focused
image areas of the source images must produce maximum
focus measures. Here, let f(x,y) be the gray level intensity of
pixel (x,y). SML [24] is defined as follows:

Sl;kj m; nð Þ ¼ ∑
M

m0¼−M
∑
N

n0¼−N
∇2
s f mþ m

0
; nþ n

0
� �

; for∇2
s f m; nð Þ≥T

ð13Þ
where

∇2
s f m; nð Þ ¼ j2 f m; nð Þ− f m−1; nð Þ− f mþ 1; nð Þj

þ j2 f m; nð Þ− f m; n−1ð Þ− f m; nþ 1ð Þj
ð14Þ

Here, l and k are the transform scale and direction, respec-
tively, T is a discrimination threshold value, M and N deter-
mine the window of size (2M + 1) × (2 N + 1), and m’ and n’
are variables.

Let Cl;k
j;H m; nð Þ, Cl;k

jþ1;H m; nð Þ, and Cl;k
H m; nð Þ denote the

high-frequency coefficients of the source and fused images.
The proposed SML-based fusion rule can be expressed as
follows:

Cl;k
H m; nð Þ ¼ Cl;k

j;H m; nð Þ; if Sl;kj;H m; nð Þ≥Sl;kjþ1;H m; nð Þ
Cl;k

jþ1;H m; nð Þ; if Sl;kj;H m; nð Þ < Sl;kjþ1;H m; nð Þ

(
ð15Þ

where l and k are the transform scale and direction, respective-
ly. After inverse frequency domain transformation, we obtain
the clean transmission map T(d).

3.2.3 Scene radiance ρ recovery

Assume that the image is captured under ideal conditions
without noise and scatter. Thus, the non-linear estimation
problem can be written as follows.

I Ic ¼ I∞c zð Þ 1−T dð Þð Þ; ∀I Ic≤ I
I
1% ð16Þ

We can use a region approach to minimize the above eq.
[25]. Onceβ(λ),I∞c zð Þ, and T(d) are estimated, the scene radi-
ance recovery of all image pixels is calculated as follows.

ρ ¼ 1þ Ic
I∞c zð Þ−1

� �
T−1 dð Þ ð17Þ

3.3 Color distortion coefficient α estimation

We take irradiance measurements with an upward looking
spectrometer at the surface and beneath the water at a mea-
sured depth. Thus, we can derive the attenuation coefficientc-
a = a + b, where athe absorption coefficient and b is the scat-
tering coefficient at depth z. After determining the attenuation
coefficient, we can estimate the incident irradiance at any
depth ε using the Lambert-Beer equation:

Eε ¼ Ese−cz ð18Þ
where Es is the irradiance at the surface of the water. The
chromatic transfer function τ(λ), which describes how light
from the surface of the water changes with depth, can be
calculated as follows.

τ λð Þ ¼ Es λð Þ
Eε λð Þ ð19Þ

Fig. 3 Experimental setup (OLYMPUS uTough 8000 underwater
camera, INON LE700-W/S LED lights, and SLIK SBH-320DS PTZ)
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Using the spectral response of the RGB camera, we convert
the chromatic function to the RGB domain as follows:

α ¼ ∑
k
τ λð ÞCc λð Þ ð20Þ

where α is the color distortion coefficient, Cc(λ) is the under-
water spectral characteristic function for color band c, and k is
the number of discrete bands of the camera’s spectral charac-
teristic function.

3.4 De-blurring

We use the patch-based de-scattering method; therefore, there
are ringing artifacts and additional noise in the de-scattered
image. Thus, we must use a centralized sparse representation
(CSR) for image de-blurring. Wang et al. [26] reviewed recent
image de-blurring developments, such as non-blind or blind
de-blurring and spatially invariant or variant de-blurring tech-
niques. The authors concluded that the method proposed by

DCP [11] 

and GraphCut [14] WCID [15]

Median DCP [32] -hazing [23]

(a) Clear Image (b) Captured image with turbidity at 100 mg/L (c)

(d) DCP (e) (f ) Color-lines [10] 

(g) (h)Weiner de (i) Expose fusion [16]

(j)Glow and light colors [33] (k)Color attenuation prior [34] (l) Proposed method

Fig. 4 Comparison of
underwater image restoration
methods in a water tank
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Dong et al. [27] overcomes the common issue of non-local
strategies, i.e., the loss of local smoothness. Thus, we use this
method to recover a blurred image.

For a size of
ffiffiffi
n

p � ffiffiffi
n

p
patch xi of the blurred image at

location i, given a PCA dictionaryΦ, which is generated by
[27], each patch can be coded sparsely asxi ≈ Φδi using a
sparse coding algorithm [28]. Then, the blurred image can
be represented sparsely using the set of sparse codes{δi}.
The CSR model is expressed as follows:

δy ¼ argmin
δ

jjy−HΦ∘δjj22 þ ∑
i

2
ffiffiffi
2

p
σ2
n

σi
jjδijj1 þ ∑

i

2
ffiffiffi
2

p
σ2
n

σi
jjθijj1

	 


ð21Þ

where σn is the standard deviation of the additive Gaussian
noise, θi is the i-th element of the SCN signal θ, and σi is the
standard deviations of δi.

4 Experiments and discussion

4.1 Experimental setup

Our experimental setup is shown in Fig. 3. A camera and LED
lights were placed in water. A fluorescent lamp was placed
20 cm from a 180 L glass aquarium. All sides of the aquarium
were covered with black textile to avoid glass reflection. The
objects were placed approximately 30 cm from the front of the
camera. First, we captured a ground truth image without sed-
iment. Then, we increased the turbidity of the water using
deep-sea soil. So, we can achieve a variety of linear scale of
ten turbidity steps ranging from 1 mg/L to 500 mg/L. Most
studies [29, 30] used milk or a mixture of milk and grape juice
to simulate turbid water. This simulation may be appropriate
for natural ocean water; however, deep-sea soil may be much
better for simulating the environment of the sea bottom as
observed by underwater robots.

4.2 Water tank simulation

In this experiment, we added 18 g of deep-sea soil to the water
tank. The deep-sea soil was dropped from the top of the water
tank. Note that deep-sea soil is not distributed homogeneously
or uniformly in water. This can simulate the operational envi-
ronment of an underwater robot. The OLYMPUS camera cap-
tured a non-uniform scattered image, as shown in Fig. 4b.
Then, we used conventional de-scattering methods to process
the captured image.

As shown in Fig. 4, the DCP [10] de-scattering method can
remove some scatter. We used ambient light estimation by
pixel value sorting; therefore, the depth map is incorrect. As

Fig. 5 Comparison of SSIM
values of different restoration
methods

Table 1 Comparative analysis of different underwater de-hazing
methods shown in Fig. 4

Methods SSIM PSNR (dB) Average E

DCP [10] 0.2358 7.41112 0.7732
DCP and Graph-cut [15] 0.6127 16.7131 0.9680
WCID [16] 0.6080 14.6965 0.9682
Color-lines [9] 0.2317 6.79050 0.7428
MDCP [31] 0.6579 17.5511 0.9674
Weiner de-hazing [22] 0.6558 17.4910 0.9753
Expose fusion [17] 0.5786 15.0571 0.9318
Glow and light Colors [32] 0.6290 13.8727 0.8719
CAP [33] 0.6423 17.4624 0.9469
Proposed method 0.6688 17.8928 0.9882
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a result, over de-scattering occurs, and the information of the
lower right corner of the image is lost. Nicholas et al. [15]
improved the DCP method and used GraphCut segmentation
to refine the depth map in each color channel. Figure 4d shows
that, even though post-processing can avoid incorrect depth
map estimation. Chiang et al. [16] proposed a physical imaging
model and a corresponding enhancement method. However,
their method does not consider artificial light and camera char-
acteristics. The depth map also used DCP, which resulted in
incorrect estimation. In 2014, Fattal et al. [9] used the color
linesmethod to estimate the ambient light to achieve successful
de-scattering. However, the roughly estimated depth map can
cause unsatisfactory results (Fig. 4f). The median DCPmethod
was the first applicable de-scattering method for real applica-
tions. However, it is unsuitable for underwater image process-
ing because it does not consider the medium influence. The
Weiner de-hazing method [22] uses aWeiner filter to select the
patch size. However, it selects a fixed patch size for an image
and cannot remove inhomogeneous scatter. Thus, some infor-
mation of the result is missed. The expose fusion enhancement
method [17] was the first method to use HDR technology to

de-haze images. Note that, in many cases, contrast enhance-
ment does not always perform well. In contrast, the proposed
method achieves the best performance for all metrics, as shown
in Table 1. In this paper, we use structural similarity (SSIM),
peak signal to noise ratio (PSNR), and average E [34] for
measuring the image quality, Fig. 5 shows the results of
SSIM with different restoration methods.

(a) Clear Image (b) Image captured with turbidity (100 mg/L) (c) DCP [11]

(d) DCP and Graph-cut [14] (e)WCID [15] (f) Color-lines [10]

(g) Median DCP [32] (h)Weiner de-hazing [23] (i) Expose fusion [16]

( j ) Glow and light colors [33] (k) Color attenuation prior [34] ( l ) Proposed method

Fig. 6 Real-world comparison of
underwater image restoration
methods

Table 2 Comparative analysis of different underwater de-hazing
methods shown in Fig. 6

Methods SSIM PSNR (dB) Average E

DCP [10] 0.6859 15.5703 0.8796
DCP and Graph-cut [15] 0.6474 12.6580 0.9602
WCID [16] 0.6549 10.6580 0.9258
Color-lines [9] 0.6896 17.5041 0.9313
MDCP [31] 0.6622 12.6424 0.9585
Weiner de-hazing [22] 0.6868 17.6007 0.9758
Expose fusion [17] 0.6169 16.9562 0.9159
Glow and light Colors [32] 0.2518 9.6359 0.7610
CAP [33] 0.6838 10.9544 0.9627
Proposed method 0.7035 17.6679 0.9896
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As shown in Fig. 5, the SSIM values decrease when the
turbidity increases. In addition, the DCP-based methods (i.e.,
DCP, DCP and Graph-cut, etc.) outperform the other methods
(e.g., expose fusion, etc.). The conventional DCP method [10]
is not robust against non-uniform scatter images. The color-
lines method [10] cannot be applied to high turbidity images
because the color lines are difficult to calculate. The MDCP
[31] and Weiner de-hazing [22] methods outperform the other
conventional methods. However, after MDCP processing,
some scatter is evident in the results. The Weiner de-hazing
method causes color shifts or distortion. In contrast, the

proposed method outperforms all other methods and can pre-
serve colors and remove scatter.

4.3 Real-world simulation

In this experiment, we set real objects in water and added
turbidity to the water. The restored images are shown in
Fig. 6. The most recent methods, namely the glow and light
colors method [32] and the color attenuation prior method
[33], were used for comparison. The results show that that
the color-lines method [9] and the proposed method perform

(a) Input image Segmentation result

(b) DCP [11]

(c) DCP and GraphCut [14]

(d) WCID [15]

(e) Color-lines [10]

(f) MDCP [32]

(g) Wiener de-hazing [23]

(h) Expose fusion [16]

(i) Glow and light colors [33]

(j) CAP [34]

(k) Proposed method

Fig. 7 Comparison of underwater image restoration methods by fast level set segmentation

Fig. 8 Comparison of the
effectiveness of the proposed
method in conventional
classification methods
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well. The color-lines method demonstrates greater color dis-
tortion. The proposed method demonstrates the best perfor-
mance compared to the recent methods (Table 2).

4.4 Object segmentation

Here, we examine the results of level set segmentation [35].
Image segmentation is a basic operation of object recognition.
To the best of our knowledge, the level set method is robust
against low quality images. Note that image preprocessing
methods affect segmentation. In this experiment, we com-
pared the level set-based segmentation results using different
restoration methods (Fig. 7). All parameters in each experi-
ment were the same. The step for segmentation was 0.3 and
the number of iterations was 500.

4.5 Classification

In the fourth experiment, in order to verify the utility of the
proposed method, we compared the classification accuracy of
common classification methods. The results are shown in
Fig. 8. In this experiment, we used 7330 images from the
Japan Agency for Marine-Earth Science and Technology da-
tabase. The images were classified manually into four classes
(squid, crab, shark, and minerals). We selected 5330 images
for training and 2000 images for classification.

In the classification part, we made use of one of the recent
state-of-the image classification method called Deep Learning
[36]. This network architecture we used in this experiment
was proposed by Szegedy et al. [37], which called
GoogLeNet, and was the winner of ILSVRC 2014. The main
idea behind the GoogLeNet is the inception layer, which com-
bines information from multiple scales and significantly re-
duces the number of parameters.

As shown in Fig. 8, the proposed method can improve all
of the popular classification algorithms. The average accuracy
rate was improved by approximately 2.1%. Thus, we conclude
that the proposed method work well and can be applied with
the deep learning based methods such as GoogLeNet.

5 Conclusion

In this paper, we have proposed a hierarchical transmission fu-
sion method and a color-line ambient light estimation method
for high turbidity inhomogeneous underwater image restoration
from a single input image. There are three primary contributions
of this work. First, we proposed a hierarchical transmission fu-
sion method to estimate a transmission map in an inhomoge-
neous underwater image. Second, we considered scattering and
blurring effects in underwater imaging, and we proposed a cor-
responding framework to recover distorted images. Third, we
have built a large deep-sea image dataset for underwater robots.

We also tested the performance of the proposed method with
state-of-the-art methods using image quality assessment indexes
and post-processing methods, such as image segmentation and
image classification. The experimental results demonstrate that
the accurate estimation of the depth map and ambient light by
the proposed method can recover visually pleasing images with
sharp details. In future, we will focus on high turbidity non-
uniform and vignetting problems.
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