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Abstract Community detection is a fundamental task in
the social network analysis field, which is beneficial for
many real-world applications such as recommendation sys-
tems and telephone fraud detection. Community detection
in unsigned networks has been extensively studied, how-
ever, few works focus on community detection in signed
networks. Under this background, we propose a frame-
work based on regularized semi-nonnegative matrix tri-
factorization which maps the signed network from high-
dimensional space to low-dimensional space, such that the
communities of the signed network can be derived. In addi-
tion, to improve the detection accuracy, we introduce a
graph regularization to distribute the pair of nodes which
are connected with negative links into different communi-
ties. The experimental results on both synthetic datasets and
real-world datasets verify the effectiveness of the proposed
method.

Keywords Community detection · Signed networks ·
Negative links · Regularized semi-nonnegative matrix
tri-factorization

� Zhisong Pan
hotpzs@hotmail.com

1 College of Command Information Systems, PLA University
of Science and Technology, 88 Houbiaoying Road, Nanjing,
210007, China

2 School of Information Science and Technology, Southeast
University, Nanjing, 210007, China

1 Introduction

Community structure is a prominent feature of social net-
works. Community detection is a fundamental task in the
Social Network Analysis (SNA) field that helps us under-
stand the rganizational structure and functional components
of a social network [1]. It also promotes other SNA tasks
such recommendation systems [1]. Recommendation sys-
tem is usually based on the users’ past preferences, while
community detection provides complementary information
for it by deriving user communities. For example, if a com-
munity whose users have similar requirements and interests
is detected, the telecommunications operator can recom-
mend relevant services to a user according to the subscribed
services of other users in the same community, so that better
recommendations are made. Moreover, community detec-
tion has been applied to some real-world missions [2–4]. In
the against telephone fraud missions, community detection
helps to identify fraudster groups. According to the com-
munication records and other online activities of a suspect,
community detection helps the police to have a rough idea
of the suspected fraudster group. Besides, in the against ter-
rorism missions, community detection together with other
SNA technics plays an important role in terrorist organiza-
tion identification. Thus, community detection has attracted
many attentions.

Various methods have been developed to capture the
network structural characteristics during the past years,
however, most of them can only deal with networks
with only positive links, i.e., unsigned networks [5–7].
While many complex systems in the real world are repre-
sented by networks with both positive and negative links,
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i.e., signed networks. The relationships between users in
some real-world systems are various, including not only
positive relations like friendships, trusts and likes, but also
negative relations like antagonisms, distrusts and dislike.
For example, we have both contact list and black list in
the telephone address book. These systems are modeled
as signed networks, whose positive links represent posi-
tive relations and negative links represent negative relations
[8]. Kunegis et al. [9] shows that negative links have a sig-
nificant influence on the structure of the social network.
However, the existing algorithms developed for unsigned
networks cannot handle negative links [10], thus, mining
signed networks is still a young field which needs further
and separate efforts.

In the unsigned network, a community can be defined
as a group of nodes that contact with each other more fre-
quently than with those outside the group [11]. While in
the signed network, not only the density of links but also
the signs of links are considered. Two principles are devel-
oped: (1) within communities the links should be positive
and dense and (2) between communities the links should be
negative [12]. Community detection in the signed network is
to find out antagonistic communities so that entities within
the same community have a positive relationship with each
other and entities in different communities have a negative
relationship with each other. The existence of negative links
exerts great challenges on mining communities in signed
networks. The negative links may have a stronger influ-
ence on the community structure. In other words, a negative
link indicates that the connected users have a high probabil-
ity to belong to different communities while a positive link
may not indicate a high probability of the same belonging-
ness. Besides, the real-world systems are often complex, it
is natural to have some positive links between communi-
ties and some negative links within communities. Thus, how
to properly retain or disregard some positive and negative
links to find out the communities accurately is a problem.
Furthermore, most existing community detection algorithms
designed for unsigned networks can only deal with positive
links, methods for signed networks are needed. Some strate-
gies based on graph partition have been proposed which
solve two optimizations: maximizing the positive links in
communities and maximizing the negative links across com-
munities. However, the community detection accuracy is
not high.

Keeping the intrinsic properties of communities in the
signed network in mind, in this paper we propose a
community detection method based on Regularized Semi-
Nonnegative Matrix tri-Factorization (ReS-NMF) which
considers both link density and link signs. Furthermore, in
order to improve the detection accuracy, we introduce a
graph regularization to keep all the negative links between

communities. The main contributions are summarized as
follows:

1. We take into account of the mutual influences of pos-
itive and negative links in the signed network, build a
latent space model to map the signed network from the
high-dimensional space to the low-dimensional space,
then derive the underlying communities in the new
space.

2. We investigate the effects of the negative links on the
structure of the network. In order to detect the commu-
nities more accurately, we introduce a graph regulariza-
tion to distribute the pair of nodes which are connected
by negative links into different communities. Further-
more, we enforce the sparsity constraints on the model
to avoid overlapping distributions.

3. Experiments are carried out on both synthetic and real-
world datasets, the results show the effectiveness of the
proposed method.

The rest of this paper is organized below: Section 2
includes a brief review of the related work. The proposed
framework is described in details in Section 3. Experimental
results on both synthetic and real-world datasets are pre-
sented in Section 4. Finally, conclusions are provided in
Section 5.

2 Related work

Some algorithms designed for the unsigned network have
been extended to derive communities in the signed net-
work. Wu et al. [13] investigated the impacts of the negative
links on the network structure and examined the patterns
in the spectral space of the adjacency matrix. Kunegis
et al. [14] extended the spectral clustering algorithm to deal
with negative links by developing the signed graph Lapla-
cian matrix. But it had been proved to have a theoretical
weakness when it was extended from 2-way to k-way (k > 2)
clustering problem [15]. Anchuri et al. [16] extended
modularity [17] to signed modularity to evaluate the qual-
ity of community partitions in the signed network. There
are also multiobjective optimization based methods devel-
oped. In paper [16], Anchuri et al. proposed frustration to
access community quality which was defined as the sum
of the negative links inside the communities and positive
links across communities. The communities were detected
by minimizing the frustration. Doreian et al. [8] developed
an objective function which is similar to the frustration
except that it worked out the weighted sum. In the detection
process, the nodes were first randomly distributed to k com-
munities, then the above objective function was optimized
by reallocating the nodes to more proper communities.
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Liu et al. [18] designed two objective functions based on
the signed similarity and the natural contradiction between
positive and negative links, and developed a multiobjective
evolutionary algorithm. The algorithm could handle large-
scale signed networks and detect overlapping communities
directly. Amelio et al. [19] proposed a multiobjective frame-
work based on genetic algorithm, where the first objective
was modularity maximization, and the second was frus-
tration minimization. The multiobjective genetic algorithm
evolved a population of candidate solutions by trying to
obtain the best trade-off between high modularity and low
frustration. Chiang et al. [15] proposed positive ratio cut
and negative ratio association to detect communities in the
signed network. The positive ratio cut objective was to min-
imize the positive links between communities relative to the
community size, and the negative ratio association objective
was to minimize the negative links within each commu-
nity relative to its size. Some model-based methods also
have been proposed. Chen [20] proposed a signed proba-
bilistic mixture model to derive overlapping communities
in the signed network. The model generated positive and
negative links with different probabilities, and provided soft
memberships which indicated the strength of a node belong-
ing to a community. Yang et al. [21] proposed an FEC
framework based on random walk model which could be
applied to detect communities in both unsigned and signed
networks. FEC adopted an agent-based heuristic method,
it included two phases - (1) the FC phase computed the
transition probability vector and sorted them for each row
via random walks, and (2) the EC phase utilized a cutoff
criterion to divide the transformed adjacency matrix into
two block matrices, which corresponded to two subgraphs.
One of the subgraphs was the identified community, and
the other was to be processed recursively by the above two
phases.

There are some shortcomings in the above methods: (1)
The community detection accuracy needs to be improved,
more effective and robust methods are needed. (2) Most
of them deal with positive and negative links separately
by solving the above mentioned objectives, neglecting the
mutual influence of positive and negative links. In this
paper, we develop a variant of Non-negative Matrix Factor-
ization (NMF) to approximate the adjacency matrix of the
signed network with low-dimensional matrices, so that com-
munities can be detected in the latent space. NMF [22] is a
popular matrix factorization method where all the elements
are restricted to be nonnegative, it performs well in the SNA
field [11, 23]. As NMF is limited to deal with matrix with
nonnegative matrices, Ding et al. [24] proposed a semi-
NMF algorithm which did not require the matrix to be
nonnegative, extended the application of NMF ideas. Semi-
NMF has been applied to address issues such as nonlinear

unmixing of hyperspectral data analysis [25] and motion
segmentation [26], achieving good performances. Based
on the idea of semi-NMF, we propose semi-Nonnegative
Matrix Tri-Factorization (semi-NMTF) to factorize the adja-
cency matrix of the signed network, map the original net-
work to a low-dimensional space where the underlying
structure information is more explicit and clear. Moreover,
we introduce a graph regularization to enhance the detection
accuracy. And we develop the iterative algorithm to discover
communities in the signed network.

3 ReS-NMF framework for community detection
in signed networks

In this section, we introduce the definition and main symbols
used in this paper, and then describe the proposed method
in details.

3.1 Notations

The symbols used in this paper are shown in Table 1. Given
a signed network with n nodes which are grouped into k
communities. The topology is represented by the adjacency
matrix A ∈ Rn×n where Aij = 1, Aij = −1, and Aij = 0
denote a positive link, a negative link and no link between
node i and node j respectively. The matrix Ap ∈ Rn×n rep-
resents a positive network where A

p
ij = 1 denotes a positive

link between node i and node j and A
p
ij = 0 otherwise.

Similarly, An ∈ Rn×n is used to represent a negative net-
work where An

ij = 1 denotes a negative link and An
ij = 0

otherwise. It is easy to convert one representation into the
other representation with the following rules: A = Ap −An,
Ap = |A|+A

2 , An = |A|−A
2 . The matrix H ∈ Rn×k+ is the

community indicator whose element Hij denotes the proba-
bility that node i belongs to j-th community. The matrix S ∈
Rk×k is the association matrix indicating the relationships
between communities.

Table 1 Symbol definitions

Symbols Explanations Size

n number of nodes −
k number of communities −
A signed network’s adjacency matrix n × n

Ap positive network’s adjacency matrix n × n

An negative network’s adjacency matrix n × n

S association matrix k × k

H community indicator matrix n × k

γ1, γ2 the community indicator matrix −
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3.2 Problem statement

With the notations given above, the community detection
problem in the signed network is formally defined as follows.

Problem 1 Given a signed network G = (V , E)

with adjacency matrix A, positive adjacency matrix Ap

and negative adjacency matrix An, find k communities
{C1, ..., Ck} with maximal positive links within commu-
nities and maximal negative links across communities,
i.e., max

∑
ij A

p
ij δ(ci, cj ) and max

∑
ij An

ij (1 − δ(ci, cj )),
where δ(ci, cj ) is the Kronecker delta function which is
1 if node i and node j belong to the same community, 0
otherwise.

The problem is NP-hard, we attempt to solve it by build-
ing a latent space model. In the model, a variant of semi-
NMF to approximate the adjacency matrix is developed,
which maps the network into a low-dimensional space to
make the underlying structure information explicit. Besides,
we introduce a graph regularization to minimize the number
of negative links inside each community, so that negative
links between communities are maximized.

3.3 Proposed method

In this subsection, the proposed framework Res-NMF is
presented in details.

In paper [24], the 2-factor semi-NMF, i.e., A ≈ FHT ,
was proposed where only H is restricted to be nonnega-
tive, it has been proved useful to capture node similarity
and mutual influences between links. However, 2-factor
factorization only captures limited features, while 3-factor
factorization can capture relations between communities
and analyze the network more precisely. Then we propose
semi-NMTF to approximate the adjacency matrix of the
signed network, i.e., A ≈ HSHT , where H ∈ Rn×k+ is the
community indicator and S ∈ Rk×k is the community rela-
tionship indicator. The element Hij is nonnegative which
denotes the likelihood that node i belongs to the j-th com-
munity. If node i belongs to the j-th community, Hij = 1,
otherwise, Hij = 0. The positive element Sij of S denotes
the positive relationship between i-th community and j-th
community, similarly, the negative element denotes the neg-
ative relationship. The proposed semi-NMTF is written as
follows:

min
H∈Rn×k,S∈Rk×k

‖A − HSHT ‖2F s.t.Hij ∈ {0, 1}, (1)

where A is the adjacency matrix of the signed network, ‖·‖F

denotes the matrix Frobenius norm which is defined as

‖A‖F =
√∑m

i=1
∑n

j=1 |Aij |2.

Besides, the negative links have substantial influence on
the community structure. In order to keep negative links
between communities, we introduce a graph regularization
to minimize the number of negative links inside each com-
munity relative to its size. In particular, the regularization is
defined as follows:

min
k∑

j=1

hT
j Anhj

hT
j hj

, (2)

where An is the adjacency matrix of a negative network, hj

is the j-th vector of matrix H and H = [h1; . . . ; hk]. The
regularization enforces the nodes connected with negative
links to be distributed into different communities, then the
goal of keeping negative links between communities dense
can be achieved.

Because the above optimization problems are NP-hard
[1], in this paper, we solve this problem with some relax-
ations. Suppose the indicator H has the following form:

Hij =
{ √

1/πj , node i ∈ πj

0 , otherwise
, (3)

where |πj | is the number of nodes in the j-th community.
Then the objective function (1) can be written as follows:

min
H∈Rn×k,S∈Rk×k

‖A − HSHT ‖2F s.t.Hij ≥ 0, ∀i, j. (4)

Moreover, we observe that tr(HT AnH) = ∑k
j=1

hT
j Anhj

hT
j hj

.

Then the solution to the optimization problem (2) can be
obtained by addressing the following optimization problem:

min
H∈Rn×k

tr(HT AnH) s.t.Hij ≥ 0, ∀i, j. (5)

Furthermore, in order to make the node try its best
to belong to only one community, we introduce l1 norm∑n

j=1 ‖H(j, :)‖21 to control the sparsity of the model.
Combining the regularizations into semi-NMTF, the final

optimization objective we develop is defined as Formula (6):

min
H∈Rn×k,S∈Rk×k

‖A − HSHT ‖2F + γ1tr(H
T AnH)

+γ2
∑n

j=1 ‖H(j, :)‖21 s.t.Hij ≥ 0, ∀i, j
, (6)

where γ1, γ2 are parameters to control the weights of the
regularization terms.

3.4 The updating rules

In this section, we discuss how to solve the optimization
problem (6). The optimal solution can be achieved using the
iterative update algorithm we develop. We define a matrix
Nk×k whose elements are 1, let α be the Lagrange matrix
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for constraint H ≥ 0, then the Lagrangian function can be
written as:

L = ‖A − HSHT ‖2F + γ1tr(H
T AnH)

+ γ2
∑n

j=1 ‖H(j, :)‖21 − αH

= tr((A − HSHT )(A − HSHT )T )

+ γ1tr(H
T AnH) + γ2tr(HNHT ) − αH

= −2tr(AHST HT ) + tr(HSHT HST HT ) − α

+ tr(AAT ) + γ1tr(H
T AnH) + γ2tr(HNHT )

. (7)

Then the derivatives of L with respect to H and S are:

∂L

∂S
= −2HT AH + 2HT HSHT H , (8)

∂L

∂H
= −4�1 + 4H�2 + 2γ1A

nH + 2γ2HN − α , (9)

where �1 = AHST , �2 = SHT HS. Using the KKT con-
ditions that αH = 0, and according to methods in [16], the
updating rules are shown as follows:

S ← (HT H)−1HT AH(HT H)−1 , (10)

Hij ← Hij

√
(2�+

1 + 2H�−
2 )ij

(2�−
1 + 2H�+

2 + γ1AnH + γ2HN)ij
,

(11)

where X+
ij = (|Xij | + Xij )/2, X

−
ij = (|Xij | − Xij )/2.

With the above updating rules, the optimization algo-
rithm is presented in Algorithm 1. Note that we update
one matrix while fixing the other matrices in each step
and the iterative process is stopped if these cluster matri-
ces converge or the number of iterative reaches a given
threshold.

4 Experiments

In this section, we evaluate the effectiveness of the proposed
algorithm in detecting communities from signed social net-
works. Experiments are carried out on both synthetic and
real-world datasets.

4.1 Evaluation measures and baseline methods

In this paper, we apply Normalized Mutual Information
(NMI) [27], Purity [28] and Signed Modularity [29] to eval-
uate the performances of different algorithms. Both NMI
and Purity adopt the ground truth as a baseline, the values of
the two measures range from 0 to 1 and higher value means
better performance. SignedModularity measures the quality
of the derived community structure from the perspective of
how far it deviates from a random network, the larger value
it is, the stronger the strength of community structure is.

NMI estimates the similarity between the ground truth
communities and the detected. Let C andG denote our parti-
tion the ground truth respectively, F be the confusion matrix
whose element Fij is the number of nodes in community i
of the partition C that are also in the community j of the
partition G, then NMI is defined as follows:

NMI = −2
∑fC

i=1

∑fG

j=1 Fij log(Fij n/Fi·F·j )
∑fC

i=1 Fi· log(Fi·/n) + ∑fG

j=1 F·j log(F·j /n)
,

(12)

where fC(fG) is the number of communities in the partition
C(G), Fi·(F·j ) is the sum of the elements of F in row i (col-
umn j), and n is the number of nodes. If C = G, NMI = 1.
If C and G are completely different, NMI = 0.

Purity is measured by computing the number of nodes
assigned with the same labels in all communities. Let G =
G1, ...,Gk be the set of communities in the ground truth and
G = C1, ..., Ct be the t communities extracted by different
approaches. Purity is defined as:

Purity = 1

n

t∑

i=1

max
j

|Ci ∩ Gj | , (13)

where n is the number of nodes.
The original Modularity Q is designed for unsigned

networks [17], it is defined as the probability of having
links falling within communities in the networks minus the
expected probability in an equivalent network with the same
number of nodes, and links placed at random preserving the
nodes degree. However, Q cannot deal with negative links.
Gmez et al. [29] developed Signed Modularity as follows:

Qs = 1

2w++2w−
∑

i

∑

j

[

wij−
(
w+

i w+
j

2w+ −w−
i w−

j

2w−

)]

, δ(ci,cj)

(14)

where w+
i

(
w+

j

)
denotes the sum of all positive weights of

node i(j), and w−
i (w−

j ) represents the sum of all negative
weights of node i(j). Besides w+(w−) denotes total positive
(negative) strength. If nodes i and j are in the same com-
munity, δ(ci, cj ) = 1, otherwise, δ(ci, cj ) = 0. Normally
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the larger the value of Qs is, the better the separation of the
community structure is.

In order to measure the effectiveness of ReS-NMF
framework, three existing community detection methods
for signed networks, i.e., the signed spectral clustering
algorithm [14] and FEC algorithm [21], and MEAs-SN
algorithm [18] are compared in our experiments.

In peper [14], a signed variant of the graph Laplacian is
proposed, then the signed spectral clustering algorithm is
developed based on it. In the method, the top k eigenvec-
tors of signed Laplacian matrix associated with the signed
network are calculated, then k-means is applied to the
eigenvectors to obtain disjoint partitions of the network.

FEC is proposed in [21], it regards the sign and the den-
sity of relations as the clustering attributes. The method
adopts an agent-based approach for formulating the com-
munities. It contains two main phases: (1) the FC phase
transforms the adjacency matrix to compute their tran-
sition probability vector and sorts them for each row
and (2) the EC phase applies a cutoff criterion to the
transformed adjacency matrix and divides it into two
block matrices, which correspond to two subgraphs. One of
these subgraphs is the identified community, and the
other is the matrix to be processed recursively following the
above mentioned two phases.

MEAs-SN is a multiobjective evolutionary algorithm
proposed in [18], it models community detection problem
as a multiobjective problem considering both link density
and signs. In the method, signed similarity is extended from
the original similarity based on the social balance theory so
that it can deal with the negative links. Two objectives are
optimized together, one is target to put all positive links in
communities while the other is target to keep all negative
links between communities.

4.2 Experimental results on synthetic datasets

We first validate ReS-NMF on synthetic datasets. We apply
the LFR benchmark to generate synthetic networks for
community detection. The LFR benchmark is declared to
support some main statistical properties of the real net-
works. The details of the synthetic networks are shown in
Table 2, where DS denotes the datasets, N denotes the num-
ber of nodes, PL and NL denote the number of positive links
and negative links respectively, and C denotes the number
of communities.

The scores of NMI, Purity and Signed Modularity for
different methods on five synthetic datasets are presented
in Table 3. Note that all experiment results are averaged
over 100 runs. From the results shown in the table, some
conclusions can be drawn.

It is evident that the proposed ReS-NMF algorithm per-
forms best among all the methods on all the synthetic
datasets. For example, in terms of Network 1, our method
can gain more than 78%, 44% and 2% improvements on
NMI respectively, over 4%, 5% and 8% improvements on
Purity respectively, and nearly 17%, 9% and 9% improve-
ments on Signed Modularity, compared with signed spectral
clustering algorithm, FEC algorithm and MEAs-SN algo-
rithm. Furthermore, let us pay attention to Network 2 and
Network 3 whose generator parameters are the same apart
from mu. With higher mu, the network structure is more
fuzzy and the communities are more difficult to detect. It
can be observed that our method has a better performance
than the others and the performance does not deteriorate
as mu increases. Network 4 and Network 5 have more
nodes and links than the other networks, and the struc-
tures are more complex. It can be seen that on the three
evaluation metrics, ReS-NMF also performs better than the
other methods. The reasons may be as follows: (1) The
ReS-NMF framework maps the signed networks into a low-
dimensional space, makes the implicit structures clear in the
latent space. (2) The graph regularization contributes to dis-
tribute the nodes connected with negative links into correct
communities, reducing the wrong partitions.

4.3 Experimental results on real-world datasets

In this subsection, we evaluate ReS-NMF method on real-
world datasets. Two widely used real-world signed net-
works, i.e., the Slovene Parliamentary Party network and the
Gahuku-Gama Subtribes network, are employed to validate
the effectiveness of our method. Moreover, although ReS-
NMF is designed for signed networks, it can also be used to
unsigned networks. Therefore, two popular unsigned bench-
mark networks, the Zachary karate club network and the
Dolphin network, are tested.

The Slovene Parliamentary Party network describes the
relations between ten parties of the Slovene Parliamentary
in 1994 [30]. Positive links mean that two parties’ activi-
ties are similar, while negative links mean their activities are

Table 2 Details of the synthetic networks

DS N PL NL C

Network 1 500 573 140 14

Network 2 1000 319 3146 36

Network 3 1000 620 2587 34

Network 4 2500 10452 2340 81

Network 5 3000 5684 565 26
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Table 3 NMI, Purity and
Signed Modularity for four
methods on five datasets, bold
emphasis represents the best
results

Datasets Methods NMI Purity Qs

Network 1 Signed spectral clustering 0.3294±0.059774 0.7206±0.045486 0.3036±0.046860

FEC 0.5704±0.010482 0.7120±0.025043 0.3205±0.047126

MEAs-SN 0.5815±0.033578 0.6940±0.025486 0.3252±0.059202

ReS-NMF 0.5956±0.017464 0.7520±0.048744 0.3522±0.001772

Network 2 Signed spectral clustering 0.8241±0.045210 0.8078±0.045585 0.3892±0.042913

FEC 0.8190±0.009725 0.7520±0.040748 0.2339±0.023427

MEAs-SN 0.8080±0.014999 0.7300±0.024237 0.2182±0.021301

ReS-NMF 0.8333±0.015231 0.8129±0.040693 0.4458±0.019375

Network 3 Signed spectral clustering 0.8278±0.032434 0.8348±0.048010 0.4542±0.037864

FEC 0.8347±0.028379 0.8110±0.032763 0.4566±0.049632

MEAs-SN 0.8537±0.014439 0.8150±0.042761 0.4919±0.025808

ReS-NMF 0.8662±0.057148 0.8678±0.057879 0.5155±0.041690

Network 4 Signed spectral clustering 0.8719±0.035888 0.8031±0.042813 0.4474±0.034027

FEC 0.8397±0.024441 0.7312±0.035280 0.3561±0.028616

MEAs-SN 0.8071±0.039360 0.7624±0.028661 0.3995±0.016607

ReS-NMF 0.8768±0.007280 0.8565±0.016792 0.4765±0.015263

Network 5 Signed spectral clustering 0.3259±0.021 0.7155±0.025942 0.2221±0.029524

FEC 0.6234±0.026230 0.5683±0.026552 0.2572±0.050847

MEAs-SN 0.6319±0.030079 0.5643±0.059696 0.2482±0.015226

ReS-NMF 0.6540±0.023388 0.7754±0.043600 0.2976±0.010135

dissimilar. Figure 1a shows the original topological struc-
ture, and the community structure derived by ReS-NMF is
shown in Fig. 1b. As can be seen, all parties are separated
into two opponent communities. Note that this result is the
same as that given by Kropivnik and Mrvar [30].

The Gahuku-Gama Subtribes dataset contains 16 tribal
groups of the Eastern Central Highlands in New Guinea,
the relations between tribal groups can be friendly or antag-
onistic [31] which are denoted by positive or negative
links respectively. The 16 tribal groups are distributed into
3 communities in reality. Figure 2a presents the original

(a) (b)

Fig. 1 a Topological structure of the Slovene Parliamentary Party net-
work. b Community structure obtained by ReS-NMF. In the figures,
the thick edges between nodes represent positive links while the thin
edges represent negative links. Different node colors in b correspond
to different communities

topological structure, and the communities obtained by
ReS-NMF are shown in Fig. 2b. The community detection
result is identical to that in reality.

Then we further evaluate the effectiveness of ReS-NMF
on unsigned networks. Figure 3 shows the communities
found by ReS-NMF for the Zachary karate club network
and the Dolphin network. As can be seen, the Zachary
karate club network and the dolphin network are divided
into two and four communities respectively. The commu-
nity structures found are meaningful and identical to those
in reality.

(a) (b)

Fig. 2 a Topological structure of the Gahuku-Gama Subtribes net-
work. b Community structure obtained by ReS-NMF. In the figures,
the thick edges between nodes represent friendship while the thin
edges represent antagonism. Different node colors in b correspond to
different communities
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(a) (b)

Fig. 3 a Community structure found by ReS-NMF for Zachary
karate club network. b Community structure obtained by ReS-NMF
for Dolphin network. Different node colors correspond to different
communities

4.4 Parameter study

In this section, we evaluate ReS-NMF in terms of its sen-
sitivity to the regularization parameters γ1 and γ2. The

datasets we use include Network 2 and the Slovene Par-
liamentary Party network. We systematically test the effect
of γ1 and γ2, where γ1 increases from 0.1 to 10 and γ2
increases from 0.1 to 8. For each combination of the two
parameters, 50 independent runs of ReS-NMF are con-
ducted, and the averaged NMI, Purity and Signed Modular-
ity are shown in Fig. 4.

We note that γ2 is fixed, with the increase of γ1, the per-
formance of ReS-NMF on Network 2 first increases. When
γ1 > 2, ReS-NMF keeps a relatively stable performance,
and when γ1 > 8, the values of NMI, Purity and Signed
Modularity drop a little. With the fixed γ1, we observe
that with the increase of γ2, the performance on Network
2 first increases correspondingly, when γ2 > 4, the per-
formance is relatively stable. It can be observed that our
method is relatively stable on γ1 and γ2 across a wide range.
Then we test ReS-NMF on Slovene Parliamentary Party net-
work, across all the values of γ1 and γ2 in the experiment,
the values of NMI and Purity keep to be 1, and Signed
Modularity also has stable score. This is because without
the help of the regularizations, semi-NMTF can extract the

Fig. 4 Parameter sensitivity
evaluation on Network 2 dataset
and Slovene Parliamentary Party
network
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communities of this network accurately. From Fig. 4 we can
see that ReS-NMF achieves relatively stable and outstand-
ing performances, and is not sensitive to the regularization
parameters.

5 Conclusions

In this paper, we develop a ReS-NMF community detection
algorithm for signed networks. The ReS-NMF algorithm
captures communities by mapping the signed network into a
latent space, moreover, improves the detection accuracy by
studying the effects of negative links and enforcing the spar-
sity constraints on the indicator matrix. Experiments on both
synthetic data and real-world data all demonstrate that ReS-
NMF has better performance and regularization parameter
sensitivity compared with other algorithms. For the future
work, we plan to design faster algorithm for regularized
matrix factorization.
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