
Mobile Netw Appl (2017) 22:289–304
DOI 10.1007/s11036-017-0808-y

A Framework for Implementing Formally Verified
Resource-Bounded Smart Space Systems

Ijaz Uddin1 ·Abdur Rakib1 ·Hafiz Mahfooz Ul Haque1

Published online: 26 January 2017
© Springer Science+Business Media New York 2017

Abstract Context-aware computing is a mobile comput-
ing paradigm that helps designing and implementing next
generation smart applications, where personalized devices
interact with users in smart environments. Development
of such applications is inherently complex due to these
applications adapt to changing contextual information and
they often run on resource-bounded devices. Most of the
existing context-aware development frameworks are cen-
tralized, adopt client–server architecture, and do not con-
sider resource limitations of context-aware devices. This
paper presents a systematic framework to modelling and
implementation of resource-bounded multi-agent context-
aware systems on Android devices. The proposed frame-
work makes use of semantic technologies for context mod-
elling and reasoning about resource-bounded context-aware
agents, Android powered smartphones as development plat-
form, a suitable communication model and declarative rule-
based programming as a preferred development language.

Keywords Context-awareness · Resource-bounded
agents · Rule-based reasoning · Non-monotonic
reasoning · Android SDK

� Abdur Rakib
Abdur.Rakib@nottingham.edu.my

Ijaz Uddin
khyx4iui@nottingham.edu.my

Hafiz Mahfooz Ul Haque
khyx2hma@nottingham.edu.my

1 School of Computer Science, The University of Nottingham,
Malaysia Campus, Semenyih, Malaysia

1 Introduction

The last few decades have seen an exponential growth and
change in computing technologies. Computers have evolved
from big bulky mechanical machines into lightweight light-
ning fast laptops and tablets. While computers were suc-
cessfully prospering, there was the beginning of the mobile
phones. In 1973 Motorola first introduced hand held tele-
phone device [1]. It was not until 1980 that the use was
slowly transferring to public use. The late 20th century
has witnessed the transfer of mobile phone into smart-
phone. Smartphones are now capable to carry out our daily
routine tasks, which were earlier possible on computers
or other similar devices only, such as browsing Internet,
social networking, taking photos or making videos and so
on [2]. With the advancements of the smartphone com-
bined with feature-rich softwares, applications and Internet
connectivity make it more easier for people to share their
experiences using social networking applications, includ-
ing VoIP services, free messaging and call applications, to
name some [3]. Along with variuos high-tech features, a
smartphone is also equipped with a wide range of sensors,
including global positioning system (GPS), shake sensors,
accelerometers, and proximity sensors [4]. These sensors
that accommodate a user in his daily life can further be
used in a large variety of applications, which can pro-
vide user related and surrounding information as contexts.
These sensors can be integrated in a way to provide enough
user information, including user’s location, time, move-
ment, and surrounding environmental information. When
provided with a suitable communication mechanism, it can
also enhance interaction between the user, application and
other devices [5]. The smartphones or other devices that
are used to implement such applications may act as intelli-
gent agents for a particular scenario of an application. Thus

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-017-0808-y&domain=pdf
http://orcid.org/0000-0001-5430-450X
mailto:Abdur.Rakib@nottingham.edu.my
mailto:khyx4iui@nottingham.edu.my
mailto:khyx2hma@nottingham.edu.my


290 Mobile Netw Appl (2017) 22:289–304

smartphones and agent-based technology can provide
tremendous benefits for the development of context-aware
mobile applications.

In the literature various definitions of context exist (see
e.g., [6, 7]). Dey et al. define context as any information that
can be used to identify the status of an entity. An entity can
be a person, a place, a physical or a computing object. This
context is relevant to a user and application, and reflects the
relationship among themselves. A context-aware system is a
system which uses context to provide relevant information
and/or services to its user based on the user’s tasks [7].
The context-aware computing paradigm emerged in early
1990’s with the introduction of small mobile devices. In
1992, Olivetti Lab’s active badges used the infrared badger
assigned to staff members for tracing their locations in office
and according to the locations calls were forwarded [8]. Fur-
ther developments in the field lead to the development of
various context-aware frameworks such as Georgia Tech’s
Context Toolkit [9]. In recent years, more research has been
carried out and advanced context-aware systems exist [10],
and the contributions to research and development over the
years promise a bright future of such systems. Generally,
context-aware systems interact with human users, they often
exhibit complex adaptive behaviours, they are highly decen-
tralised and can naturally be implemented as multi-agent
systems. An agent is a piece of software that requires to
be reactive, pro-active, and that is capable of autonomous
action in its environment to meet its design objectives [11].
Non-human agents in such a system may be running a very
simple program, however they are increasingly designed
to exhibit flexible, adaptable and intelligent behaviour. A
common methodology for implementing these non-human
agents is implementing them as rule-based reasoning agents.
Rule-based reasoning and traditional rule engines have
found significant applications in practice, though mostly for
desktop environment where the resources (computational
and communication) are abundantly available compared
to smartphone devices. The main issue with those rule
engines is that they cannot be easily used on smartphones
or resource bounded devices due to platform differences
and different hardware profiles. Some rule engines, which
are discussed in Section 2, have already been tested for
porting into mobile environment but the results were either
not satisfactory or the porting were only partially success-
ful. In view of the above, there is a need to develop a
decentralized formal context-aware computing model that
makes use of the smartphone platform, a suitable commu-
nication model and declarative rule-based programming as
a preferred development language. This paper addresses
some of these issues by exploring the practical imple-
mentation of the framework presented in [12]. By devel-
oping a pure smartphone compatible context-aware sys-
tems development framework, any kind of domain specific

context-aware applications can be developed, e.g., elder care
system, hospital critical situation, traffic control and office
security, among others.

The remainder of the paper is organized as follows. In
Section 2, we briefly introduce context-aware computing
and its limitations and challenges in resource-constrained
settings, followed by a discussion of a formal context mod-
elling and reasoning framework [12]. Section 3 presents
rule-based context-aware system specification and how
we implement the logical framework developed by [12].
Section 4 discusses detailed implementation and internal
working mechanisms of the rule-based context-aware sys-
tems. Section 5 presents implementation of a prototype
example system considering three agents in a smart environ-
ment. Section 6 concludes and discusses some suggestions
for future work.

2 Background study

The rapid development of mobile technologies and new
research in pervasive computing have sparked a renewed
interest in context-aware applications. A large part of
research on context-aware systems and applications studies
formal approaches to modelling context and reasoning tech-
niques for contextual information. Reasoning techniques
help to realise the adaptation of an application to the chang-
ing environment and also to infer higher level contextual
information from sensed or available low level contextual
information. In the literature, various context modelling
and reasoning approaches have been proposed, including
ontology and rule-based approach [12–17]. The work by
[14] proposes ontology based context management (GCoM)
model to address context modelling and reasoning. Where
the rules used in the reasoning process can be user defined
and/or ontological. It shows the methodology from context
acquisition till expression in resource saving manner and
the model has the capacity for re-usability. The work by
[15] on the other hand focuses on the rapid prototyping
of context-aware application development. The emphasis
is given to the shared conceptualization of the domain
being a collaborative environment. The users are divided
into three wide categories based on their skill set into
high, middle and low level. Based on the user skills, the
user is provided some privileges in its environment. The
framework, besides other components, uses resource shar-
ing server which suggests limitation on distributed approach
towards the framework. In our previous work [12, 17], we
have shown that ontological and logic based approach is
a good way for modelling context-aware systems, and it
allows us to model context-aware systems as rule-based
reasoning agents. A logic defines the conditions in which
a concluding fact may be derived. In [12], we developed



Mobile Netw Appl (2017) 22:289–304 291

a logical framework for resource-bounded context-aware
multi-agent systems which handles inconsistent context
information using non-monotonic reasoning, however, the
framework was not implemented using smart devices. To
the best of our knowledge and the study backed by the work
of [18] there does not exist any concrete framework for
mobile platform that addresses the issues of context-aware
system development considering mobile device resource
constraints. A framework that may cover all the aspects of
context-aware applications in mobile platforms, including
methodology, language, inference engine and communica-
tion mechanisms. Development of such a framework may be
beneficial both to the developers and researchers [18]. Some
attempts have already been made to port the existing desk-
top frameworks into the mobile platform but the results were
not satisfactory, mainly due to the platform and hardware
differences [19, 20], where the task was to port the JADE
framework into Android environment. Similarly the work
by [21], which is based on Android, uses context expres-
sions. A context expression is a Boolean expression, in
which axioms are the context condition on the context enti-
ties. Although the work is based on Android, the framework
doesn’t have its own language. Furthermore, instead of rea-
soning, various scenarios are monitored using the evaluators
(==, >=, >, <, <==, regular expression, distance). The
authors intend to provide distributed environment compati-
bility in their future work. From the programming languages
perspective, there are some tools like Kivy framework that
can be used for programming Android Applications. How-
ever, when we need the latest updates and especially as in
our case access to the sensors and their support, using these
tools may not be a good option [22].

Therefore, although various context-aware frameworks
have been developed over the years, their functions remain
primitive. This is because these systems are more complex
due to the mechanism to sense and reason about contex-
tual information and their changes over time. Furthermore,
such systems often run on tiny resource-bounded devices
in highly dynamic environments. Many challenges might
arise when these context-aware devices perform computa-
tion to infer implicit contexts from a set of given explicit
contexts and reasoning rules, and perhaps exchange infor-
mation via messages. In the following section, we list some
constraints that often arise while designing and developing
context-aware mobile applications.

2.1 Limitations and challenges in resource bounded
devices

The insight study of the resource-bounded devices sug-
gests that most of the widely used platforms, such as iOS,
Android, Windows mobile, and blackberryOS, share com-
mon limitations. Some major limitations are listed below

which a developer faces when developing context-aware
mobile applications.

– Processing power The processing power of a standard
computer is very adequate to run multiple programs
simultaneously. It has multiple processors, cores and
a variety of supporting hardware that can be further
installed to make the processing faster and smoother.
On the other hand, a smartphone is limited to what
is offered by the manufacturer and there is no possi-
bility to add or enhance it by adding any hardware.
So, practically the processing power of a smartphone
is comparatively much weaker than a desktop com-
puter. Also, a developer should keep in mind that the
application should not engage the processor more than
required. Excessive use of a processor may slow down
the overall performance of the smartphone and can
cause the battery to drain faster.

– Memory limitations Contrary to the desktop comput-
ers which offer a huge amount of storage in TeraBytes
and RAM in GigaBytes, the smartphones still use Giga-
Bytes of storage space which are normally ranges from
8GB to 128GB. While the RAM is 4GB on various
latest smartphones, perhaps more RAM expected in
coming years, which is still less than desktop systems.
The applications for desktop has vast amount of mem-
ory available both in terms of storage and RAM to
operate at optimum pace even when other softwares are
running simultaneously. However, resource-bounded
devices need more memory optimization to make the
application run smoothly, the scenario can get worse
when there are multiple applications running.

– Device size In smartphones, the size is a factor, com-
promises are made on certain hardware to keep the size
comfortable and not bulky. As stated earlier, that in
smaprtphones a user is bound to use what is offered
by a manufacturing company. A user can not add
more RAM or Internal memory. Developers have to
design the applications keeping in view of the hard-
ware resources available, as there is no option to make
hardware changes. Unlike desktop computers, in smart-
phones almost every thing comes embedded, besides
few options such as battery, SD-card etc.

– Battery power The smartphones are made for mobility.
This mobility is powered by the battery. A smartphone
when connected with a power source has virtually
unlimited battery life but no mobility at all [23]. To
keep the balance between mobility and power, it is very
crucial to use the resources in energy saving manner
to maximize the battery operating time. This includes
application development in such a way that it should
not engage the resources continuously. As doing so
may cause the draining of the battery. Moreover, the



292 Mobile Netw Appl (2017) 22:289–304

communication between devices or agents also con-
sumes energy. Keeping the communication optimized
ultimately helps in prolonging the battery life.

– Programming language Using desktop computers a
developer can choose any language to program appli-
cation softwares, including C, C++, C#, PHP, Java,
Python and many more. However, on smartphones a
developer is restricted to the use of the programming
language which is compatible with the platform of a
smartphone and the developer has very little choice in
this regard.

Due to the above mentioned issues it is not desirable
to directly port any software to the smartphone platforms,
instead it has to be recoded according to a chosen plat-
form. Furthermore, the constraints mentioned above can
have a great impact on the development, specifically due
to the bounded resources and limitations of the smartphone
platforms.

2.2 A context modelling and reasoning framework

In our study, we realize under the term context any informa-
tion that can be used to identify the status of an entity. An
entity can be a person, a place, a physical or a computing
object. This context is relevant to a user and applica-
tion, and reflects the relationship among themselves [7].
A context can be formally defined as a subject, predi-
cate, and object triple 〈subject, predicate, object〉 that
states a fact about the subject where—the subject is an
entity in the environment, the object is a value or another
entity, and the predicate is a relationship between the sub-
ject and object. For example, we can characterize user’s
current status of a context-aware system based on the con-
texts “Mary has blood pressure categorized as High” as
〈Mary, hasBloodP ressure, High〉 or using first order
logic term as hasBloodP ressure (Mary, High). In [12],
we studied ontology-based context modelling approach and
for that purpose we use OWL 2 RL, a profile of the new
standardization OWL 2, and based on pD∗ [24] and the
description logic program (DLP) [25]. We choose OWL 2
RL because it is more expressive than the RDFS and suit-
able for the design and development of rule-based systems.
An OWL 2 RL ontology can be translated into a set of Horn
clause rules based on the DLP technique [25]. Furthermore,
we express more complex rule-based concepts using SWRL
[26] which allow us to write rules using OWL concepts.

In our conceptual and logical framework [12], we con-
sider context-aware agents having constraint on various
resources, namely time, memory, and communication. Each
agent’s memory usage is modelled as the maximal num-
ber of contexts to be stored in the agent’s working memory
at any given time. That is, we assume that each agent in

a system has bounded memory size which allows maximal
number of contexts to be stored at any given time. Simi-
larly, each agent has a communication counter, which starts
with value 0 and incremented by 1 each time while interact-
ing (sending/receiving a message) with other agents, and is
not allowed to exceed a preassigned threshold value. Here,
we briefly describe the notion of contexts and context-aware
reasoning that is used in the logical model. Each agent
i ∈ Ag in a multi-agent reasoning system has a program,
consisting of a finite set of strict and defeasible rules (these
are essentially Horn clause rules), and a working memory,
which contains facts (current contexts). If an agent i has a
rule:

Patient(?p), hasBloodPressure(?p,High), hasGPSLo-
cation(?p, ?loc) → hasAlarmingSituation(?p, ?loc)

and the contexts Patient(Mary), hasBloodPressure(Mary,
High) and hasGPSLocation(Mary, UNMC) are in the
agent’s working memory and hasAlarmingSituation(Mary,
UNMC) is not in the agent’s working memory in state s, then
the agent can fire the rule which adds the context hasAlarm-
ingSituation(Mary, UNMC) to the agent’s working memory
in the successor state s′. While deriving this new context,
an existing context in the agent’s working memory may get
overwritten, and this happens if agent i’s memory is full or a
contradictory context arrives in the working memory (even
if the working memory is not full). We say that two contexts
are contradictory iff they are complementary with respect to
∼, for example, hasAlarmingSituation(Mary, UNMC) and
∼hasAlarmingSituation(Mary, UNMC) are contradictory
contexts. As we use defeasible reasoning to model a system,
conflicting context can be represented using ∼ in the work-
ing memory of an agent i. However, in practice conflicting
contexts can be manipulated in different ways. During exe-
cution of the system, conflicting contexts can have different
notions in the working memory of an agent i, for example,
a conflicting context can be represented using the fol-
lowing notion: hasAlarmingSituation(Mary, UNMC) con-
flicts both with ∼hasAlarmingSituation(Mary, UNMC) and
hasAlarmingSituation(Mary, TTS), where UNMC and TTS
represent distinct locations. Similarly, a conflicting con-
text can also be of the form: hasTemperature(Livingroom,
High) and hasTemperature(Livingroom, Cool). Whenever a
newly derived context arrives in the agent’s memory, it is
compared with the existing contexts to see if any conflict
arises. If so then the corresponding contradictory context
will be replaced with the newly derived context, other-
wise an arbitrary context will be removed if the memory
is full. For example, in the above case hasAlarmingSit-
uation(Mary, UNMC) will be a contradictory context if
∼hasAlarmingSituation(Mary, UNMC) is present in the
agent’s working memory, so ∼hasAlarmingSituation(Mary,
UNMC) will be replaced by the newly inferred context



Mobile Netw Appl (2017) 22:289–304 293

hasAlarmingSituation(Mary, UNMC). In addition to firing
rules, agents can exchange messages regarding their cur-
rent contexts. A more detailed explanation can be found in
[12, 27]. In this paper, we extend our theoretical work pre-
sented in [12] by implementing the ontology and logic based
framework using the Google Android SDK and smart-
phones, where smart devices (and hence agents) sense the
surrounding environments to acquire low level contexts and
infer high level contexts based on the rules that are derived
from smart environment ontologies, communicate with each
other, and adapt their behaviour accordingly.

2.3 Implementation platform

To implement the above discussed framework first we need
to select a suitable platform. Existing rule-based program-
ming environments, such as JADE, JARE, JESS [28] and
many more are written in Java. Java adds platform inde-
pendence besides other rich libraries implementation. Since
Java is platform independent, in principle the systems devel-
oped in Java for one platform should work fine on any
other platforms. However, this is not the case when we
talk about implementation in resource-bounded environ-
ment especially for Android platform. The Java language
that is used for the desktop programming, now known as
Oracle Java is wide and a vast language. The point where
the Java for Android differs from the Oracle Java is the less
number of libraries support e.g., Swing is not supported in
Android platform. The Android mainly supports Java core
programming. Another big difference lies in the low level
machine translation mechanism. In Java JVM or Java Vir-
tual Machine is used to translate the code into platform
specific code, while in Android instead of JVM, DVM or
Dalvik Virtual Machine is used. The DVM of Android is a
compact Virtual Machine that is used to run programs on
resource-bounded devices [29]. The package of the Android
application is installed from the apk file format which has
internal difference with the jar file format as used in the

typical Java programs. In terms of the usage Android has
the major user base as of 2014, and in latest 2015 report
[30]. In this work, we chose the Google Android SDK
to implement resource-bounded context-aware applications,
however this choice does not restrict the research objec-
tive to Android only, and in the future we aim to develop
a context-aware implementation framework that can be
used to run application programs on multiple platforms
seamlessly.

3 Rule-based context-aware system specification

In this section, we explain different aspects of a rule-based
reasoning system and its various components (see Fig. 1).
Where necessary, we have provided the flow charts and
algorithms for better understanding of the system.

3.1 Architecture and basic hardware usage

For the development of an example resource-bounded
context-aware system, rule-based agents being developed
in this paper are composed of multiple Android smart-
phones. For this purpose we used three different Android
phones having different specifications. One phone has been
rooted, formatted and installed with the custom ROM with
Nokia ×2 Hardware profile. Other two phones are Lenovo
1000 and 6600 respectively, having different specifications
to check the application behaviour. A brief comparison is
provided in Table 1.

3.2 Application interface

The interface for our applications is provided in two differ-
ent versions. While one is web based desktop environment,
the other one is Android application based. In general
the interface serves the purpose to add rules to the rule-
base along with their priorities, initial facts (i.e., existing

Fig. 1 System overview from
an individual agent’s perspective



294 Mobile Netw Appl (2017) 22:289–304

Table 1 Smartphone
comparison sheet Device RAM Processor Internal OS Embedded

memory sensors

Nokia X2 1 GB Dual-core 1.2 GHz 4 GB Custom ROM Accelerometer, proximity,

Cortex-A7 and GPS

Lenovo A1000 1 GB Quad-core 1.3 GHz 8 GB Android OS Accelerometer and GPS

Cortex-A7

Lenovo 6600 1 GB Quad-Core 1.5 GHz 8 GB Android OS Accelerometer, proximity,

and GPS

high-level contexts), and associated flags. The rules are
checked for their validity before adding into the rule-base.
Similarly the facts are also checked for their validity as to
whether they follow the intended format. The priority as
the name indicates for a rule give it preference over other
rules. That is, a higher priority for a rule give it preference
over other matching rules. The flag associated with every
rule is used to specify the type of the rule. For instance,
the character ‘G’ is used to represent a rule containing a
Goal statement, which indicates that a certain rule execution
results in goal achievement. The character ‘C’ represents
the communication rules, which can trigger a communica-
tion between agents (devices). The character ‘D’ represents
the deduction rules. The communication between agents are
explained in more detail in Section 4.8.

3.2.1 Desktop interface

The desktop interface is a web based application, which
uses Apache web server, MySQLDatabase, Jquery and PHP
language as its main components besides HTML for the
interface design. The application is platform independent
and runs in any standard browser on different platforms
e.g Windows, Linux, Macintosh with a minimum setup.
This interface can be made online to be accessed from any
computer with Internet connection. The user can add rules
from this interface, it allows validating both the Left Hand
Side(LHS) or body and Right Hand Side(RHS) or head (or
consequent) of any rule provided. If the rule qualifies the
format specified, it will be returned as valid, otherwise user
will be prompted to enter a rule according to the intended
format. A rule has the following format:

m : P1, P2, . . . , Pn → P0 where n ≥ 0.

where m is the rule priority. Each Pi is an atomic
formula of the form p(t1, t2), Ask(i, j , p(t1, t2)) or
T ell(i, j, p(t1, t2)), where i and j (i 
= j ) represent agents,
p is a predicate symbol and the tk are terms. Where Ask

and T ell are special atoms used for communication between
the agents [12]. Each term is either a constant symbol or
a variable. Every variable occurring in a rule is universally

quantified, and its scope is the clause in which the vari-
able occurs. Every variable appearing in the head must also
appear in the body of a rule. The “→” is read as if and “,” as
and. The atom P0 is called consequent (or head) of the rule
and the conjunction P1, P2, . . . , Pn is the body of the rule.
If n = 0, then the body is equivalent to TRUE and is called
a fact otherwise its a rule.

The interface allows to create an agent program by
receiving a set of rules and initial working memory facts.
The various phases of the desktop interface are provided
in Figs. 2, 3 and 4. In Fig. 2a, a system developer can
create a rule-base. Once a rule-base is created the next inter-
face shown in Fig. 2b, is ready to receive input a set of
rules. Figure 3 shows the validation of the rule and allow-
ing the system developer to save it if the rule entered is
according to the correct format. Figure 4 shows the phase
where the system developer wants to enter the facts, it auto
suggest the rules as a developer starts typing so that the
chances for adding irrelevant or erroneous facts are min-
imized. The Desktop interface produces its output in the
form of a JSON1 file. JSON is a light weight data inter-
change format. The JSON file is then further provided as an
input to the Android Application.

3.2.2 Android interface

Figure 5 depicts Android interface to store the rules in
case a developer wants to use the Android interface. We
have options to insert rule priority, rule body, consequent
of the rule, and the flag. The inserted rules are stored in
the Android SQLite database. In the Android environment,
SQLite is used for database operation without the need of
any external application installation. The SAVE button saves
the rule into the rule-base. The INITIALIZE RULE-BASE
button takes the set of rules for processing to the next stage.
The CLEAR RULE-BASE button is used to erase all the rules
and related data from its rule-base. Figure 6 depicts how
a developer can use Android interface to enter the initial

1JSON-http://www.json.org/

http://www.json.org/


Mobile Netw Appl (2017) 22:289–304 295

Fig. 2 Rule-base initialization

facts to start the rule-base. It is pertinent to enter the initial
facts with care to make the system process them as intended.
Alternatively user can also provide the initial facts from the
JSON file generated from the desktop interface. In the next
section, we will discuss in more detail how the backend
works.

4 Internal working mechanism

The proposed system, as stated before, has different mod-
ules which are integrated with each other to perform the
whole task. In this section, we explain the internal work-
ing mechanism of the rule-based agents. We explain each
process from inserting the rules into the knowledge base

Fig. 4 Facts interface with auto suggestion

till a Goal is achieved. We would also like to mention that
unlike many other systems, our inference engine do not uses
RETE algorithm [31]. The reason for not using the RETE
algorithm is that it is very memory consuming algorithm
due to its heavy use of beta memory and in resource-
bounded environment memory is one of the bounded
resources. Also our system design is based on decentralised
approach, so rules of a smart space system are distributed
among the agents, and often fewer rules are required to
design most agents’ behaviours. Therefore, instead of using
RETE algorithm we developed our own pattern matching
mechanism which is tailored to fit our requirements and
resources.

4.1 Usage of key terms

In this paper, we use some general terminologies which
are defined and summarised here for better understanding.
Agent refers to any device which is able to exhibit goal-
directed intelligent behaviour and communicate with other
agents and human users. Working memory is a short term
memory where newly derived facts are stored, in our system
it is limited and the agents are designed in a manner to work

Fig. 3 Validation of
Horn-clause rules



296 Mobile Netw Appl (2017) 22:289–304

Fig. 5 Rule manipulation activity interface

within the limitations provided. Rule-base is a knowledge-
base of an agent. Flag refers to a characters associated
with a rule with its own meaning e.g., ‘G’ for goal, ‘C’

Fig. 6 Initial working memory facts

for communication rule and ‘D’ for deduction. Priority is
defined with each rule to give it priority over other rules, it
is a positive numeric value. Activity is a term used to define
the Android active screen on the display. For the rest of
the paper we use the JSON files generated by the desktop
interface, and all the subsequent operations are carried out
accordingly.

4.2 System architecture and sensor data acquisition

The architecture of our system consists of three layers. In
the first layer, environmental data is sensed either from
the mobile device embedded sensors or independent sen-
sors connected to a mobile device. In the second layer, the
low-level contexts are generated from sensed data and then
high-level contexts are inferred by the reasoning techniques.
In the third layer, the context-aware application provides
services based on the available contexts. Sensors are an
important part of context-aware systems. They are used to
collect environmental data as low-level contexts and for-
ward those data to the intended device or agent, the agent
then inferences high-level contexts through reasoning. In
our system design we consider two types of sensors, first
type which are embedded directly to the agent and the sec-
ond type when the sensors are independent and are attached
to different parts of a human body or in the surrounding
environment. In the case where the sensors are embedded
to an agent, for example, GPS on Android device, the data
can be acquired using the GPS sensor API provided by the
Android SDK. The Figs. 7 and 8 show how a sensed loca-
tion is converted into human readable format (high level
context) from latitude and longitude (low level context), fur-
ther clicking on the map address pin points the location of a
user. In the later case, independent sensors such as medical
sensors for collecting a patient’s physiological health infor-
mation are simulated using a Android device, which can
send for example a high blood pressure message to another
agent representing a patient.

4.3 System startup and initialization

If we use the desktop interface to validate a set of rules and
facts (or initial contexts) while implementing an agent, the
resulting JSON file could be used in the Android device for
further processing. The JSON files can be copied to Android
device via a sync cable, as an email, via bluetooth or as an
web service to fetch the files. Rules are stored in a rule-
base and facts are stored in the working memory. Since in
our system a context-aware rule-based agent uses forward
chaining algorithm, it starts with the initial facts stored in
the agent’s working memory. Although a set of initial facts
is provided by the programmer while creating an agent, it
is not always necessary because an agent may use messages



Mobile Netw Appl (2017) 22:289–304 297

Fig. 7 Reverse geo-coded address

received from other agents or sensed data from the envi-
ronment as initial facts. In our system, an agent’s working
memory contains a set of current contexts (facts) and it
changes over time by executing matching rule instances. If
any update is discovered in the agent’s working memory,
the match-select-act cycle is invoked to infer new high-level
context(s) from the available contexts, and context-aware
services are then provided based on the updated contexts. In
the following, we discuss match-select-act cycle.

4.4 Match: conflict set generation

The rule matching or conflict set generation algorithm gen-
erates a set of applicable rule instances according to current
contexts or working memory facts. A forward chaining
algorithm unifies all antecedents of all rules with a sub-
set of relevant working memory facts. That is, for each
rule, the algorithm matches all its antecedents to the facts
from the working memory, if all antecedents of a rule are
matched then it will check if the consequent is already in
the working memory or not, if not then the corresponding
rule instance will be added to the conflict set. This will be
repeated until no more rule matches. The conflict set may
contain more than one rule instance with different priorities.
The Algorithm 1 describes the steps involved in conflict set
generation.

Algorithm 1 Conflict set generation



298 Mobile Netw Appl (2017) 22:289–304

4.5 Select: conflict resolution

In this phase the conflict between rule instances residing in
the conflict set is resolved. Conflict resolution is the order
that a rule instance is removed from the agenda or conflict
set and its actions executed. In this implementation, we only
use rule ordering strategy using the rule priority, which is an
integer, determines which rule should be executed before the
others. The Algorithm 2 describes the steps involved in con-
flict resolution, which is selecting one rule instance from the
conflict set that has the highest priority. If there are multiple
rule instances with the same priority exist, the rule instance
to be executed is selected randomly.

Algorithm 2 Conflict resolution

4.6 Act: execution of the selected rule instance

Execution of a rule instance is straight forward. When the
rule instance selected from the conflict set is forwarded for
execution, its consequent is added to the working memory
as well as processed for further actions depending on the
nature of the rule. Consequent of the rule instance can be in
a form of communication directive, a fact as a newly derived
context simply to be added to the working memory or taking
any other action. In order to achieve this, as we have already
mentioned, the flag plays an indicator. If the flag is ‘G’, then
a goal has been achieved, consequent will be added to the
working memory and the system needs to be halt. Similarly
the flag ‘C’ indicates that the consequent will be added to

Fig. 8 Address tracked on map

the working memory and at the same time the communica-
tion part needs to be invoked for this specific execution of
rule instance. On the other hand, the flag ‘D’ indicates that
the consequent will only be added to the working memory.
The communication between the agents are achieved using
communication rules. If a rule has either an Ask or a T ell as
its consequent, we call it a communication rule. Communi-
cation rules are handled differently than deduction rules. We
discuss agent communication in more detail in Section 4.8.
When a rule instance is fired how its consequent is added to
the working memory as a newly derived context is discussed
in the following section.

4.7 Working memory updating

The working memory of an agent carries facts which can
be initial facts, the newly inferred facts as a result of exe-
cution of any rule, or the communicated facts received as
messages from other agents. In any case it provides a holder
for the available current contexts and to perform context
reasoning. In the whole system design and implementation
processes where the emphasis is given on the resource con-
strains, memory is one of the key resources we aim to save.
The limit on the size of the working memory is to ensure
it does not exceed the maximum number of contexts it can



Mobile Netw Appl (2017) 22:289–304 299

Algorithm 3 Execution of a rule

store at any given time, but the facts are generated at almost
every iteration and keeping the facts that are more vital to
the execution is a crucial task. In our implementation, the

working memory is basically a fixed size array. Initially it
is empty and once the initial facts are provided, an agent
starts context-aware reasoning. The working memory of an
agent is divided into static memory and dynamic memory.
The dynamic memory is bounded in size, where one unit
of memory corresponds to the ability to store an arbitrary
context. The static part contains initial facts to start up the
system, thus it’s size is determined by the number of initial
facts. The dynamic part contains newly derived facts as the
agent performs context-aware reasoning. Only facts stored
in the dynamic memory may get overwritten, and this hap-
pens if an agent’s memory is full or a contradictory context
arrives in the working memory (even if the memory is not
full). Whenever newly derived context arrives in the mem-
ory, it is compared with the existing contexts to see if any
conflict arises. If so then the corresponding contradictory
context will be replaced with the newly derived context, oth-
erwise an arbitrary context will be removed if the dynamic
memory is full. Because of the bounded dynamic memory,
there might be the case when the system can go into an infi-
nite execution if there is no forceful stop, and the goal is
not achievable. To overcome this issue we set the number
of iteration equal to the number of rules we have to ensure
that every rule is checked and in case of no matches are
found, instead of abrupt behaviour it will halt itself, saving
resources of the host system. The Algorithm 3 describes the
steps involved in execution of the selected rule instance and
the updating of the working memory.

4.8 Communication and subroutine handling

Besides the conventional rule firing and updating the work-
ing memory facts, the application is also capable of handling
different behaviours which are the outcomes of the conse-
quent of a rule instance. For instance, agents can exchange
messages regarding their current contexts. In order to
achieve this, an agent has to invoke the communication
subroutine. Where the communication subroutine is respon-
sible for exchanging the information from one device to
another. In [12], Ask and T ell primitives have been defined
to achieve communication between agents (e.g., two smart
devices), Ask is used when one device asks for some con-
textual information, similarly T ell is used to answer the ask
or simply conveying some contextual information without

Table 2 Agent ID table

Agent ID Bluetooth IP address ICCID

(cell number)

1 BP monitor x.y.z.a 111222333

2 Patient care x.y.z.b 111222444

3 Caregiver x.y.z.c 111222555



300 Mobile Netw Appl (2017) 22:289–304

being asked. However, in practice how the contextual infor-
mation is sent or received is a matter of question. In our
implementation, the devices can communicate in a variety
of ways, including Bluetooth, Infrared, Wireless, and SMS.
These different modes give these devices diversity in com-
munication. We proposed that in order to achieve an efficient
communication, a table has to be maintained and distributed
among all the connected devices. This table contains a list
of available communication modes supported in the domain.
Each device is assigned with a numeric ID, and this ID can
be used in the Ask(i, j , p(t1, t2)) and T ell(i, j, p(t1, t2)),
which will also keep the logical structure of the rule intact.
The i and j specify the FROM and TO respectively. If we
assign them numbers from the table, it can specify which
devices are communicating with each other. For example,
when i = 2 and j = 3, the Ask primitive becomes

Ask(2, 3, p(t1, t2)), where p(t1, t2) is an atomic context
which neither contains an Ask nor a T ell, and according to
the Table 2 where the ID 3 is associated with a caregiver
device (as agent 3) and 2 is associated with a patient care
device (as agent 2). In case if the patient care agent wants
to communicate with the blood pressure monitor agent, it
can use the same format by specifying the ID of the blood
pressure monitor device. The rest of the columns specify
the different available modes of communication and their
respective addresses. In case of Bluetooth communication,
these devices have to be paired with each other. Once paired
names are added to a pair list, they can be specified in the
table in order to initiate communication. Once the agents’
IDs are specified, the communication mode can be specified
explicitly by adding the communication mode at the begin-
ning of the Ask and T ell rule, e.g., Bluetooth(Ask(i, j ,

Table 3 Some rules extracted from the smart space ontology

Agent 1: Blood pressure agent

Initial facts:

Case High: Person(Mary), SystolicBP (140), DiastolicBP (95), hasSystolicBP (Mary, 140), hasDiastolicBP (Mary, 95), greaterThan(140, 120),

greaterThan(95, 80)

Case Normal: Person(Mary), SystolicBP (118), DiastolicBP (78), hasSystolicBP (Mary, 118), hasDiastolicBP (Mary, 78), greaterThan(118, 90),

lessThan(118, 120), greaterThan(78, 60), lessThan(78, 80)

Set of rules:

1 : Person(?p), SystolicBP (?sbp), DiastolicBP (?dbp), hasSystolicBP (?p, ?sbp), hasDiastolicBP (?p, ?dbp), greaterThan(?sbp, 120),

greaterThan(?dbp, 80) → hasBloodPressure(?p, High)

1 : Person(?p), SystolicBP (?sbp), DiastolicBP (?dbp), hasSystolicBP (?p, ?sbp), hasDiastolicBP (?p, ?dbp), greaterThan(?sbp, 90),

lessThan(?sbp, 120), greaterThan(?dbp, 60), lessThan(?dbp, 80) → hasBloodPressure(?p, Normal)

1 : Person(?p), SystolicBP (?sbp), DiastolicBP (?dbp), hasSystolicBP (?p, ?sbp), hasDiastolicBP (?p, ?dbp), lessThan(?sbp, 90),

lessThan(?dbp, 60) → hasBloodPressure(?p, Low)

2 : hasBloodPressure(?p, Normal) → Tell(1,2, hasBloodPressure(?p, Normal))

2 : hasBloodPressure(?p, Low) → Tell(1,2, hasBloodPressure(?p, Low))

2 : hasBloodPressure(?p, High) → Tell(1,2, hasBloodPressure(?p, High))

Agent 2: Patient Care Agent

Initial facts: Person(Mary), hasPatientID(Mary, P01), PatientID(P01)

Set of rules:

1 : Person(?p), hasPatientID(?p, ?pid), PatientID(?pid) → Patient(?p)

2 : Patient(?p), hasBloodPressure(?p, Normal), hasGPSLocation(?p, ?loc) →∼hasAlarmingSituation(?p, ?loc)

3 : Patient(?p), hasBloodPressure(?p, High), hasGPSLocation(?p, ?loc) → hasAlarmingSituation(?p, ?loc)

3 : Patient(?p), hasBloodPressure(?p, Low), hasGPSLocation(?p, ?loc) → hasAlarmingSituation(?p, ?loc)

4 : Tell(1,2, hasBloodPressure(?p, Normal)) → hasBloodPressure(?p, Normal)

4 : Tell(1,2, hasBloodPressure(?p, High)) → hasBloodPressure(?p, High)

4 : Tell(1,2, hasBloodPressure(?p, Low)) → hasBloodPressure(?p, Low)

5 : Patient(?p), hasAlarmingSituation(?p, ?loc) → Tell(2,3, hasAlarmingSituation(?p, ?loc))

Agent 3: Caregiver Agent

Initial facts: Caregiver(John)

Set of rules:

1 : Tell(2,3, hasAlarmingSituation(?p, ?loc)) → hasAlarmingSituation(?p, ?loc)

2 : CareGiver(?c), hasAlarmingSituation(?p, ?loc) → isCaredBy(?p, ?c)



Mobile Netw Appl (2017) 22:289–304 301

p(t1, t2))), which will be taken as agent i wants to com-
municate with agent j using Bluetooth only. In case if no
pre-rule communication method is defined then any of the
available communication modes can be used. While this is
so far handling communication using the rules, but in order
to make it work every communication method has to be
attached with its respective handler and a method has to be
specified which can understand the rule and interpret it into
Android specific format. These rules before triggering will
be checked with the Ask and T ell rules. If any of them is
found, a subroutine will be called to handle the rule, which
will extract its FROM and TO from the agent ID table along
with the communication addresses and perform the action.
The communicated contexts when received by a receiver
agent are stored in a buffer before putting them into it’s
working memory. If the receiving agent is in the middle
of the execution it will first complete its current execution
and in the next iteration it will add the received contexts
from the buffer to it’s working memory and will continue
further processing.

5 A smart home environment example system

In [27], we have shown how we develop a multi-agent non-
monotonic context-aware system whose rules are derived
from a smart environment domain ontology. The applica-
tion is intended to provide care to the patients in smart
home environment. Its main design goal is to gather raw
data or low level context from various sensors that are

installed at patient side and in the environment. When the
system has adequate data available it can further monitor
the patient’s situation and in case of patient’s discomfort, it
seeks the caregiver’s attention. In that paper, we have shown
how to model a context-aware system based on the logic
developed in [12] and how to analyse and formally verify
non-conflicting context information guarantees it provides.
In this section, we show how we implement an example
scenario using Android powered smartphones. The core pur-
pose of modelling domain in the ontology is to contextualize
information in an organized and structured way. The set of
rules and the set of initial facts are derived from the ontol-
ogy to model the system considering three agents, namely
a Blood Pressure Simulator agent, a Caregiver agent, and
a Patient care agent. We list the set of rules that are dis-
tributed to these agents in Table 3, which are derived from an
ontology. A fragment of the ontology is depicted in Fig. 9.

5.1 Experimental setup

In order to implement the verified agents behaviours, we
consider three Android powered smartphones representing
three agents. The Blood Pressure Simulator agent, which
is agent 1, sends either HIGH blood pressure or NOR-
MAL blood pressure status to the Patient care agent 2. After
receiving the blood pressure status the Patient care agent
performs context-aware reasoning and derives new contexts.
It also uses GPS sensor data to derive and add high-level
context as its location to the working memory. Based on
the context-aware reasoning result, it interacts with agent 3,

Fig. 9 A fragment of the smart space ontology



302 Mobile Netw Appl (2017) 22:289–304

Fig. 10 Agent 2 displays the
normal blood pressure status
(The left hand side of the figure
shows screen when a message is
received from agent 1, and the
corresponding context reasoning
result shows on the right hand
side screen)

which is a Caregiver agent. Every agent as per Table 3 per-
forms certain tasks, and its behaviour depends on the rules in
its rule-base, the facts provided to it, interaction with other
agents as well as information acquired from the environ-
ment. In our setup we used two sensors, one is external to
the patient care agent i.e., the blood pressure monitor while
the other one is a location sensor embedded into the patient
care device. The rules designed to implement the system
take into consideration the blood pressure of the patient as
one of the main decision making factors. As the rules indi-
cate, if the blood pressure is normal, agent 2 displays a
non-alarming message situation to the patient. In case of

high blood pressure, it informs about the patient’s alarming
situation to the Caregiver agent. In addition, it also sends the
patient’s current location acquired from the GPS sensor to
the Caregiver agent. Figure 10 (left) depicts that the Patient
care agent received a normal blood pressure status mes-
sage from agent 1, when the patient clicks on the initialize
rules, Patient care agent performs context-aware reasoning
and derives new contextual information. As we mentioned
before, the reasoning engine runs whenever any context is
added to the working memory or any update of the con-
text in the working memory is detected. This could be based
on firing agent’s own rule, receiving a context from other

Fig. 11 Agent 2 displays the
abnormal blood pressure status
(The left hand side of the figure
shows screen when a message is
received from agent 1, and the
corresponding context reasoning
result shows on the right hand
side screen)



Mobile Netw Appl (2017) 22:289–304 303

Fig. 12 Agent 3 displays the fact that caregiver is aware of the
emergency situation

agent or acquiring information from the external environ-
ment. After the reasoning process is completed, the screen
displays a message to the patient about his status which is
depicted in Fig. 10 (right). When agent 2 receives a blood
pressure status message as high from agent 1 depicted in
Fig. 11 (left), agent 2 changes its behaviour according to
the current context and interacts with the Caregiver agent to
inform about the alarming situation of the patient, which is
depicted in Fig. 11 (right). Figure 12 depicts that the care-
giver has received the message sent by agent 2 and acted
accordingly. Note that information displayed on the screens
are only for experimental purposes, in practice the appli-
cation provides services based on the available contexts
and internal operations are hidden from the users. Although
this is a small-scale experiment, the results indicate that
our system design and implementation is a good choice
for practical applications of context-aware computing and
resource-bounded practical reasoning.

5.2 Discussion

To demonstrate the effectiveness of the formal logical
framework presented in [12], we implemented the above
mentioned algorithms in Android powered smartphones
using the Java language. One of the key features of our
approach to rule-based context-aware non-monotonic rea-
soning is the soundness and completeness of the logical

framework compared to many other traditional system
design and implementation approaches. The implemented
system guarantees to behave according to its design objec-
tive. From the context modelling and contextual reasoning
perspectives, a logical language with a clear semantics is
used to provide contextual reasoning capabilities of the
agents in the system considering knowledge-based reason-
ing about context in perceptual and sensed data about the
real world.

6 Conclusions and future work

In this paper, we presented and discussed the early devel-
opment prototype of our resource-bounded context-aware
applications based on the logical model developed by [12].
We made a working application of the concept and tested its
behaviour on the rules that were used in the verification and
the behaviour is found to be the same. The implementation
adopted resource friendly mechanism to minimize the use
of the memory and processor along with the battery power
by restricting the size of the working memories of the agents
and their respective message counters. Agents in the appli-
cation system use rule ordering reasoning strategy while
performing contextual non-monotonic reasoning. Here, it
is pertinent to mention that the system designer/developer
plays a crucial role when designing the rules of the system.
The priorities assigned to the rules can make a big differ-
ence in the execution of the system. We discussed in detail
how communication between the agents is implemented and
how the system interprets different kind of rules.

Although it is at a very early stage in the development
process, the working prototype showed promising results
on a small set of rules. In order to further improve the
application, we will implement and study a comprehensive
real world context-aware service scenario. The applica-
tion will be tested against different rule sets with varying
sizes and different arrangements to further check its opera-
tional behaviour. Furthermore, we would like to enhance the
framework considering users’ preferences.

Acknowledgments This work is partially supported by the Ministry
of Science, Technology and Innovation (MOSTI), Govt. of Malaysia
[grant 01-02-12-SF0269].

References

1. Motorola INC (1973) Motorola demonstrates portable telephone
to be availabe for public use by 1976, April 3. Press Release from
Motorola Inc.

2. Ballagas R, Borchers J, Rohs M, Sheridan JG (2006) The
smart phone: a ubiquitous input device. IEEE Pervasive Comput
5(1):70–77



304 Mobile Netw Appl (2017) 22:289–304

3. Schrittwieser S, Frühwirt P, Kieseberg P, Leithner M, Mulazzani
M, Huber M, Weippl ER (2012) Guess who’s texting you?
Evaluating the security of smartphone messaging applica-
tions. In: 19th annual network and distributed system security
symposium

4. Pei C, Guo H, Yang X, Wang Y, Zhang X, Ye H (2011) Sen-
sors in smart phone. In: Computer and computing technologies in
agriculture IV. Springer, pp 491–495

5. Raento M, Oulasvirta A, Petit R, Contextphone HT (2005) A pro-
totyping platform for context-aware mobile applications. IEEE
Pervasive Comput 4(2):51–59

6. Perera C, Zaslavsky AB, Christen P, Georgakopoulos D (2014)
Context aware computing for the internet of things: a survey. IEEE
IEEE Commun Surv Tutor 16(1):414–454

7. Abowd GD, Dey AK, Brown PJ, Davies N, Smith M, Steggles
P (1999) Towards a better understanding of context and context-
awareness. In: Handheld and ubiquitous computing. Springer, pp
304–307

8. Want R, Hopper A, Falcão V, Gibbons J (1992) The active badge
location system. ACM Trans Inf Syst 10(1):91–102

9. Salber D, Dey AK, Abowd GD (1999) The context toolkit: aiding
the development of context-enabled applications. In: Proceed-
ings of the SIGCHI conference on human factors in computing
systems. ACM, New York, pp 434–441

10. Bardram JE, Nørskov N (2008) A context-aware patient safety
system for the operating room. In: Proceedings of the 10th inter-
national conference on ubiquitous computing, pp 272–281

11. Wooldridge M (2009) An introduction to multiagent systems, 2nd
edn. Wiley Publishing

12. Rakib A, Ul Haque HM (2014) A logic for context-aware non-
monotonic reasoning agents. In: Human-inspired computing and
its applications. Springer, pp 453–471

13. Esposito A, Tarricone L, Zappatore M, Catarinucci L, Colella
R, DiBari A (2008) A framework for context-aware home-health
monitoring. In: Ubiquitous intelligence and computing. Springer,
pp 119–130

14. Ejigu D, Scuturici M, Brunie L (2007) An ontology-based
approach to context modeling and reasoning in pervasive comput-
ing. In: PerCom workshops’ 07. Fifth annual IEEE international
conference on pervasive computing and communications work-
shops, 2007. IEEE, pp 14–19

15. Guo B, Zhang D, Imai M (2011) Toward a cooperative pro-
gramming framework for context-aware applications. Pers Ubiquit
Comput 15(3):221–233

16. Rakib A, Faruqui RU (2013) A formal approach to modelling and
verifying resource-bounded context-aware agents. In: Context-
aware systems and applications. Springer, pp 86–96

17. Rakib A, Ul Haque HM, Faruqui RU (2014) A temporal
description logic for resource-bounded rule-based context-aware

agents. In: Context-aware systems and applications. Springer,
pp 3–14

18. Nalepa GJ, Bobek Szymon (2014) Rule-based solution for
context-aware reasoning on mobile devices. Comput Sci Inf Syst
11(1):171–193

19. Sartori F, Manenti L, Grazioli L (2013) A conceptual and com-
putational model for knowledge-based agents in android. WOA@
AI* IA 2013:41–46

20. Ughetti M, Trucco T, Gotta D (2008) Development of agent-
based, peer-to-peer mobile applications on android with jade. In:
The second international conference on mobile ubiquitous com-
puting, systems, services and technologies, 2008. UBICOMM’08,
pp 287–294. IEEE

21. vanWissen B, Palmer N, Kemp R, Kielmann T, Bal H (2010) Con-
textDroid: an expression-based context framework for android. In:
Proceedings of the international workshop on sensing for App
Phones (PhoneSense) 2010, pp 1–5

22. Chrastina BcO (2015) Cross-platform development of smartphone
application with the kivy framework. Master’s thesis, Masarykova
univerzita, Fakulta informatiky

23. Hosio S, Ferreira D, Goncalves J, van Berkel N, Luo C, Ahmed
M, Flores H, Kostakos V (2016) Monetary assessment of battery
life on smartphones. In: Proceedings of the 2016 CHI conference
on human factors in computing systems. ACM, pp 1869–1880

24. ter Horst HJ (2005) Completeness, decidability and complexity of
entailment for RDF Schema and a semantic extension involving
the OWL vocabulary. Web Semant Sci Serv Agents World Wide
Web 3(2–3):79–115

25. Grosof BN, Horrocks I, Volz R, Decker S (2003) Description logic
programs: combining logic programs with description logic. In:
WWW2003. ACM Press, pp 48–57

26. Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B,
Dean M (2004) SWRL: a semantic web rule language combining
OWL and RuleML. Acknowledged W3C submission, standards
proposal research report: Version 0.6

27. Rakib A, Ul Haque HM (2015) Modeling and verifying context-
aware non-monotonic reasoning agents. In: Proceedings of the
13th ACM-IEEE international conference on formal methods and
models for system design. IEEE, pp 453–471

28. Petcu D, Petcu M (2005) Distributed jess on a condor pool.
In: Proceedings of the 9th WSEAS international conference on
computers, pp 1–5

29. Jackson W (2014) Android apps for absolute beginners. 3rd
edition, ISBN13: 978-1-484200-20-9. Apress, Berkeley

30. Android is the world’s largest mobile platform–but it has to over-
come these massive hurdles to keep the lead - business insider.
http://www.businessinsider.my/, Oct 2015

31. Forgy CL (1990) Rete: a fast algorithm for the many pattern/many
object pattern match problem expert systems, pp 324–341

http://www.businessinsider.my/

	A Framework for Implementing Formally Verified Resource-Bounded Smart Space Systems
	Abstract
	Introduction
	Background study
	Limitations and challenges in resource bounded devices
	A context modelling and reasoning framework
	Implementation platform

	Rule-based context-aware system specification
	Architecture and basic hardware usage
	Application interface
	Desktop interface
	Android interface


	Internal working mechanism
	Usage of key terms
	System architecture and sensor data acquisition
	System startup and initialization
	Match: conflict set generation
	Select: conflict resolution
	Act: execution of the selected rule instance
	Working memory updating
	Communication and subroutine handling

	A smart home environment example system 
	Experimental setup
	Discussion

	Conclusions and future work
	Acknowledgments
	References


