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Abstract In software development, refactoring is a process
that improves the system internal structure without alter-
ing its external behavior. Applying design patterns, which
are common reusable solutions of several kinds of prob-
lems is widely adopted. This technique, however, raises a
challenging issue that after applying design patterns the
software system may not preserve some certain behavioral
properties. This paper proposes a new approach to check-
ing consistency between original software system and its
evolution at both design and implementation phases. First,
we formalize elements of software designs and programs.
Methods, based on these formalizations, are proposed for
verifying the design and implementation of the system.
Finally, the paper presents a case study of Adaptive Road
Traffic Control system to illustrate the proposed approach in
detail.
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1 Introduction

In software engineering, software evolution is the process
of developing software initially, then repeatedly updating it
due to many reasons such as reducing errors, saving efforts
in development or improving software quality. Techniques,
which are commonly used in this process are re-engineering
and refactoring of software code or models.

Refactoring is a powerful technique, which is used to
improve the quality of the software (e.g., extensibility,
modularity, re-usability, complexity, maintainability...) by
changing the internal structure of software without altering
its external behavioral properties. Refactoring using patterns
is the process of improving the design of existing code, the
classic solutions to solve the design problems.

A design pattern [13] is a general reusable solution to a
commonly occurring problem within a given context in soft-
ware design. A design pattern is not a completed design that
can be transformed directly into source or machine code. It
is a description or template for how to solve a problem that
can be used in many different situations. Patterns summarize
best practices that programmers can use to solve com-
mon problems when designing an application or system.
Object-oriented design patterns typically show relation-
ships and interactions between classes or objects, without
specifying the final application classes or objects that are
involved. Patterns that imply object-orientation or more
generally mutable state, are not as applicable in functional
programming languages. A software system should be opti-
mized by refatoring methods, in which design patterns may
be used to improve its source code or design model. Pat-
terns are language independent, they have been broadly
used in many programming languages including Java, C++,
etc..
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These techniques, however, need to be performed care-
fully. The main danger is that errors can inadvertently
be introduced, especially when refactoring is done manu-
ally. It means that some certain significant properties are
not preserved in the new design and source code. Several
approaches have been proposed to checking the consis-
tency between systems using graph transformation tech-
niques [5, 25], description logic frameworks [23], and XML
metadata interchange [11]. This paper introduces a new
approach to checking the consistency of systems before and
after refactoring in two phases: design and implementation.
The main contributions of the paper are (1) formalizing
of design models and program’s constructs; (2) present-
ing methods for verifying the consistency of the design
and the implementation of the software; and (3) utiliz-
ing OCL [8] and JML [21] to check the consistency of
software design and Java programs of the ARTC system
respectively.

The rest of the article is organized as follows. Section 2
presents some works related to our research. Section 3 gives
an overview of Strategy pattern, OCL, and JML. A moti-
vating example of ARTC system is introduced in Section 4.
Section 5 portrays the framework overview of checking
consistency software refactored systems. The basic formal-
ization concepts for checking consistency is introduced in
Section 6. Section 7 describes the checking consistency
process at both design and implementation phases. Illustrat-
ing the proposed approach with the motivating example is
depicted in Section 8. Finally, Section 9 concludes and gives
some directions for future works.

2 Related work

Mens and Tourwe [19] made a great survey of software
refactoring where they mentioned various formal tech-
niques, used for refactoring process such as graph transfor-
mation, invariants, dynamic program analysis, and program
slicing, etc. In this section, we review some kinds of lit-
erature that work on checking the consistency of software
refactoring and UML models in more detail.

One research direction in this area is using graph trans-
formation where models or software artifacts can be con-
sidered as graphs and refactoring is referred to transforming
rules. Bottoni et al. [6] proposed to maintain consistency
between the code and design models which are composed
of different types of UML models by describing refactoring
as a set of distributed graph transformations.

Mens et al. [20] introduced a graph representation and
graph formal rewriting rules to specify a program and its
refactoring. Their work could prove the preservation proper-
ties after refactoring at the source code level while this work
focuses on verifying the consistency of properties at the

design phase and allows one to check whether the behavior
of a scenario is consistent or not.

Zhao et al. [25] presented a graph transformation based
approach to design pattern evolution. They proposed a
graph grammar based syntax parser to check the structural
integrity of the evolved design patterns. The authors defined
a rule for each kind of design patterns, then check if evolved
models kept consistency properties of applying patterns.

Van Eetvelde and Janssens [12] transformed a program
into a graph by using a set of graph production rules. It
allowed them to view and manipulate the program and its
refactoring. Their paper, however, did not pay attention
to the consistency among different phases of a software
system.

Researchers also proposed to use description logic or
XML metadata to transform between UML models and its
evolution. Van Der Straeten et al. [23] make use of the
technique to formalize both models, after that, the con-
sistency between them was verified. In the experiment,
they translated UML metadata into Loom (an extensive
query language) and associated production rule system
with description logic tool. They classified the consistency
into several categories, then focused on instance definition
missing and incompatible behavior caused by referencing.
Taking these inconsistencies into account, in our opinion,
are insufficient because when applying design patterns, soft-
ware developers often expect that all external behaviors do
not change, i.e., scenarios’ properties are preserved. And
this is the objective of our research.

Jing Dong et al. [11] recommended a model transfor-
mation approach to check the consistencies between design
models. They depicted both the origin and evolved UML
models by XML metadata interchange (XMI) format which
aimed to facilitate the transformations. Afterward, Java
Theorem Prover was done to check consistencies between
them. In the research, they need one more step to convert
XMI into RDF or RDFS before checking system properties,
so this step makes the approach more complex to imple-
ment. Meanwhile, we use OCL, a common object constraint
language embedded in UML models, to check the consis-
tency. Therefore, we do not need to have an intermediate
transformation step.

Li et al. [14] analyzed and presented methods for check-
ing five types of consistency properties of UML require-
ments consisting a use-case model and a conceptual class
model. Rasch and Wehrheim [22] proposed to use Object-
Z to check the consistency between classes and asso-
ciated state machines. These approaches, however, have
focused on checking consistency between different dia-
grams of a model but have not considered the consistency in
refactoring.

There are various techniques can be used in the perspec-
tive of checking programs in refactoring. Program slicing is
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one of the techniques can be used for refactoring. Takeshi
et al. [18] combined program slicer and symbolic simulation
to check behavior consistency of C program source code at
different refinement levels.

Opdyke [21], who gave the original definition of behavior
preservation, were suggested that for the same set of input val-
ues, the resulting set of output values should be the same
before and after the refactoring. Their research proposed to
ensure the behavior preservation by specifying refactoring
preconditions. But, in this research, besides the pre-
conditions concept, the post-conditions is also complement.

Ward and Bennett [24] introduced a formal language,
named WSL, and its supporting tools provided program
structuring that proves behavior preservation of the pro-
gram. Their approach deals with the consistency at the
implementation level while our approach can check the
consistency at the design level.

In comparison to the prior work, our approach focuses on
consistency properties between each scenario of the model
in the refactoring process with design patterns. Based on
pre/post-conditions of a scenario, which are calculated from
pre/post-conditions of scenario operations before and after,
the consistency properties can be verified. Since a scenario
represents an external behavior of the system, software engi-
neers then can assure that using design patterns in some
scenarios are safe. With frequent usages of design pat-
terns in software engineering, our approach is practical and
feasible to implement.

3 Background

In this section, we briefly introduce about the basic knowl-
edge of techniques used in the proposed approach including
Strategy design pattern, OCL, and JML.

3.1 Strategy pattern

Software design patterns, is originated by Christopher
Alexander [3], is a general reusable solution to a com-
monly occurring problem within a given context in software
design. It has became popular since 1994 by GOF [13],
in which they have categorized the design patterns into

three groups, namely creational, structural, and behavioral
patterns.

In this section, we present in detail one behavioural pat-
tern, namely Strategy pattern, because we use this pattern in
our case study in Section 4. Strategy pattern encapsulates,
defines a family of algorithms and makes them interchange-
able independently from clients. It defines objects, which
represent various strategies and a context object varying
as per its strategy object. The strategy object changes the
executing algorithm of the context object.

The Strategy pattern comprises three participants as
portrayed in Fig. 1:

— IStrategy: The interface that is shared among the con-
crete strategy classes in the family. Class Context uses
this interface to call the algorithm defined by a concrete
strategy.

— ConcreteStrategy: Where the real implementation of
strategy takes place.

— Context: The class maintains a reference of type IStrat-
egy. In some cases, Context may implement operations
so that ConcreteStrategy can access its data.

The advantage of using strategy pattern is that encapsu-
lating algorithms in individual classes will render reusing
code much more convenient and hence, the behavior of the
Context can be altered at run-time dynamically.

3.2 0CL

OCL [8] is a formal language adopted as a standard by the
OMG [1]. The latest version of OCL v2.4 was released in
2014 which is used to define different kinds of expressions
complementing UML models as follows.

— Invariants: stating conditions that must be satisfied in
every instantiation of the model.

— Initialization: initializing class properties.

— Derivation rules: computing the value of derived model
elements.

— Operation contracts: consisting a set of pre- and post-
conditions. A precondition defines a set of conditions
on the operation input and the system state that must
hold when the operation is performed. A postcondition

Fig. 1 Strategy pattern
Context

<<interface>>
IStrategy

-strategy: IStrategy

+execute()

+someMethod()

PAN

| \
N

ConcreteStrategyA

ConcreteStrategyB ConcreteStrategyC

+execute()

+execute() +execute()
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defines the set of conditions that the system state must
hold at the end of the operation.

3.3 Java modeling language

Java Modeling Language (JML) [15] is a behavioral inter-
face specification language (BISL) that can be used to
specify Java classes and interfaces. JML specifications or
assertions can be added directly to source code as a spe-
cial kind of comments called annotation comments, or they
can live in separate specification files. These assertions are
usually written in a form that can be compiled, so that their
violations can be detected at run-time.

One should employ JML due to some following reasons
[15]:

— the precise, unambiguous description of the behavior of
Java program modules (i.e., classes and interfaces), and
documentation of Java code;

— the possibility of tool support [7].

JMVL’s syntax is very close to the Java programming lan-
guage, so it is to use by programmers who have familiar
with Java. Th details of JML can be found in [16].

4 A motivating example: adaptive road traffic
control system
4.1 ARTC system’s description

In order to illustrate the proposed approach, we extract sce-
narios from the ARTC system [2]. Traffic congestion is an

Fig. 2 The initial class diagram
of ARTC system

Detector

-detectorID: String
-detectorName: String
-vehicleCount: String

-state: STATE

-trafficFlow: TRAFFICFLOW

ever increasing problem in towns and cities all over the
world. Local authorities must continually work to maximize
the efficiency of their road networks and to minimize any
disruptions caused by accidents and events.

From the object-oriented perspective, the initial ARTC
system is described by a simplistic model with four classes,
namely Detector, TrafficController, Road and Optimizer.
The Traffic controller is an essential role which coordinates
the other classes. The Detector describes the physical loca-
tion of the detectors as well as counting of count vehicles
number which passing on the road during a particular time.
The next class is Optimizer, which includes the optimiz-
erTraffic method, is used to optimize the signal, time and
direction at the moment time of traffic flow. The UML class
diagram of initial ARTC system is shown in Fig. 2.

The UML sequence diagram have accomplished the task
of showing how the objects interact with each other in
a scenario. We will demonstrate our approach with the
main scenario: gettrafficFlow() and optimizeTraffic(). This
scenario of the system is depicted in Fig. 3.

4.2 Applying patterns

In Fig. 2, the method optimizeTraffic() belong to class Opti-
mizer, which is employed to optimize light signals of the
ARTC system. This solution is adequate if traffic envi-
ronment is stable or witnesses no considerable changes.
However, the system design may have following problems
with the optimizeTraffic() of the class Optimizer:

— Algorithms are so complex to implement in one, therefore
make the source code as large and arduous to maintain.

TrafficController

-controllerID: String Road
-controllerName: String
-amberTime: int
-signalTime: int
-signal: SIGNAL

-roadID: String
-roadName: String
+setRoad()

+setDetector()
+getDetector()
+active()
+getState()
+getTrafficFlow()

-state: STATE +getRoad()
-direction: DIRECTION
-trafficFlow: TRAFFICFLOW
+setTrafficController()
+getTrafficController()
+getInformation()
+analyzeTraffic()
+setInformation()

Optimizer

-state: STATE

-signal: SIGNAL
-signalTime: int
-direction: DIRECTION
+setOptimizer()
+getOptimizer()
+optimizeTraffic()
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:Detector :TrafficController :Optimizer
getTrafficFlow() analyzeTraffic()
optimizeTraffic()

Fig. 3 Sequence diagram for calculating optimal control

— It takes time as well as effort to add new algorithms to
the existing ones.

— The code of the existing algorithms are difficult to
reuse, especially when one wants to create a hierarchy
from Optimizer class.

In order to overcome these limitations, we are going to
optimize the ARTC system by using Strategy pattern. As
illustrated in Fig. 4, we detach three optimization strate-
gies (SignalOptimizeStrategy, TimeLimitOptimizeStrategy,
AdjacentOptimizeStrategy) from the class Optimizer then
formed a hierarchy of algorithm classes that share the

Fig. 4 Class diagram of ARTC

system after applying Strategy

pattern Detector

-detectorID: String
-detectorName: int
-vehicleCount: String

-state: STATE

-trafficFlow: TRAFFICFLOW

interface OptimizerStrategy. After applying Strategy pat-
tern, the sequence diagram of the scenario calculating
optimal control is re-drawed in Fig. 5.

4.3 Behaviour preservation

ARTC system has a real time characteristic because of
immediate responses to variant of traffic flow conditions.
It should be executed in efficient way and returns to cor-
rect result. In ARTC system, without loss of generality,
we assume that detector works in specific direction, some
identified constraints need to be preserved are:

—  If the state is heavyTraffic and the signal is red, it will
be ensured that the signal is turned to green.

— If the state is lowTraffic and the signal is green, it will
be ensured that the signal is turned to red.

— If the state is heavyTraffic and signal is green, it will be
ensured that the signalTime is increased.

— If the state is lowTraffic and signal is red, it will be
ensured that the signalTime is increased.

—  If the state is highTraffic and direction is noChoose, it
will be ensured that the direction is turned to choose.

— If the state is lowTraffic and direction is choose, it will
be ensured that the direction is turned to noChoose.

In this article, we are going to check the system’s
behaviors preservation at a variety of different phases, espe-
cially Design and Implementation. For the former, we use
the Object Constraint Language (OCL) to represent these

TrafficController

-controllerID: String Road

-location: String
-speedLimit: int

-roadID: String
-roadName: String

+setDetector()
+getDetector()
+active()
+getState()
+getTrafficFlow()

-roadID: String
+setTrafficController()
+getTrafficController()
+getInformation()
+analyzeTraffic()

f

OptimizerStrategy

+setRoad()
+getRoad()

-state: STATE
-signal: SIGNAL
-signal Time: int
+setOptimizer()
+getOptimizer()
+getInformation()
+optimizeTraffic()

?

[

SignalOptimizeStrategy

+optimizeTraffic()
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constraints, for the latter, Java Modeling Language (JML) is
employed to annotate into purely Java code to guarantee the
correct behavioral execution.

5 Approach overview

In this section, we outline the proposed approach depicted
in Fig. 6. There are three constituent which have been iden-
tified: (1) refactoring, (2) computing pre/post-conditions of
scenarios, and (3) checking consistency. Note that, in this
article we spend the most interested in checking consistency
process which is executed in both design and implementa-
tion phases of the system.

To check consistency at design phase, we use class and
sequence UML diagrams to model the software system.
After applying design patterns in refactoring process, we are
going to check whether the system’s behaviors are preserved
or not? In order to achieve this intention, we employ Object
Constraint Language (OCL) to describe the constraints of
the system which include invariant and pre/post-conditions.
At design level, the essential of refactoring process is re-
distribute classes and methods [21], therefore, based on the
defined consistent rules, we re-compute all constraints on
the refactored models, then compare with their original and
give out the result of checking consistency at the design
phase.

Checking the consistency at implementation has been
done analogously. The implementation phase of the soft-
ware life cycle is the process of realization the speci-
fied design document into executable programming lan-
guage code. In this article, we use Java to implement the

motivating example. Thefore, we employ the JML to com-
plement to Java code to portray the constraints of the
system. With the support of existing tools [9, 17], the
checking consistency at implementation phase is done auto-
matically.

Generally, we have been checked the consistency of the
software system at variety phases after applying design pat-
tern in refactoring process. The result of each stage is the
foundation to improve the reliability of the software system.

6 Formalization of software designs

In this section, we introduce the formalizations which are
used as a foundation to check the consistency in software
refactoring. When designing a software system with UML,
it can be presented multiple scenarios consisting of sev-
eral diagrams. Among them, scenario sequence diagrams
are used for depicting the behavior of main functionalities.
UML constraints are employed to deal with the request that
conditions and restrictions on an UML element which must
be satisfied in order to fulfill the functionality requirement.
There are three standard types of constraints, which includes
invariant, precondition, and postcondition, are defined on
classes as follows.

Invariant: a class invariant defined on class attributes is a
condition that every instance of that class must satisfy.
Precondition: a precondition of an operation is a condition

that operation has to satisfy before executing.
Postcondition:  a postcondition of an operation is a condi-
tion that operation has to satisfy after executing.
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Fig. 6 The approach to
checking consistency System Design System Design
UML & OCL UML & OCL
Refactoring ] L
System System
Implementation Implementation
Java & JML Java & JML
Original System Evolution System

A 4

Pre/Post-Conditions
Computation

Pre/Post-Conditions

Consistent Computation

Rules

Checking
Consistency

In this paper, we introduce two more constraints, which
are defined on scenarios of the design.

Scenario precondition: a scenario precondition is a con-
straint such that the state of the all involved classes’
attributes must satisfy before the scenario starts.

Scenario postcondition:  a scenario postcondition is a con-
straint such that the state of the all involved classes’
attributes must satisfy after the scenario finishes.

The details of formal representation of the design are
given as follows:

Definition 1 (Model) A model M is a tuple (Cy, Su),
where Cjy is a set of classes and Sy is a set of behavioral
scenarios.

Definition 2 (Class) A class Ciy € Cyy is formalized by a
3-tuple Ciyy = (O Pcim, Acim, Icim), where O Py is a
set of public operations, Ac;y is a set of public attributes,
and I¢; s states a set of class invariants.

@ Springer
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Definition 3 (Abstract operation precondition) The pre-
condition PRE,),, of the op,; in the abstract class Ciy
which is overridden by N operations op,; in concrete classes
Cksiy is defined by the disjunction of the precondition of
all the op,; in the concrete classes Cksiyy.

Assume Pi(op.;) is the precondition of the operation
0pei in every concrete class, we can compute the precondi-
tion for op,; in the abstract class according to this formula
PREp,,, = \/ Pi(opei), where op,; € Cksiy is a real-
ization operation, and P is predicate which dedicates the
precondition of the op,; .

Definition 4 (Abstract operation postcondition) The post-
condition P OST,p,,, of the op,; in the abstract class Ciy
which is overridden by N operations op,; in concrete classes
Cksiyy is defined by the disjunction of the postcondition of
all the op,; in the concrete classes Cksiyy.

In a similar way with the abstract operation precondition,
it is easy to realized that POST,),,, = \/ Pi(opei), where
op.i € Cksiyy is a realization operation, and P is predicate
which dedicates the postcondition of the op;.
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Behavioral scenarios of the model represent the system
external behavior. In this paper, we consider scenarios as
sequence diagrams.

Definition 5 (Scenario) A scenario Sij; is represented by
a 4-tuple SiM = (CISiM, PREs,'M, ESiMy POSTS,'M)
where C iy C Ciyy represents a set of classes involved in
the scenario, P R Eg;yy is the scenario precondition, E; s is
a sequence of operations of involved classes, and P O STs; p
states the scenario postcondition.

Definition 6 (Scenario operation) An operation in the
scenario is a 4-tuple Eksijy = (PREEkS,.M, O Pgigp»
POSTEkgy, . k), where PRE gy, states the operation pre-
condition, O Pggg;,,, is the public operation of the involved
in the scenario, P O STggg,,, is the operation postcondition,
and k is the execution order of operation in the scenario.

In this article, we consider the case that both precondi-
tions and post-conditions of an operation is the conjunction
of predicates on the attributes of classes involved in the sce-
nario, i.e., PREEg,, = /\P(ACijM), where Aciju €
Acip is a attribute, CiM C Clg;y and P is predicate.
A scenario consists of a sequence of operations, hence its
pre/post-conditions are formed by their pre/post-conditions.
Note that, one public operation of a class in different
scenario may have different prep/post-conditions. A sce-
nario pre/post-condition is defined on post-conditions of all
operations involved in the scenario as follows.

Definition 7 (Scenario precondition) The scenario precon-
dition PREg;y is defined by the precondition of the first
happened operation in the scenario.

The precondition of the first operation in the scenario
specifies constraints of all scenario-related public attributes.

Definition 8 (Scenario postcondition) The scenario post-
condition P OSTs;ip is defined by the conjunction of the
constraint on public attribute Ac;;p in the operation post-
condition PO STk, of the last happened operation in
Esim.

Let a scenario S = (eq, €3, ..¢,), wWhere ¢;, i = 1..n,
is the i-th operation happened in the scenario. From the
Def. 6, we have e; = (pree;, opei, poste;, i) and postei) =
A Px(AxC), where Py are the predicate on A;C, which is
the attribute of class C involved in the scenario. Assume
that the scenario has one public attribute Ac that appears
in both postconditions of two scenario operations e; and e;
such that 1 <i < j < n. Then we have post,; = P;(Ac)
and post,;j = P;j(Ac). Since e; happens before e;, P;(Ac)
must be hold after executing the j-th operation.

Definition 9 (Refactor) A refactor R using design patterns

is denoted R : M M M’, where M and M’ are
the original model and its evolution, respectively, D is the
applied pattern name, and SU By s € Sy is set of affected
scenarios.

7 Verifying consistency of software refactoring
7.1 Verification at design phase

In this section, we discuss how to verify the consistency
of a model after applying design patterns. For the sake of
reducing the difficulty in checking consistency, we clas-
sify preservation properties into two categories: static and
dynamic preservation. For the former perspective, we take
into account the invariant of classes. To check the latter,
we concentrate to the pre/postconditions of selected scenar-
ios. We propose to verifying such properties by giving new
propositions of preservation.

Verifying static preservation

Proposition 1 (Static preservation) A refactored model is
called the static preservation with the original one if invari-
ants of its classes are logically equivalent with the original
ones.

Formally, let R : M M’ be a refactor, M’
is called the static preservation with M if VCiy | Ciy €
CunCiyeCy = Icim = Icin.

D(SUBys)
—

Verifying dynamic preservation The critical requirement
of refactoring with design patterns is that the refactored
model does not change the behavior. The behavior can be
described via scenarios. Hence, we need to check if a set
of selected scenarios of a model is whether or not behavior
preservation after refactoring.

Proposition 2 (Total dynamic consistency) A refactored
model is said to be total dynamic consistency with the orig-
inal one if precondition and postcondition of any scenario
execution are logically equivalent with the original ones.

Formally, let R : M POUBMS. - m1 be a refac-
tor, M’ is called the total dynamic consistency with M if
VSim € SUBys A PREsipg = PREgiy A POSTsiy =
POSTs;py.

In Section 6, we state that the scenario pre/post condi-
tions can be computed from scenario involved operations,
hence if PRESiM = PRESiM/APOSTS[M = POSTSiM/,
then all constraints of public attributes of the refactored
scenario are preserved before/after its execution.
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Proposition 3 (Partial dynamic consistency) A refactored
model is said to be partial dynamic consistency with the
original one if with any scenario execution, its precondi-
tions are preserved and its postconditions are satisfied the
one of original model’s scenario.

Formally, let R - M M M’ be a refactor, M’ is
called the partial dynamic consistency with M if VS €
SUBys N PREsiyy = PREgiyw N POSTsiy —
POSTs;py.

In this case, if POSTsiyy — POSTg;y, then the
values of public attribute after executing are still in expected
range.

Proposition 4 (Model inconsistency) A refactored model is
called the inconsistency with the original one if it violates
consistent rules (static and/or dynamic consistency).

The proposition of consistent rules between original
model and refactored model is the basis that we used to
check the consistency in software model evolution.

7.2 Verification at implementation phase

In Section 6, we address that the pre/post-conditions of
a scenario can be computed from pre/post conditions of
involved operations. From implementation perspective, the
execution of a scenario must be preserved its pre/post-
conditions.

Proposition 5 [Execution preservation of refactored pro-
gram] A refactored program P’ is said to be execution
preservation with the original one P if with the same sce-
nario execution, its preconditions are preserved before and
its postconditions are hold after execution.

It is formally defined as clause: PREs, = PREs,, A
POSTs, = POSTs,,.

In this proposition, the scenario pre/post-conditions of
the refactored program are figured out through the sce-
nario one of the original program according to Defs. 7 and
8.

8 Illustrating with ARTC system

8.1 Checking consistency of design refactoring
According to Proposition 1, we can see that the process of
model evolution has preserved invariants in both models so
that static preservation is verified.

We now consider the dynamic preservation of the model
evolution. The preconditions and postconditions of the
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scenario calculating optimal control() specified in initial
model (Figs. 2 and 3) can be calculated, according to Defs. 7
and 8 as the following:

1 PRE_S’iM = trafficFlow -> isEmpty ()

2 POST_S’iM = if (state = heavyTraffic) then ((signal =
green) AND (greenTime > 60))

3 else if (state = lowTraffic) then ((signal =
red) AND (greenTime <= 60))

4 else if (state = highTraffic) then (direction
= CHOOSE)

5 else (direction = NO_CHOOSE)

6 endif

7 endif

8 endif

In a similar way, we figure out the preconditions and
postconditions of the scenario calculatingoptimalcontrol()
in the evolution model (Figs. 4 and 5):

1 PRE_SiM = trafficFlow -> isEmpty ()

2 POST_SiM = if (state = heavyTraffic) then ((signal =
green) AND (greenTime > 60))

3 else if (state = lowTraffic) then ((signal =
red) AND (greenTime <= 60))

4 else if (state = highTraffic) then (direction
= CHOOSE)

5 else (direction = NO_CHOOSE)

6 endif

7 endif

8 endif

From the values of preconditions and postconditions
above, we conclude that the scenario is strongly preserved
all the attributes of the model. According to the Proposi-
tion 2, the refactoring process with Strategy pattern in this
case-study leads to the consistent behavior between the orig-
inal and evolution models. Note that, OCL description is a
form of pseudo first-order logic, it can be transformed to
pure first order predicate logic [4] so that we can check auto-
matically the consistency conditions in software evolution
model using theorem provers [10].

8.2 Checking consistency of source code refactoring

Back to the example in Section 4, all initial behaviors speci-
fications of the ARTC system have been validated checking
on Eclipse software by plug-in OpenJML. Now, after refac-
toring, we are going to consider whether evolution program
satisfy all behaviors specification of the initial program.

In experiments, we have carried out the implementation
the source code of the ARTC system after refactoring. Based
on the set of rules which was built in this Section, we have
figured out the pre/post-conditions of the evolution scenario
as well as checked the constraints on it. The experimen-
tal results are illustrated in Fig. 7 where we can observe
that the execution of optimizeTraffic does not preserve the
consistency.

In other words, the refactored program does not preserve
all behaviors of the initial one, so ones should consider the
applied refactoring process.
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Fig. 7 The result of checking
behavior preservation on

4| Static Checks for: 02
refactored program

4 tFO2
4 tF02.Optimizer

[VALID] Optimi:

! Markers [T] Properties i) Servers [ Snippets {3 Data Source Explorer ) Console = & OpenJML: 02 52

& OpenJML Trace

(tFO2.TrafficCe

AL tFO2.TrafficCe ler. STATE tF02.TrafficCe DIRECTION) [0.88 cvcd]

[VALID] GetSignal() [0.358 cved]
[VALID] GetState() [0.314 cved]
[VALID] GetSignalTime() [0.376 cvc4]

(VALI) GetDiection( (0318 cved

. ‘[LNVAUD], —

raffic(tFO2.TrafficController. STATE, tF02.TrafficCa

rSIGNAL,tF02. TrafficController.DIRECTION, int) [889.443 cvcd] |

9 Conclusions and future work

In this paper, we have proposed an approach to checking
the consistency between original software system and its
refactoring after applying design patterns.

We have conducted consistency checks at design and
implementation phases by introducing new formalizations.
To check the former, we modeled the system by UML and
use OCL to describe the constraints. To check the latter, the
Java programs were annotated by JML and automatically
checked by OpenJML integrated into Eclipse environment.
Our approach expressed the theoretical unification within
the field of software engineering by means of checking con-
sistency throughout from design to implementation phase as
well as feasibility of experimental execution.

Check the consistency of a program or a software model
has been received a lot of interest, however, the existing
research results focus on the consistency between different
phases of life cycle development model (e.g., implemen-
tation and design phase) or different diagrams of a model
(e.g., state diagrams and sequence diagrams). Our approach
pays attention in checking consistency between original
software system and its evolution in both the design and
implementation phase.

To illustrate the proposed approach, we have conducted
experiments on the ARTC system. In the motivating exam-
ple, we just illustrated only the consistency verification
when applying Strategy pattern in the only a pair of
scenario, respectively in the both programs, other scenarios
may be done in a similar way for the more complex system.

As mention earlier, we can see that the calculation of
preconditions and post-conditions of scenarios is time-
consumed and error-prone if we do it manually. For the
future works, we will adopt tools to calculate automatically
constraints and verify the program evolution process.
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