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Abstract Current fixed and mobile networks’ behavior
is rapidly changing, which calls for flexible monitoring
approaches to avoid loosing track with such a fast evolu-
tionary pace. Due to the many challenges that this scenario
is posing to network managers, we propose the exploration
of Functional Data Analysis (FDA) techniques as a mean to
easily deal with network management and analysis issues.
Specifically, we describe and evaluate several FDA methods
with applications to network measurement preprocessing
and clustering, bandwidth allocation, and anomaly and out-
lier detection. Our work focuses on how these FDA-based
tools serve to improve the outcomes of traffic data mining
and analysis, providing easy-to-understand and comprehen-
sive outputs for network managers. We present the results
that we have obtained from real case studies in the Spanish
Academic network using throughput time series, comparing
them with other alternatives of the state of the art. With this com-
parative, we have qualitatively and quantitatively evaluated
the advantages of FDA-methods in the networking area.
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1 Introduction

Nowadays, network management is suffering an important
transformation as a result of the evolution of both the users’
requirements and the deployed technologies. The use of
new communication services and infrastructures is chang-
ing the approaches that Internet Service Providers (ISPs)
follow to maintain and monitor their networks. This fact,
which is inherent to rapidly changing network dynamics,
entails that traditional measurement and analysis methods
may easily become not flexible and adaptable enough. Thus,
approaches based on particular statistical assumptions, such
as specific marginal distributions or stationary processes,
are useless in deployment scenarios where measurements
present a different behavior —e.g., data Gaussianity is the
base of many anomaly detection systems and capacity and
bandwidth allocation methods, but we note that this is not
the case in many scenarios as reported in [30, 38].

Furthermore, the design of fixed and mobile network
solutions that reduce both the CAPEX and OPEX and
better suit the clients’ requirements —e.g., such as Self-
Organizing Networks (SONs) [7], Software-Defined Net-
works (SDN), or future cellular networks [2, 31]— can
suffer from the application of management approaches that
do not exploit their capabilities. For such architectures,
the resources (e.g., bandwidth) can be allocated in a very
flexible manner and the consumers’ habits change rapidly.
Hence, the usage of fine-grained baselines can improve cur-
rent network management solutions which are mainly based
on static and coarsely windowed thresholds [15].

Other aspects, such as network data anonymity and the
proliferation of encrypted protocols, limit current network
management techniques. For example, monitoring systems
that rely on Deep Packet Inspection (DPI) [3] are becom-
ing totally useless as encrypted traffic nowadays represents
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more than 70 % of the total Internet traffic1. Moreover,
when network data privacy is mandatory, such techniques
are not an option.

Based on the previous statements, we focus on compu-
tational methods that (i) do not relay on statistical assump-
tions to ensure adaptability to heterogeneous and evolution-
ary contexts, in particular those related to Gaussianity; (ii)
help to fine tune management policies to the evolution of
networks with time, even in presence of non-stationarity;
and (iii) enhance the analysis of aggregated measurements
that do not require to deal with sensitive data, by improving
the detection of patterns in time series. Our final objective
is to provide network managers with solutions that allevi-
ate the manual inspection of data and provide visual results,
which are easier to interpret.

To this end, we contribute with the application of Func-
tional Data Analysis (FDA) [24, 35] to different traditional
management tasks. FDA considers random variables which
are functions, hence studying the trajectories of stochastic
processes as realizations of such random variables. As a
consequence, FDA extends classic statistical tools to infinite
dimensional spaces. In the network management research
field, there is a huge variety of operational and performance
measurements that can be considered as functional data [9]
as they can be (at least theoretically) taken in a continuous
manner —e.g. time series [28] or density functions [27].

The strength of such methods are evaluated by consider-
ing several use cases that represent current network manage-
ment challenges. To better assess such use cases, we have
used real throughput time series obtained from the Span-
ish Academic network and the available implementations
of FDA methods. Hence, we illustrate their applicability to
network data analysis following an out-of-the-box approach
—that is, without any kind of tuning. Additionally, the
employed dataset and the developed code is available under
request, for the sake of reproducibility of our results and
also for illustrative purposes.

Figure 1 summarizes the conceptual structure of our
work: we link typical network management tasks to FDA
methods that fulfill the previously mentioned conditions.
In this manner, we show how to cope with network data
preprocessing and analysis in the functional scope and high-
light the main advantages of this approach. To do so, the
rest of this paper is organized as follows. In Section 2
we describe several FDA techniques, and we frame them
throughout all the network analysis stages —we describe
some formal aspects and point to network management
applications that can benefit from them. Next, Section 3
compiles several real case studies that reveal the improve-
ments of the application of functional techniques in network
analysis. After presenting the case studies, in Section 4 we

1https://www.sandvine.com/trends/encryption.html

discuss the key findings and their applicability to exist-
ing network management developments. Finally, Section 5
presents the conclusions and other research lines that can be
addressed in the future.

2 A Review of Some FDA Techniques

In this section, we introduce how a functional approach
can be used for the analysis of network measurements. To
do so, we describe several techniques that will be empir-
ically evaluated later in Section 3. We follow a usual
data-flow, considering data preprocessing techniques in the
functional environment first, and then, some methods that
can help to better understand network dynamics.

Our review of FDA focuses on techniques that accom-
plish the objectives highlighted in Section 1. Hence, it is
not intended to extensively cover all the current results in
the FDA field but to synthesize a set of methods that are
later evaluated in the network management scope. For the
sake of brevity, our description omits some formal aspects of
those methods. For further information about formal aspects
beyond the scope of our present work, we refer to [9, 24],
which are two recent FDA surveys with a broad scope,
including theoretical and applied results, and to [34, 35],
which include further mathematical aspects of FDA and
information about implementations in R and MatLab.

2.1 Functional Representation

Functional data present high-dimension, since they are
related to the trajectories of continuous-time stochastic pro-
cesses. To cope with such data, two main approaches have
been used in the FDA literature. Some works and tech-
niques consider functional sampled data that can be directly
obtained from measurements, whereas some others require
functional representations using expansions with respect
to a functional basis. We note that following the latter
approach entails a first data preprocessing step, which will
be described here adapted to the particular case of network
measurements.

During network monitoring, measurements are obtained
as a discrete set of values with a certain granularity. Con-
sequently, the first step is to interpolate observations with
a technique that globally minimizes a suitable error func-
tion, in terms of projections onto a certain functional basis
—which can be either inferred from the observations or
fixed to be any well-known family, such as B-Splines or
Fourier basis. In general, we represent the family of func-
tions in the selected functional basis as {Bk(t)}t∈T,k∈Z, with
T an interval in R. The projections obtained from func-
tional observations with respect to the selected functional
basis are denoted as {βk}k∈Z. Then, if we consider a certain
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Fig. 1 Conceptual diagram of
our proposal

observation {X(t)}t∈T, its functional representation in terms
of the selected functional basis is given by the expression in
Eq. 1:

{X(t)} =
∑

j∈Z
βjBj (t), t ∈ T (1)

Nonetheless, it is not possible to computationally consider
all the elements in this expression, so it is necessary to
truncate the series. A certain error term corresponds to this
truncation so that the final functional representation of the
observation is given by Eq. 2:

{X(t)} = [
∑

j∈J
βjBj (t)] + ε(J, {Bj }), t ∈ T (2)

where J is the finite index set and ε is the error term, which
is dependent on both the selected index set and the specific
functional basis.

This representation presents several advantages. On the
one hand, it is possible to drastically reduce the needed data
to represent a certain process. By adequately adjusting the
cardinal of J, we can compress data with some losses related
to the term ε(J, {Bj }). On the other hand, this representa-
tion makes it possible to robustly obtain the derivatives of
the process trajectories. As observations are represented via
a linear combination of functions, we can explicitly obtain
their derivatives as shown in Eq. 3:

d

dt
{X(t)} =

∑

j∈Z
βj

d

dt
Bj (t), t ∈ T (3)

This process is of particular interest in certain analysis
(e.g., network anomaly detection or clustering, as shown in
Section 3.3) that considers not only the magnitude value
but also its variation rate. Additionally, the joint analy-
sis of a function and its derivatives is related to the study
of the stability of dynamical systems, which is of evident
applicability in network modeling and characterization.

Furthermore, this representation allows us to evaluate
and select linear combinations of the functional components
that provide the most representative model information.
Using such an approach, we can further reduce the data

volume necessary to persist the observations by keeping
a reduced functional basis that optimally represents them
in terms of the explained variance. This functional consid-
eration of measurements reduces the necessary volume of
data to persist the network behavior as it will be shown in
Section 3.2. Functional representation can be used to define
highly detailed baselines [15], since it allows us to obtain
continuous-time robust estimations of the network typical
behavior. Additionally, FDA can also be applied to handle
other types of data (e.g., Empirical Cumulative Distribution
Functions (ECDFs) of network flow characteristics [27])
and not only time series.

FDA techniques are also valuable for the study of mul-
tivariate functions —that is, functions taking values in R

m.
Interestingly, that means that we can represent the net-
work state by using f : R → R

m, which links sets of
variables in the form of multivariate curves. Such multi-
variate analysis can ease the detection of certain events that
require the consideration of several network performance
parameters—e.g., Denial of Service attacks as presented
in [26].

2.2 Functional Principal Component Analysis

Functional Principal Component Analysis (FPCA) [35] is
a transformation of the functional basis that is used to
represent the observations. FPCA selects combinations of
the original functional basis with variance-based criteria,
which allows for an optimal representation of data. It is per-
formed by projecting the original basis on a different space
to maximize the explained variance while minimizing the
correlation between the components. This provides good
visualization despite of the information loss derived from
the selection of only a subset of the components.

FPCA is conceptually equivalent to Principal Component
Analysis (PCA) in finite dimension spaces. Nonethe-
less, as we are using a previous representation in terms of a
certain functional basis, there is not any semantic obfusca-
tion of the resulting components; on the contrary, an optimal
basis to represent the observations is obtained. We recall that
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in the FDA context, instead of multivariate variable values
we have function values Xi(t). That is, the discrete index of
each dimension of the multivariate variable is changed by a
“continuous index” t . Additionally, the inner products that
appear in the PCA definition for finite dimension vectors
must be replaced by L2 inner products, so if we denote the
FPCA weights with ξ we get:
∫

ξx =
∫

ξ(t)X(t)dt

Hence, the weights ξ are now functions with values ξj (t).
The scores corresponding to each principal component are
given by Eq. 4:

fi =
∫

ξxi =
∫

ξ(t)xi(t)dt (4)

In the first FPCA step, the weight function ξ1(s) is
chosen to maximize the quantity in Eq. 5:
∑

i f 2
i1

N
=

∑
i

∫
(ξ1xi)

2

N
, (5)

where N is the sample size and we are assuming data
x1, . . . , xn are centered. Additionally, all the weight func-
tions are orthonormal, that is, they must satisfy the restric-
tions in Eq. 6:
{ ∫

ξ2
j = 1, ∀ j∫

ξkξm = 0, ∀ k < m
(6)

In this manner, each function ξj define the most impor-
tant mode of variation. Note that the weight functions are
defined only up to sign change.

This is the adaptation of the usual derivation of PCA to
the functional context. Nevertheless, in the functional envi-
ronment we can see the principal components as the basis
functions that approximate the curve as closely as possible.

Some additional restrictions must be imposed when solv-
ing the optimization problem. Otherwise, results could be
degenerated, as the maximization of the explained variance
could not perform well with noisy data. To prevent this
situation, FPCA usually (i) includes some penalties in the
optimization problem, or (ii) considers smoothed versions
of data.

The principal components can be interpreted as details
of the original observations linked to certain variance lev-
els. As a result, they represent different modes of variation
of the sample, which is a richer decomposition when com-
pared to other data reduction methods that provide only
filtered or reduced outputs. Furthermore, as we will illus-
trate in Section 3, the study of the observations’ coefficients
can help to detect clusters in the sample, which proves the
advantages of this decomposition.

To complete the FPCA description, we further pinpoint
the opportunities that it offers for network analysis. The

relation between principal components and certain vari-
ance levels is also useful to detect anomalous events and
anomalous observations —since they usually are charac-
terized by abrupt changes in certain statistical parameters,
such as departures from mean. FPCA paves the way for a
novel categorization of anomalies that takes into account the
behavior of several principal components. Additionally, the
reduction of variance improves capacity planning solutions
in scenarios where dynamic resource allocation procedures
appear —we will take advantage of this fact in Sections 3.4
and 3.5. With this technique, it is possible to control the
proportion of the variance that is taken into account, pro-
viding a continuous-time methodology to define resource
consumption baselines.

2.3 Functional Depth and Depth-Based Analysis

Functional depth measures provide ways to determine the
relative position of observations into the sample, from the
center outwards. They are useful to extend concepts such as
centrality measures and order statistics to functional data.
Recently, the FDA community has proposed a huge vari-
ety of functional depth definitions, each of them taking
into account different observations’ centrality aspects [10,
22, 42]. Additionally, some depth measures have been pro-
posed to cope with multivariate functional data [8], which
opens the gate to multi-factorial centrality considerations
of network measurements —e.g. multiple network flow
characteristics.

A complete review of the different functional depth alter-
natives is beyond the scope of this work. Therefore, for the
sake of brevity and with illustrative purposes, we consider
one of the half-region depth measures in [23], defined with
the expression in Eq. 7:

MSn,H (x) = min{SLn(x), ILn(x)} (7)

where

SLn(x) = 1
nλ(T)

n∑

i=1

λ{t ∈ T : x(t) ≤ xi(t)}

ILn(x) = 1
nλ(T)

n∑

i=1

λ{t ∈ T : x(t) ≥ xi(t)}
(8)

and λ is the Lebesgue measure on R. This definition is quite
popular, as it has a low computational cost and an intu-
itive interpretation. It makes the observations to be ordered
using the minimum of the proportion of time that they are
in the hypograph (SLn(x)) or epigraph (ILn(x)) of other
observations, which ranks their centrality.

Depth-based analysis is a robust alternative for network
data analysis. As it will be shown in Section 3, the isolation
of anomalous observations constitutes a suitable methodol-
ogy for improving results when outliers or high variance are
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present in the data under analysis. Regarding network mea-
surement time series, current directions in network dynamic
resources allocation (e.g., bandwidth) and the flexibility of
novel network infrastructures (e.g. Software-Defined Net-
working (SDN), Application-Based Network Operations
(ABNO) [1] or 5G cellular networks [2]) can be optimized if
we consider a finer grain or even continuous time baselines.
Depth measures can help to robustly define such baselines
as they define regions that cover a certain proportion of
the observations. Furthermore, this approach characterizes
the network behavior during a whole period (e.g., a day)
instead of using statistical summaries or windowed analysis
—as it does not require to test the stationarity of stochastic
processes.

Other functions, such as Cumulative Distribution Func-
tions (CDFs) can be robustly estimated and analyzed by
using a depth-based methodology [27]. Moreover, the def-
inition of bands based on the extension of the concepts
of centiles to the functional environment can enrich cer-
tain analysis, as we exemplify in Sections 3.4 and 3.5. On
the other hand, multivariate depth measures can evaluate
centrality of observations in terms of several dimensions
(e.g. bandwidth and flow concurrence), which is absolutely
necessary to detect some events such as SYN flooding
attacks [26].

2.4 Shape Outlier Detection

Outlier detection is a key activity during data mining pro-
cesses, as inference results can suffer from important devia-
tions if anomalous observations are considered during those
processes. In the functional environment, different attributes
can lead to mark certain observation as atypical —e.g.,
amplitude, variance or frequency. As in the case of func-
tional depth, outlier detection has recently attracted much
attention in the FDA community, but there is not a well-
established methodology to cope with this matter yet. For
example, some recent works regarding this field make use
of different functional depth notions to sort out observations
which differ from the usual pattern of the sample. This is
the case of [11], where authors evaluate several functional
depths and define an algorithm to exclude atypical observa-
tions. Additionally, such methods have also been extended
to cope with multivariate functions [16]. While these alter-
natives seem to be promising for network analysis tasks,
in what follows we focus on shape outliers. Such outliers
are particularly interesting to detect and extract anomalous
network events from measurements which are commonly
difficult to detect otherwise—e.g., detection of daily obser-
vations with atypical throughput patterns that do not change
the maximum nor minimum values.

In [4], authors present the outliergram, a method to
detect shape outliers in terms of two centrality measures

—that is, indicators of the position of a particular observa-
tion in the sample. They consider the modified band depth
(MBDn) [22] and the modified epigraph index —which we
have denoted as SLn in Eq. 8. They prove that there exists
a relation between the values of SLn and MBDn given by a
quadratic equation which can be explicitly calculated. This
relation allows projecting the observations in a two dimen-
sional space using the value provided by each centrality
measure —that is, each observation is represented by the
point defined by (MDBn, SLn) in R

2. As a second stage
to detect the shape outliers, the algorithm uses the distribu-
tion of the distance between (MDBn, SLn) and the exact
parabola defined by the quadratic relation of both measures.
Hence, observations with a typical shape have projections
which lay in the proximity of the parabola, while the corre-
sponding to shape outliers are relatively far from it —which
allows defining a confidence interval to discriminate the
atypical observations.

3 Use Cases: Functional Analysis of Network Time
Series

After reviewing FDA concepts, in this section we present
different uses cases that show the applicability of FDA tech-
niques on real data obtained from the Spanish National
Research and Education Network (NREN). These use cases
are representative in the typical agenda of a network man-
ager. Namely, we consider the reduction and clustering
of measurements, the characterization of the usual net-
work behavior, bandwidth and capacity planning in non-
stationary scenarios and the detection of atypical days.
Throughout this section, we compare the results of some
well-known management methods with the corresponding
ones obtained by applying a functional approach, showing
the advantages of the use of FDA.

To evaluate the latter, we have used a set of network
throughput measurements corresponding to 546 consecutive
days in a node of the Spanish NREN. Each day comprises
288 equally spaced observations —that is, one sample every
300 s. To obtain our results, we have used the R implemen-
tations included in packages fda [36] and fda.usc [12]. We
have used those implementations, as our evaluation is not
focused on computational performance nor resource con-
sumption, but on usefulness and validity of a functional
network data analysis.

3.1 Network Data Processing

Once we have obtained network measurements from a cer-
tain point of presence, the first data preprocessing step in the
functional environment is to obtain a representation in terms
of a certain basis. In our case, the selected representation
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Fig. 2 Coefficient density for
each Principal Component
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features a number of terms equal to the number of observa-
tions of each element (that is, 288 samples corresponding to
the 5-minutes intervals in a day) of second grade B-Splines
without penalization nor data (pre)smoothing—this corre-
sponds to the tested setup with the best behavior in our
data using the the fda package for R. Furthermore, when
using this functional representation we have also explicitly
obtained the first order derivatives by applying the expres-
sion in Eq. 3, to explore the information that can be retrieved
from them during throughput time series mining.

Next, we have applied FPCA (both to the original data
functional representation and its derivatives) to obtain an
optimal representation of observations with a reduced basis.
Note that in the previous step, we have considered a huge
amount of terms to evaluate the error term that FPCA
generates. Nonetheless, the compression factor of the first
functional representation may be increased in case a higher
error term is acceptable. The explained variance analysis
leads to a representation with 30 principal components —as
it explains more than a 99 % of variance.

After selecting the basis with the first 30 principal com-
ponents, we have obtained the coefficients for each obser-
vation. The behavior of such coefficients is shown in Fig. 2,
where we distinguish the estimated coefficient density for
each principal component. Interestingly, if we consider the
density associated with the first principal component, we
can discriminate two well-differentiated clusters (labeled in
the figure), which correspond to working and non-working
days, respectively.

This method reduces the available information and intro-
duces some error in the punctual values of the reconstructed
time series. To assess the FPCA performance, we have
analyzed the residuals (that is, the differences between
observations and estimations) and obtained the punctual rel-
ative error values. Figure 3 presents the survival functions
of such a metric for each observed point along a day, which
illustrates the statistical behavior of the punctual error for
all the daily observations. In this figure, we highlight the
median survival function, and the ones covering the 5 % and
95 % of observations. We note that this functional evaluation

Fig. 3 Survival functions of
relative error between
observations and recovered
curves after applying FPCA, 30
components
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of the relative error provides a complete characterization of
the FPCA residuals.

We now focus on the characterization of central and
extreme observations in terms of depth-based rankings.
In what follows, we consider a functional representation
with only 15 functional principal components. This restric-
tion introduces a stronger data regularization, and hence
minimizes random and atypical perturbations which are
not desirable when characterizing centrality in network
throughput measurements. Figure 4 summarizes the main
results of our depth-based analysis, and highlights several
noticeable curves with different depth values. We note that
the two previously detected clusters may compromise the
half-region depth behavior —as it is an overall depth mea-
sure. However, the obtained results suit the case studies
presented below, so for the sake of simplicity we omit finer
processing —e.g., alternative depth measures or factorial
analysis.

To visually compare the behaviors of such noticeable
curves and of the sample set, we have included the entire
original observations in the figure in light orange without
markers. To compare depth-based results with other cen-
trality measures, we have also included the sample mean
function —in black without markers. Outliers and the pre-
viously identified clusters cause a bad representation of
the network typical behavior —as we have considered the
estimation using all the observations, and the mean is not
a robust centrality measure. We have also included the
deepest observation of our sample as an alternative cen-
trality measure —it is equivalent to the sample median. To

compare the basis restriction effect (which improves the
representation of the centrality measures) we show both
the original observation and the estimation—red with dia-
monds, and blue with squares, respectively. Both of them
represent the network usual behavior better than the mean
function as they suffer from lower distortions by non-usual
patterns.

Moreover, we have considered the depth-based ranking
of observations to define thresholds for extreme values. We
have included in Fig. 4 the behavior of the time series with
the minimum depth value both in the epigraph (green with
asterisks) and in the hypograph (green with crosses) of the
deepest function. Additionally, we have constructed curves
that punctually minimize the depth value. Specifically, in
Fig. 4 we represent curves that leave out the 5 % of the most
extreme values of the observations.

3.2 Network Data Reduction

There are some previous works that have addressed the
reduction of data requirements in the scope of network
monitoring. For example, some data preprocessing tech-
niques that can be understood as FDA precursors are those
included in [13, 18]. Authors in both works use multi-
resolution analysis based on wavelets to compress network
measurement. They provide a statistical evaluation of the
properties of such compression method, obtaining inter-
esting results. Formally, multi-resolution analysis provides
a functional representation of data, making use of a spe-
cific functional basis. As we explained in Section 2, this is
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Fig. 4 Summary of our depth-based analysis results
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usually the first step when using FDA techniques. As a con-
sequence, we are proposing a general setup that includes
the results in those works. In [19] authors apply Princi-
pal Component Analysis (PCA) on throughput records to
obtain eigenflows that represent different variance levels
of the observations. The idea is similar to that of FPCA
we introduced in Section 2, but it makes no use of a pre-
vious data representation in terms of a functional basis.
This aspect makes it difficult to interpret the meaning of
each eigenflow, as this method does not provide a seman-
tic intuition of the information structure which is being
used. Remarkably, that proposal points towards the advan-
tages of the consideration of some network measurements as
functional data.

Our results prove that FPCA is feasible as a data reduc-
tion technique during network measurements time series
analysis. By selecting only the first 30 functional principal
components, the number of data elements required to recon-
struct the original observations is less than a 16 % of the
original data. This data reduction provides good global esti-
mations of data (the median and 95th percentile of the mean
absolute percentage error (MAPE) is less than 7.5 % and
15 %, respectively) and punctual error is below 10 % in most
cases—this is the median of the 95th percentile punctual
relative error, as shown in Fig. 3.

When compared to the previously mentioned methods
(i.e., PCA and wavelets), these error values are very promis-
ing. In the same experimental setup, FPCA outperforms
PCA for extreme values (that is, it keeps the 95th percentile
of MAPE lower than PCA) and provides estimations with
similar errors in the rest of the cases. Furthermore, it obtains
better results than the other methods when the data volume

is drastically reduced to 1 % of the original data (which is
in the order of the recommendation in RFC 1857 [20] for
data lasting more than a year) reducing the MAPE values in
a range from 7 to 54 %.

3.3 Network Data Clustering

Following with the FPCA representation, we have studied
the two clusters that we detected when using the coefficient
with respect to the first functional principal component.
The analysis of such problem indicates that the difference
in the behavior of each cluster makes the problem easily
separable, and that the average value of each curve is deter-
minant when assigning it to one of the clusters. Remarkably,
using only that single projection (see Fig. 2) we have been
able to obtain the same assignment that the one provided
by K-means algorithm when fed with all the values of
the daily throughput curves —which illustrates the poten-
tial of this functional approach in feature selection. For the
sake of brevity, we omit further performance comparisons
between other clustering algorithms in this work: for those
interested in this matter, we point to [17], where authors
have surveyed several functional clustering algorithms on
well-known problems.

We have also included the information we have retrieved
from the curves’ derivatives. To do so, we have also con-
sidered their coefficient with respect to their first functional
principal component. While the addition of this information
does not change the assignment of each curve to a cluster,
it improves the inter-group separation: Fig. 5 includes the
representation provided by CLUSPLOT [33] for the clus-
ters defined from the original data and from the coefficients

Fig. 5 Comparison of
observation clustering using
original data, and the first
functional principal components
of both the throughput time
series functional representation
and their derivatives. The
representation is obtained using
the CLUSPLOT tool and includes
the clusters’ spanning ellipses
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with respect to the first functional principal components of
both the throughput time series functional representation
and their derivatives. This representation shows the better
differentiation of classes when using a suitable FPCA-based
reduced set of features from the observations and their
derivatives.

These results provide a new approach for Network
Behavior Analysis (NBA). For example, the proposals
in [37, 40], can be considered from the point of view of
FDA as the analysis of a set of functions that describes
the network state. Those proposals are based on pattern
detection to discriminate anomalous behaviors that could
indicate intrusions or other malicious actions. Hence, the
application of functional feature selection and clustering
can improve, as shown in our example, the discrimination
among different behavioral groups —therefore, providing a
more complete and formally consistent framework to face
this type of studies.

3.4 Network Modeling and Characterization

So far, depth-based analysis provides a set of central and
extreme curves that are suitable to characterize the net-
work behavior. Such curves provide a high-dimensional
definition of the usual network patterns, beside of the con-
sideration of marginal traffic distributions —hence cutting
out the hypothesis about such distributions required in other
state-of-the-art approaches. Furthermore, most of the exis-
tent methods also assume that the underlying stochastic
processes are stationary during certain periods of observa-
tion (e.g., during 15 minutes [25]), while the results derived
from functional methods allow to study measurements dur-
ing more complex and meaningful periods —e.g. along a
whole day as in our case. In what follows, we qualitative
compare the characteristics of the results in some previ-
ous works devoted to univariate or multivariate network
modeling and characterization, with those obtained with a
depth-based functional approach.

In [38], α-stable distributions are proposed to study net-
work throughput in low aggregation points. Additionally,
authors study the perturbations in the distribution parame-
ters to link them to certain anomalous events. On the other
hand, other previous works such as [14, 25] consider Gaus-
sian processes to model network behavior. Specifically, [14]
is devoted to capacity planning based on the characteri-
zation of the busy hour, and in [25], authors describe a
methodology to detect sustained changes in network load.
Both works require a Gaussian fit of traffic load, which is a
hypothesis that sometimes is not met —e.g., [30, 38] include
some situations where Gaussian models do not fit in the
observations.

Nonetheless, these previous approaches do not match
the three key points that we have depicted for network

monitoring and analysis methods. First, they require the
marginal traffic distributions to follow some specific distri-
butions (namely, α-stable and Gaussian), which is a strong
hypothesis that prevents from extending this method to envi-
ronments where this hypothesis is not met. Second, authors
indicate that the computation of some of the parameters
of such models is computationally expensive, which can
limit the definition of flexible management policies —as
the application of such methods to the study of time series
requires considering stationary intervals, which can limit
flexible deployments of such approaches if we take into
account the claims in [41]. Finally, these methods provide
either difficult to interpret or extremely simple outputs for
network managers —as the interpretation of their results
are related to statistical tests or to the meaning of non-
intuitive statistical summaries. As shown, the results of
depth-based analysis alleviate these flaws by fulfilling those
three principles.

3.5 Network Bandwidth and Capacity Planning

Bandwidth and capacity planning is a capital matter in vir-
tualized environments such as Virtual Networks and Virtual
CPDs [6], and it is also considered as a distinguishing
feature of the future 5G networks [2].

To evaluate the advantages of functional approaches dur-
ing bandwidth and capacity planning, we follow a method-
ology similar to the one exposed in [29]. In that work, the
authors discussed several methods to dynamically allocate
bandwidth for tenants in a common physical network archi-
tecture. Some differences arise between that work and the
analysis we have leaded: in our case, we have used time
series of throughput with a 5-minute aggregation interval,
whereas they used finer-grained measurements. Interest-
ingly, they only considered traces lasting for 15 minutes, as
their method required the throughput time series to be sta-
tionary. In our case, we have defined a bandwidth allocation
limit based on the previously presented depth-bands for a
period lasting a whole day.

To conduct our evaluation, we have split our mea-
surements set in two groups —one of them to train the
depth-based threshold and the other one to evaluate the
bandwidth requirement prediction. We have accounted the
number of points above the defined threshold, thus provid-
ing an estimation of the underestimations impact —in this
case, we consider a depth band leaving outside the 2 % of
the most extreme observed values. Table 1 shows the mean
results with a corresponding 95 % confidence interval for
500 repetitions of such experiments considering different
percentages of observations for the training phase.

Using our approach, the percentages of underestimations
are comparable to those reported in [29]. We recall that
the focus of that work is different to ours —they obtain



Mobile Netw Appl (2017) 22:1124–1136 1133

Table 1 Results of the bandwidth allocation experiments

Training set (%) Underestimations (%)

1 17.74 ± 0.85

5 4.08 ± 0.21

10 2.23 ± 0.11

15 1.87 ± 0.08

20 1.58 ± 0.06

25 1.57 ± 0.06

30 1.56 ± 0.05

35 1.46 ± 0.04

40 1.46 ± 0.04

bandwidth requirement estimations for short time intervals.
Nonetheless, with our approach, we can decide tenants that
can coexist in the same physical architecture in terms of
their usual activity among a whole period. Additionally, we
relax the hypothesis of the methods which are considered
in [29], as we do not require the throughput values to be
Gaussian nor stationary.

3.6 Outlier detection in network time series

Let us now show the results of outliergram tool application
to our throughput observations. This tool produces repre-
sentations like that in Fig. 6, which illustrates the relation
between the two depth measures that it considers for each
observation. With such tool, we can easily detect shape
outliers, as anomalous observations lay out the confidence
interval inferred from the sample. The outliers are repre-
sented in Fig. 7, and we can visually assess that they do
present anomalous behaviors.

In this representation, we have highlighted throughput
time series that are marked as shape outliers, but outlier-
gram is also able to detect certain observations with atypical
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Fig. 6 Outliergram visualization of the projected observations. Black
triangles correspond to shape outliers, while orange circles represent
typical observations

extreme values. There are several types of outliers that can
be detected when using this approach:

– Observations which lay in the borders of the clusters we
have previously detected, although they may not have
extreme values in absolute terms.

– Observations which fluctuate from high values in some
parts of the temporal domain to low values in other
ones.

– Observations which abruptly fall during a certain period
of time.

It is worth remarking that all of these types cause depar-
tures of centrality measures during inference processes if
other techniques not as robust as those we have selected
are applied. Hence, this FDA-based technique can improve
results in later network data analysis; particularly with the
two first types we have differentiated —given that to detect
them it is necessary to consider the behavior of the whole
observation and not only punctual values.

4 Discussion and Application

According to the previous comparison of FDA and other
well-known methods, the most remarkable findings and
advantages follow:

– FDA techniques relax the hypothesis of network analy-
sis state-of-the-art methods, thus providing more adapt-
able tools to cope with heterogeneous and changing
environments.

– They allow considering network time series as a whole,
which provides means to statistically study measure-
ments taking into account their overall behavior.

– Additionally, they provide comprehensive and easy-to-
understand data representations for network managers.
That is, functional methods lead to straightforward
visual outputs that highlight problems and trends with-
out requiring further analysis.

Nonetheless, these advantages may be worthless if func-
tional methods cannot be included in existent monitoring
and management solutions. Fortunately, current tools follow
some common design principles that simplify the introduc-
tion of these methods and provide several data sources that
can be studied as functional data. In what follows, we briefly
comment some recent approaches that highlight those prin-
ciples —for further information and details about current
trends, we refer to [5, 21].

Scap [32] is a stream-oriented system able to cope
with high throughput rates. Taking into account their
authors’ claims, that system could be extended to use func-
tional methods to improve its functionality and analytic
capabilities. —e.g., traffic capture online selection in terms
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Fig. 7 Representation of the daily observations that outliergram identifies as shape outliers

of functional baselines. Scap is an example of the grow-
ing importance of aggregated data summaries (e.g., values
provided by SNMP, NetFlow records, etc.) to cope with the
analysis of multi-Gb/s networks, as they reduce network
analysis systems’ computational demands.

BlockMon [39] is another interesting example of novel
monitoring tools. It is conceived as a modular and dis-
tributed system, providing users with a flexible and cus-
tomizable framework to develop monitoring architectures
that suit each particular scenario. Given its modular struc-
ture, BlockMon could be extended with FDA-based modules
to provide advanced capabilities. For example, as we have
illustrated in Section 3, BlockMon could be complemented
with functional data preprocessing techniques to produce
enriched analysis and visualization outputs.

To end with, we mention M3Omon, which is presented
in [26]. M3Omon is a monitoring framework that provides
users with multi-granular data —specifically, aggregated
time series, flow records, and raw network packets. Authors
show the importance of simultaneous analysis of several
data sources with different aggregation levels to effectively
detect and completely understand network phenomena in
high performance networks. With such data sources, we
can make the best of functional-based methods to create a
complete ecosystem of analytical applications. For instance,
a capacity planning module can be easily implemented
using the aggregated time series outputs. At the same time,
FPCA-based data reduction can help to optimize storage
requirements when using this framework.

5 Conclusions

This work constitutes a novel study of the FDA applica-
tion in the network data analysis scope. Specifically, we
have reviewed several FDA techniques that can be used to
extract knowledge from network measurements. We have
illustrated how FDA can be applied to different common
network management tasks, comparing it with other state-
of-the-art methods. In this light, we have considered several
use cases with real network measurements (particularly,
throughput times series), showing the opportunities that
FDA-based techniques bring in network data analysis. The
main advantages of FDA pave the way for the evolution of
current techniques.

Regarding network data reduction, the functional repre-
sentation and feature selection that we have applied provides
good compression ratios with controlled information losses.
Specifically, our evaluation has shown that FPCA estima-
tions fairly represent the original observations using less
than a 16 % of the total amount of data. Using such a
reduction, MAPE presented median and 95th percentile val-
ues below 7.5 % and 16 % respectively. Additionally, the
median of the 95th percentile punctual relative error is
below 10 %. Concerning the clustering problem, we have
compared the results of K-means algorithm with either
the original observations or the FPCA projections of the
data and its derivatives. The latter improves the group
differentiation while reducing as well the input for the
clustering method.
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The evaluation of depth-based analysis has shown that
it provides robust estimations of central and extreme net-
work measurements behavior and it relaxes the hypothesis
on marginal distributions of network time series. Further-
more, such estimations serve to define a continuous-time
functional threshold for capacity planning. The obtained
results are similar to those of other state-of-the-art methods,
but without requiring the network time series to be station-
ary. Hence, depth-based analysis has proven useful for these
tasks, especially when considering emerging network tech-
nologies that allow flexible resource allocations —such as
SDNs, ABNO, SON, and 5G.

Finally, we have shown that some atypical time series
might not present changes in their extreme values while
still exhibit odd behavioral patterns. Therefore, shape outlier
detection helps excluding such observations during infer-
ence in network analysis, which automates costly processes
of data cleaning.

To sum up, FDA is a branch of statistics which can
ease management tasks in emerging network infrastructures
that are otherwise constrained by the application of classic
statistics. Thus, we have presented to the Networking and
Telematics community a methodology, assessing its useful-
ness and the opportunities it offers for network analysis.
This work has focused on the foundations of the applica-
bility of FDA to time series but it has not addressed other
promising FDA techniques (e.g., FDA-based forecasting
and classification, functional homogeneity) that may also
be applicable to a wide variety of network data and may
unleash the true potential of FDA.
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