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Abstract In wireless networks, multi-user video streaming
under limited resource is a challenging problem. The main
challenge is how to meet the transmission requirements
under the different channel condition and video content
complexity. In this paper, we propose an uncoded video
transmission framework to deliver the multi-user video
over wireless networks. In order to evaluate the overall
performance of multi-user network more practically, three
optimization strategies are proposed in this paper: 1) min-
imizing the total distortion; 2) minimizing the maximal
distortion; 3) minimizing the summation of square root dis-
tortion. Furthermore, the corresponding joint resource allo-
cation algorithms are developed to solve the optimization
problems. The simulation results demonstrate that differ-
ent optimization strategies have different resource allocation
and performance for each user. The optimization strategy 1)
performs the best in terms of average PSNR of all users,
the optimization strategy 2) achieves more fair result, and
the optimization strategy 3) achieves a good balance. The
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strategy 3) can improve the performance for users with bad
channel condition, while little loss is caused for users with
good channel condition.

Keywords Multi-user · Uncoded video transmission ·
Optimal resource allocation

1 Introduction

The mobile traffic surges with prevalence of smart phone
and development of wireless access technology. Among
the mobile traffic, the video traffic dominates. According
to Cisco Visual Networking Index (VNI), the video traffic
will increase to 67 % percentage of mobile traffic by 2017
[1]. The increase of wireless infrastructure and spectrum
resource lags behind traffic, thus we need to utilize wireless
resource in more efficient way. How to guarantee the multi-
user service quality over resource-limited wireless network
is one of the most challenging problems.

In a multi-user video streaming service, the video con-
tents required by the users are different. The base station
(BS) needs to transmit all these video streams at the same
time, thus facing some challenges. First, the rate-distortion
(R-D) curve of a video is content depended. The resource
scheduler at the base station needs to estimate the hetero-
geneous R-D curves and update them periodically. Second,
the resource at the base station is limited. Third, the chan-
nel condition for each user is heterogeneous. In order to
efficiently allocate the resource, the base station needs each
user to feedback his channel condition and keep track of it.
To achieve a good overall performance, BS is necessary to
perform a joint optimization of resource allocation based on
the video content complexity and channel condition subject
to some limits.
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In traditional digital video communication system, a
video source is compressed into bit streams according
source rate. The channel bit rate is adaptively determined
by the channel condition. However, in the multi-user sce-
nario, different video content have different R-D charac-
teristics. It is difficult to derive the source rate and chan-
nel bit rate. Uncoded video transmission has attracted a
lot of attention since Softcast [2] emerged. However, most
researches focus on broadcasting and point to point uni-
cast till now. In this paper we investigate uncoded video
transmission for multi-user streaming. In uncoded video
transmission, the video source is first decorrelated by an
orthogonal transform, e.g. DCT. Without quantization and
entropy coding, the DCT coefficients are scaled by a lin-
ear factor and then are directly transmitted by the amplitude
modulation. Uncoded transmission can adapt to channel
condition automatically. The resource scheduler only needs
to know the coefficient distribution instead of complicated
R-D curve.

The analysis of Softcast [2] has shown that the uncoded
scheme could achieve nearly the same end-to-end distor-
tion as the more complicated digital system for a single
video and unknown channel condition case. However when
it is applied in multi-user video streaming service, the video
content diversity and channel condition diversity should be
considered in resource allocation. Intuitively, high complex-
ity video should to be transmitted with more resources.
However, a multi-user video transmission system should
consider not only the reconstructed video quality of each
individual user but also network resource and status. So
under the bandwidth and power resources constraints, it is a
challenging task to allocate the resources to different users
to achieve the optimal network performance.

In this paper, we propose an uncoded video transmis-
sion framework in multi-user scenario. Firstly, we formulate
the multi-user resource allocation as a three-dimension opti-
mization problem, which is constrained by power, channel
signal to noise power ratio (SNR) and bandwidth. Secondly,
we apply three optimization strategies: 1) minimizing the
total distortion, 2) minimizing the maximal distortion, 3)
minimizing the summation of square root distortion. These
optimization problem can be solved by the joint bandwidth
and power allocation. Lastly, the proposed algorithm is
validated through simulation.

This paper is organized as follows. Section 2 describes
the related work in recent years. The system architecture
for multi-user uncoded video transmission is described in
Section 3. Section 4 focuses on different optimization strate-
gies and how to solve these optimization problems. Simula-
tion results are presented in Section 5 and conclusions are
drawn in Section 6.

2 Related work

2.1 Uncoded video transmission

K. H. Lee [3] proposed and proved the optimal linear coding
for vector channels in his pioneering theoretic work. After
more than 30 years, Softcast applied this theory in wire-
less video, with considering the scalability and robustness
of video. Softcast performs a 3D-DCT to a group of pictures
and a linear coding proposed in [3] to the DCT coefficients
with the total power constraint. The emergence of Softcast
brings a surge of interest in uncoded video transmission
systems. Follow-up researches includes WaveCast [4], Cac-
tus [5], and Robust [6]. Among these schemes, WaveCast
based on lossy transmission and 3D wavelet transform, uti-
lizes motion compensated temporal filter (MCTF) to exploit
inter frame redundancy. The motion vectors are transmit-
ted in BPSK with 1/2 coding rate, and the coefficients are
linear coded, quantized and transmitted in wireless chan-
nel. Cactus uses open-loop video compressing method to
remove inter and intra redundancy, and transmits the resid-
ual in an uncoded way. Cactus transmits the pixel values for
denoising purpose while Softcast transmits the DCT coeffi-
cients. These two system just like Softcast, only take AWGN
channel into consideration. With consideration of fast fad-
ing channel, Robust [6] allocates the bandwidth and power
according to priority of data, which obtains performance
gain from the channel diversity in fading channel. But all
these systems consider single video transmission only, not
multi videos.

2.2 Multiuser video transmission systems

In digital video communication, optimal video transmis-
sions in multiuser systems have been well studied. Joint
source/channel rate adaptation and power allocation are
proposed to achieve the optimal objectives subject to con-
straints on limited network resources, e.g. [7–11]. In [7],
G. M. Su formulated two optimal problems, one consider-
ing the fairness aiming to minimizing the maximal expected
distortion, and the other considering efficiency aiming to
minimizing the total expected distortion. By constructing
a continuous R-D function through linear interpolation of
the discrete R-D function, these two optimal problems were
solved. In [8], a fairness scheme was proposed to minimize
the maximum the expected distortion among all users. By
utilizing a piecewise linear R-D model, the optimal encod-
ing rate can be determined and the end-to-end BER can
also be satisfied by a water-filling power allocation. In [9],
the optimal objectives aiming to minimize the sum distor-
tion was solved in a distributed way, the local users reported
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their distortion price to the base station and the base sta-
tion updated resources allocation according to the price. In
[12], a dynamic programming framework was proposed to
maximize the expected discounted accumulated video qual-
ity. However the framework requires detailed knowledge
of the statistics of the experienced environment dynam-
ics, which is often unavailable before transmission. So they
also proposed an online learning algorithm to overcome
this obstacle. In [10], a more accurate end-to-end distor-
tion estimation is adopted. Combining with the packet loss
problem, an optimal resources allocation scheme is pro-
posed aiming to minimizing the total expected distortion.
In [11], V.Joseph et al. considered the impact of Perceived
Video Quality (PVQ) across the sequence of scenes, and
proposed an optimal online algorithm to maximize user
QoE by considering tradeoffs among mean, variance and
fairness.

The main difference among [7–10] is the R-D model. Su
et al. [7, 8] adopt the linear model, and [9] improves the
R-D accuracy in a distributed way but at a cost of com-
munication overhead. Huang et al. [9] assumes that the
distortion of all sequence segments are the same. Maani
et al. [10] adopts a more accurate nonlinear R-D model.
Representing distortion precisely is the key point to allocate
resources in digital multi-user video communications. In the
uncoded schemes, the distortion can be written as a close-
form expression of bandwidth and power, and it is convex,
optimization solution can be derived for optimal resource
allocation.

3 System model

In this section, we present an overview of proposed frame-
work. Figure 1 illustrates the system model of uncoded
multi-user video transmission in the single base station
(BS) scenario. The BS delivers the video sources to several
users, who may be in different place and have differ-
ent channel conditions. The multiple users need share the
limited bandwidth and power resources to transmit their
own video streaming. For wireless multi-user networks,
the main concern is not only the individual user qual-
ity, but also the overall performance. Equal allocation of
bandwidth and power is inefficient and unfair, so we pro-
posed an optimal bandwidth and power allocation in this
paper.

We first introduce the analog video transmission
scheme and discuss the relationship between distortion and
resource allocation. Then we formulate the joint band-
width and power allocation problem as a distortion-cost
function.

Fig. 1 System model of uncoded multi-user video transmission

3.1 Overview of uncoded video transmission

Considering a multi-user wireless network as shown in
Fig. 2, where the base station transmits the video sources to
each user in an uncoded way. With the limited bandwidth
and power resources, the base station allocates the resources
to each user aiming to achieve the best overall performance.

Before transmission, each video divides frames into
group of pictures(GOP), and the size of GOP can vary
from 4, 8, 16 or 32. We adopt GOP size 8 meaning that
there are 8 pictures in one GOP. Then, we apply a 3D-
DCT to each GOP for the purpose of de-correlation in
both space and time domain, and the DCT coefficients are
divide into equal-sized chunks. In our scheme, each frame
is divided into multiple 8x8 chunks for producing few side
information.

Usually the content complexity is shown by how heavily
unequal energy distribution of DCT coefficients in a GOP
are. In relative static videos, its energy concentrates in a
few low frequency coefficients. Thus discarding these low
energy coefficients may have negligible effects on video
recovery quality. So these high energy coefficients need
to be well protected. This gives us hint that relative static
videos can be transmitted with less bandwidth and the saved
power can use to protect other high-priority coefficients. On
the other hand, the coefficients of high-motion videos dis-
tribute smoothly, and most of them have a certain effect on
video recovery quality. So it must be transmitted with more
bandwidth.
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Fig. 2 Overview of uncoded schemes

According to the coefficients and the channel condi-
tion, the scheduler will allocate the bandwidth and power
to improve the overall performance among all users. If
the bandwidth and power are not abundant, some coeffi-
cients will be discarded. The coefficients to be transmitted
will be multiplied by a scaling factor as a linear coding
for error protection. The scaled coefficients are directly
mapped to the I and Q plane. In addition, the meta data,
including the variance of the chunks and the variance of
the GOP, should be transmitted through conventional dig-
ital modulation at a reliable transmission rate (e.g. BPSK
with 1/2 coding). Based on the estimated channel condi-
tion, the DCT coefficients can be recovered by MMSE
(minimum mean square error) detection. Finally, the entire
GOP can be reconstructed through de-scaling and inverse
3D-DCT.

Firstly, we discuss the optimal uncoded video transmis-
sion along with the corresponding distortion characteristics.
Given a video source, the optimal transmission is minimiz-
ing the expected distortion. For user k, the DCT coefficients
of a GOP sk are divided into N chunks. Each chunk is
modeled as an independent zero-mean Gaussian variable
with the variance λki . A linear coding is applied to the
coefficients at the transmitter end:

Xk = gksk (1)

where gk is the linear coding diagonal matrix. Its diagonal
elements are power scaling factors. If the channel band-
width is less than the source bandwidth, some chunks with
the smallest variance will be discard and their power scal-
ing factors equal 0. Then the analog data is transmitted over
an additive white Gaussian noise (AWGN) channel with
variance σ 2

k .

Given the known noise variance and the received sig-
nal Yk , the receivers perform linear least squares estima-
tion(LLSE). The λk is delivered to the receiver via a reliable
way. So the estimated signal can be derived as follows

X̂k = gkλk

g2
kλk + σ 2

k

Yk (2)

Hence, we can calculate the expected distortion of user k

Ek[mk, gk, σk] =
mk∑

i=1

λkiσ
2
k

g2
kiλki + σ 2

k

+
N∑

i=mk+1

λki (3)

or an uncoded water-filling result

Ek[mk, pk, σk] =

(
mk∑
i=1

√
λkiσ

2
k

)2

pk +
mk∑
i=1

σ 2
k

+
N∑

i=mk+1

λki (4)

where pk denotes the allocated send power and mk denotes
the allocated bandwidth, so the distortion can be written as
E(p, m, σ).

In multi-user scenario, the optimal transmission goal can
be expressed as

E[m, p, σ ] = f [Ek[mk, pk, σk]] (5)

where m = (m1, ..., mk) is the bandwidth allocation vector
of all users, the p = (p1, ..., pk) is the power allocation vec-
tor of all users, and f is an utility function which generally
has a convexity and its argument is the expected distortion
of each user.
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3.2 Problem statement

In single user scenario, the optimization objective is to min-
imize the mean distortion under the constraints on total
power. Given the total transmitting power P , the power allo-
cation problem is a convex problem, which can be solved by
the Lagrange method. The optimal result can be written as

pki = g2
kiλki =

√
λkiσ

2
k (P + ∑mk

i=1σ
2
k )

∑mk

i=1

√
λkiσ

2
k

− σ 2
k (6)

Since pki is greater than 0, the variance λki should be greater
than a threshold φ which depends on the noise variance

λki > φ =
⎛

⎜⎝

∑mk

i=1

√
λkiσ

2
k

pk + ∑mk

i=1 σ 2
k

⎞

⎟⎠ σ 2
k (7)

However, in multi-user networks, the individual opti-
mal result may not be fair to all users. The network utility
optimization helps to improve the overall performance. Sup-
posing that there are K users in networks with different
channel conditions, we can know the rough channel condi-
tion from the channel estimator, and each channel noise’s
variance is σ 2

k (k = {1, .., K}). The total available power is
P , and the total available bandwidth is M . The problem can
be formalized

min
K∑

k=1
f [Ek[mk, pk, σk]]

s.t.
K∑

k=1
mk ≤ M

K∑
k=1

pk ≤ P

mk ∈ Z

(8)

Note that Ek is a multi-variable function, the main vari-
able is the bandwidth and power, and f is the utility function
to be discussed. The above optimization problem is a kind
of Knapsack problem. It is a mixed integer nonlinear pro-
gramming (MINLP) problem, which has been proven to
be NP-hard. To reduce the complexity, we divide the opti-
mization problem into two sub-problems, namely power
allocation and bandwidth allocation.

The optimization objective Eq. 8 can be rewritten as

min
m

{
min

p
{E[M, p, σ ]} |

K∑

k=1

mk = M

}
(9)

With this expression, it is clear that one sub-problem is
to find the optimal power allocation under a given band-
width allocation, and the other sub-problem is to find the
optimal bandwidth allocation given that the optimal power
allocation has been solved in the first sub-problem.

4 Joint resource allocation

Different optimization objectives should be considered in
different scenarios while jointly allocating bandwidth and
power in wireless multi-user networks. In the following
subsections, we will discuss three optimization objectives:
1) Minimizing the total distortion; 2) Minimizing maxi-
mal distortion; 3) Minimizing the summation of square root
distortion. The performances are briefly analysed for each
objective.

4.1 Minimizing the total distortion

Each chunk is modeled as i.i.d Gaussian source. Accord-
ing to the uncoded transmission described in Section 2,
the joint bandwidth and power allocation problem aiming
at minimizing the total distortion for the network can be
mathematically formulated as follows

minEtotal =
K∑

k=1

mk∑
i=1

λkiσ
2
ki

pki+σ 2
k

+
K∑

k=1

N∑
i=mk+1

λki

s.t.
K∑

k=1

mk∑
i=1

pki ≤ P

K∑
k=1

mk ≤ M

mk ∈ Z

(10)

mk is the allocated bandwidth to user k, which must be inte-
ger. This optimal problem can be solved by solving two
sub-problems.

Sub-problem 1) To solve the power allocation problem
under a given bandwidth allocation, we relax the constraints
on bandwidth. Assuming there are abundant bandwidth
resources, each user can transmit all the coefficients. The
power allocation problem can be written as

minEtotal =
K∑

k=1

mk∑
i=1

λkiσ
2
ki

pki+σ 2
k

+
K∑

k=1

N∑
i=mk+1

λki

s.t.
K∑

k=1

mk∑
i=1

pki ≤ P

mk = N

(11)

Note that this problem is convex, which can be solved by
the Lagrange method

pki = g2
kiλki =

√
λkiσ

2
k (P + ∑K

k=1
∑mk

i=1 σ 2
k )

∑K
k=1

∑mk

i=1

√
λkiσ

2
k

− σ 2
k (12)

The power allocation algorithm can be described as Algo-
rithm 1. Its complexity is O(N), because the main compu-
tation is calculating pki . With the constraint (12) described
in Section 2, the bandwidth allocation m should be updated
based on the solved power here. That’s sub-problem 2.
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Sub-problem 2) This sub-problem is trying to solve band-
width allocation according to the power allocation and the
initial bandwidth assumption in sub-problem 1. If total
available bandwidth is more than the initial bandwidth
assumption, the initial bandwidth is an optimal bandwidth
allocation result. The sub-problem 2 has been solved.
Otherwise, a greedy algorithm is proposed to solve the
bandwidth allocation problem. To satisfy the bandwidth
constraint, some coefficients have to be discarded, which
causes distortion increment. According to the objective
function Eq. 9, the distortion increment can be calculated
as

Incki = λki − λkiσ
2
k

pki + σ 2
k

(13)

Thus we need to discard the chunk with least Incki . Theo-
retically, power should be reallocated after discarding data.
But from engineering perspective, it may be not necessary
to reallocate power so frequently. Supposing the redundant
power is v, according the Taylor series, the degradation
without power reallocation can be written as

Etotal(p−v)−Etotal(p) = −∇Etotal(p)v+1

2
∇2

Etotal(p)v2

(14)

Making a tradeoff between efficiency and accuracy, we set
a degradation threshold δ to determine whether reallocate
power or not. According to Eqs. 9 and 14, the reallocation
condition is

vre ≥ ∇Etotal(p) +
√

∇Etotal(p)2 + 2∇2Etotal(p)δ

∇2Etotal(p)
(15)

The bandwidth allocation algorithm can be described as
Algorithm 2. Its complexity is O(N2).

Given the nature of the DCT coefficients distribution,
the power is extremely concentrated on low frequency com-
ponents. The condition can only be met when it need to
drop most chunks. We can solve this problem by sorting the
Incki , and discarding the several least significant chunks
to satisfy the bandwidth constraint directly. The simulation
result shows that it causes almost no degradation in per-
formance. The complexity of this step is O(NlogN) mainly
caused by sorting. So the bandwidth allocation without
iteration can be described as Algorithm 3.

4.2 Minimizing the maximal distortion

In this subsection, we study minimizing the overall maxi-
mal distortion of all users under the given constraints, which
is the min-max problem. Typically the min-max problem
embodies fairness better. The optimization problem can be
expressed as

minmax Ek

s.t.
K∑

k=1

mk∑
i=1

pki ≤ P

K∑
k=1

mk ≤ M

mk ∈ Z

(16)
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This problem can be solved by a greedy algorithm. The
constraint in Eq. 6 indicating the least power p′

ki to transmit
a chunk with variance λki should satisfy
{

λki+1 ≤ φki+1

λki > φki
(17)

Through equation λki+1 = φki+1, pki can be derived as

pki =
(√

λkiσ
2
k −

√
λki+1σ

2
k

)
pk + (i + 1)σ 2

k

∑i+1
j=1

√
λkjσ

2
k

+pki+1 (18)

The min-max power allocation algorithm can be written as
Algorithm 4.

The distortion of user k with the least power allocation is

Dki =

⎛

⎜⎜⎜⎝

(
mk∑
i=1

√
λkiσ

2
k

)2

pk +
mk∑
i=1

σ 2
k

+
N∑

i=mk+1

λki

⎞

⎟⎟⎟⎠ (19)

Under the least power allocation to each chunk, we can
gradually allocate the bandwidth to the users which have
the maximal distortion. Once the bandwidth constraint is
satisfied, it means that the optimal bandwidth allocation is
finished and we continue to allocate the abundant power to
achieve the minimal distortion. But if the power constraint
is firstly satisfied, it means the abundant bandwidth can not
use because of lacking power.

So the min-max bandwidth allocation algorithm can be
written as

4.3 Minimizing the summation of square root distortion

In this subsection, we proposed using square root func-
tion as the proportional fairness function. Following the
derivation in Eq. 8, the joint bandwidth and power alloca-
tion problem aiming at minimizing the square root utility
function as follows

minEsqrt =
K∑

k=1

√
Ek[mk, pk, σk]

s.t.
K∑

k=1

mk∑
i=1

pki ≤ P

s.t.
K∑

k=1
mk ≤ M

mk ∈ Z

(20)

where mk is allocated bandwidth of user k, which must be
integer. pki is allocated power of chunk i in video k. As the
analysis described in Section 2, this optimal problem can be
solved by solving two sub-problem.

Sub-problem 1) The first sub-problem is to solve the
power allocation problem under a given bandwidth alloca-
tion. Given bandwidth allocation m, the power allocation
optimization objective can be expressed as follows

minEsqrt =
K∑

k=1

√(
(
∑mk

i=1

√
λkiσk)

2

pk+∑mk
i=1 σ 2

k

+ ∑N
i=mk+1 λki

)

s.t.
K∑

k=1
pk ≤ P

(m1, m2, ..., m3) = m

(21)

Note that the objective function is convex and the constraint
on power is linear. Therefore, the problem is convex. In gen-
eral, constraint convex optimization problem can be solved
by Lagrangian method

L(m, γ ) =
K∑

k=1

√√√√
(

(
∑mk

i=1

√
λkiσk)2

pk + ∑mk

i=1σ
2
k

+
∑N

i=mk+1
λki

)

+γ (

K∑

k=1

pk − P ) (22)

For convenience, we define

Ak =
(

mk∑

i=1

√
λkiσ

2
k

)2

Bk =
∑mk

i=1
σ 2

k

Ck =
N∑

i=mk+1

λki (23)
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So the Lagrangian L can be rewritten as:

L(m, γ ) =
K∑

k=1

√
Ak

pk + Bk

+ Ck

+γ

(
K∑

k=1

pk − P

)
(24)

For solving the optimal power allocation, we derive a
equation set through the Lagrangian L:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ = - 1
2 (

A1
p1+B1

+ C1)
− 1

2 A1

(p1+B1)
2

...

γ = - 1
2 (

Ak

pk+Bk
+ Ck)

− 1
2

Ak

(pk+Bk)
2

P =
K∑

k=1
pk

(25)

However, we observe that the Eq. 25 are nonlinear equa-
tions with high dimensions and high orders. It is difficult to
get the analytic expression, especially with the increase of
user number K , which will bring the exponential increase
of computation complexity. So we propose to use gradient
descent method to solve this problem.

The power allocation optimization objective can be sim-
plified as a constrained optimization problem with equality

min Esqrt

s.t.
K∑

k=1
pk = P

(26)

We can use Newton’s method to solve this problem. Simi-
lar to the power allocation problem in subsection A, we need
to update bandwidth allocation and reallocate the power.
Given a initial power allocation p0, the Newton step �p

and decrement δ are

�p = − ∇Esqrt (p0)

∇2Esqrt (p0)

δ = (�pT ∇2
Esqrt (p0)�p)1/2

(27)

Given the nature of Newton method, convergence can
be extremely rapid when the starting point is near the opti-
mal solution. We can relax the bandwidth constraint, set
Ck = 0, the Lagrangian equation set can be solved. So the
starting point is near the optimal solution before bandwidth
allocation. The Newton iteration becomes much more effi-
cient. So the power allocation algorithm can be described as
Algorithm 6.

Sub-problem 2) The second sub-problem is to solve the
bandwidth allocation problem under a given power alloca-
tion. Similar to the bandwidth allocation in subsection A,
the objective function increment can be calculated as

Incki = √
Ek[mk(i−1), pk, σk] − √

Ek[mk(i), pk, σk] (28)

where Ek[mk(i−1), pk, σk] denotes the utility function
result with discarding the (i)th chunk of user k, and
Ek[mk(i), pk, σk] denotes the utility function result with
retaining the (i)th chunk in video k. In one video, Incki

is positive correlation with variance λ. In order to save
the computation, we can just compare the variance of last
chunk and discard the smallest. The bandwidth allocation
algorithm can be described as Algorithm 7.
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As the analysis in subsection A, and the power allocation
need an iterative process. For efficiency purpose, we just
need to reallocate the power one time after the bandwidth
allocation finished. The simulation result shows that it cause
little degradation in performance.

5 Simulation results

We carry out the evaluation based on multi-user videos,
which are 720p with resolution 1280 × 720. The frame rate
of all video is 30 FPS (frame per second). The user number
is assumed to 3 or 6. Similar to the test sequence used in
Softcast, our test sequence is composed of multiple stan-
dard video test sequences including City, ShuttleStart ,
Shields, Parkrun, Stockholm, Jets, Intotree.

Since this paper focuses on uncoded video transmission,
Softcast is considered as a reference system. In Softcast, we
just assign all the available resources to all users in average.
With limited bandwidth and power resources, every user
discards the same number of chunks and allocated the same
power. For a fair comparison, all systems use GOP size 8
and equal chunk division with 8 × 8 chunks per frame. The
transmitting video content include 32 frames(4 GOPs). The
available channel resources is assumed to be limited. The
ratio of channel bandwidth to the source bandwidth is set
to 1/2. The mean power also set as 1/2. For brief expres-
sion, we quantize the mean power and bandwidth to 1 per
chunk, so the total available power resource is quantize by
multiplying ‘chunk number’, ‘frame number of one GOP’,
‘power ratio’ and ‘user number’, as well as bandwidth. For
instance, in Softcast average scheme, each user will allo-
cate 256 units power resources and 256 units bandwidth
resources.

For a comprehensive understanding of our scheme, we
apply control variate method to discuss the results of pro-
posed optimization strategies in three cases: 1) All users(3
users) require the same video content but with different
channel condition. 2) All users(3 users) require different
video content but with the same channel condition. 3) All
users(6 users) with different video content and channel con-
dition. In each case, we compare the bandwidth and power
allocation, the performance in terms of PSNR(Peak Signal
to Noise Ratio). In result figures, the Aver method means
average all the available resources to all users; the Min-
MSE method represents minimizing the total distortion; the
MinSqrt method represents minimizing the summation of
square root distortion; the Minmax method represents min-
imizing the maximal distortion. In Case 1 and Case 2,
we concentrate on the analysis of the difference among
proposed optimization objectives. In Case 3, we concen-
trate on the performance gain of the proposed optimization
objectives.
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Fig. 3 Power allocation in Case 1

Case 1 All users(3 users) require the same video content
but with different channel condition. This case shows the
difference of resource allocation and how performance is
affected by the channel noise.

1) Power allocation

As shown in Fig. 3, this experiment demonstrates the dif-
ference of power allocation among four methods. It shows
that the users with low channel SNR have been allocated
more power resources to some extent. In multi-user net-
works, to improve the overall performance, the users in bad
channel condition need more protection. However, the pro-
tection of users in bad channel is at the cost of the loss of
users in good channel condition. For instance, the Minmax
method is the extremely fair protection, it has improved per-
formance of users under bad channel condition but it also
causes big loss to the users under good channel condition.
The MinMSE method and MinSqrt method seem to balance
better.

2) Bandwidth allocation

Channel SNR
5dB 10dB 20dB

B
an

dw
id

th
 A

llo
ca

tio
n

0

100

200

300

400

500

600

Aver
MinMSE
MinSqrt
Min-max

Fig. 4 Bandwidth allocation in Case 1
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Fig. 5 Mean Square Error in Case 1

As shown in Fig. 4, this experiment demonstrates the
difference of bandwidth allocation among four methods.
Unlike the power allocation, the bandwidth allocation does
not change too much compared to the Aver method, because
the bandwidth allocation is mainly determined by the coeffi-
cient distribution. In case 1, the videos are the same and the
bandwidth allocation does not vary like power allocation.

3) Mean Square Error

As shown in Fig. 5, this experiment demonstrates opti-
mal results of all methods. The MSE has been quantized
for a brief and clear compare. It shows that Aver method
brings theMSE gap naturally, butMinmaxmethod makes all
users the same through allocating the resources. The Min-
MSE method just protect the high MSE users without much
loss to other users. The result of MinSqrt method is con-
fused, which the lowest MSE users still decreased, it proves
that the optimization strategies suit different scenarios.

Case 2 All users(3 users) require different video content
but with the same channel condition. This case shows the
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Fig. 6 Power allocation in case 2

Video Sequence
Jets Intotree Sheriff

B
an

dw
id

th
 A

llo
ca

tio
n

0

100

200

300

400

500

600

Aver
MinMSE
MinSqrt
Min-max

Fig. 7 Bandwidth allocation in Case 2

difference of resource allocation and performance effected
by the video content.

1) Power allocation

As shown in Fig. 6, this experiment demonstrates the dif-
ference of power allocation caused by the video content.
The DCT coefficients of three sequences have different vari-
ances. The bigger variance is, the more power is allocated.
In frequency domain, the low frequency coefficients have
higher energy, so it needs more power to transmit them.
Thus the video with high energy in frequency domain tend
to be allocated more power resources.

2) Bandwidth allocation

As shown in Fig. 7, the bandwidth allocation is almost
the same with power allocation. Under the same channel
condition, the distribution of DCT coefficients determines
the resource allocation.

3) Mean Square Error

As shown in Fig. 8, just like case 1, the Aver method
brings the gap and the optimal methods decrease the gap.
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Fig. 8 Mean Square Error in Case 2
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Fig. 9 Mean square error in Case 3

However, the MinSqrt method performs better in this case,
meanwhile it causes fewer loss to sequence Jets but
improve other users performance.

Case 3 All users(6 users) with different video con-
tent and channel condition. The six sequence are City,
ShuttleStart , Shields, Parkrun, Stockholm, Jets. In
this case, we concern about the MSE and the video quality
in terms of PSNR.

1) Mean Square Error

As shown in Fig. 9, the MinMSE method decrease
16.43dB in terms of total MSE. The MinSqrt method
decreases 15.83dB in terms of total MSE. But MinMax
method emphasizes the fairness of all users and it only
decreases 2.42dB in terms of total MSE.

2) Video Quality

As shown in Fig. 10, the MinMSE method and Min-
Sqrt method decreases the gap among all users, and Min-
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Fig. 10 Video quality in Case 3

Sqrt method seems more reasonable. The MinMax method
emphasizes the fairness of all users but it causes a perfor-
mance loss in terms of total PSNR.

6 Conclusion

In this paper, we present an analog multi-user video trans-
mission framework over wireless networks and apply three
different optimization strategies to solve the resource allo-
cation problems. The optimization strategies evaluate the
overall network performance from different perspective.
The optimization to minimize the total distortion performs
the best in terms of average PSNR of all users; the opti-
mization to minimize the maximal distortion achieves more
fair result, but sometimes it may be unreasonable because
it has reduced the performance of users with the best chan-
nel condition; The optimization to minimize the summation
of square root distortion seems to be a better choice, which
can improve the performance of users with bad channel
conditions, meanwhile causing little loss of good condition
users.
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