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Abstract We present multiple approaches to identify the
significance of topological metrics that contribute to biolog-
ical network robustness. We examine and compare the com-
munication efficiency of transcriptional networks extracted
from the bacterium Escherichia coli and the baker’s yeast
Saccharomyces cerevisiae using discrete event simulation
based in silico experiments. The packet receipt rate is
used as a dynamical metric to understand information flow,
while unsupervised machine learning techniques are used
to examine underlying relationships inherent to the net-
work topology. To this effect, we defined sixteen features
based on structural/topological significance, such as tran-
scriptional motifs, and other traditional metrics, such as
network density and average shortest path, among others.
Support vector classification is used with these features after
parameters were identified using a cross-validation grid-
search method. Feature ranking is performed using analysis
of variance F-value metric. We found that feed-forward loop
(FFL) based features consistently show up as significant in
both the bacterial and yeast networks, even at different noise
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levels. We then use a supervised machine learning technique
(random forests) to investigate the structural prominence
of the FFL motif in information transmission using sub-
networks (larger sample size compared to the unsupervised
approach) extracted from Escherichia coli transcriptional
regulatory network. Further, we study the role of FFLs in
signal transduction within the complete Escherichia coli
regulatory network. Although our work reveals a minimal
role of FFLs in signal transduction, it highlights the struc-
tural role of FFLs in information transmission captured
by random forest regression. This work paves the way to
design specialized engineered systems, such as wireless sen-
sor networks, that exploit topological properties of natural
networks to attain maximum efficiency.

Keywords Biological robustness · Transcriptional
network · Feed-forward loop · Signal transduction

1 Introduction

Many functional aspects of transcriptional networks appear
to be preserved despite the presence of noise or other dis-
ruptions. For example, some bacteria have been shown
to survive despite extensive ‘rewiring’ of their transcrip-
tional network topologies [9]. In some cases, such robust-
ness to function can be attributed to the network structure
alone, owing to its power-law degree distribution [1]. In
other cases, the abundance of highly repetitive subnetworks,
termed network motifs [22], have been correlated with an
ability of the system to persist in a dynamically stable
state [20]. One interesting example of such a motif is the
feed-forward loop (FFL)–a three-node subnetwork wherein
the top-level protein regulates the expression of a gene via
two paths, which appears to be more abundant in some
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transcriptional networks than found in randomized versions
[22]. Indeed, FFLs have received much attention, due in
part to their information-processing ability. For example,
they have been reported to speed-up or slow-down response
times without any feedback loop [16].

This ability to function despite experiencing significant
disruptions to communication seems to be a generic prop-
erty of biology [14], and finding general properties or ‘laws’
that can be used to engineer this feature into man-made sys-
tems remains an open challenge [6, 15]. We make headway
toward this goal by using machine learning techniques to
interrogate the relationship between topological and dynam-
ical properties of transcriptional networks, but viewed from
the angle of the application area; in this case, a wireless
sensor network. Here, nodes with communication capac-
ity may continually experience channel noise, which has
parallels in molecular biology: proteins and other signaling
biomolecules are continually made and destroyed, leading
to uncertainty in the channel capacity of a signaling path-
way. Our approach to this problem is to combine discrete
event simulation and support vector machine learning tech-
niques to identify important system features that contribute
to the information flow across such networks. Discrete event
simulation can capture dynamic behavior of the system by
modeling information transmission as a set of independent
events under custom perturbations using channel noise and
congestion-based information loss; while machine learning
techniques can be used to identify underlying patterns in the
data.

The NS-2 framework simulates information flow across
wireless networks in terms of packet transport; we employ
it here to quantify dynamical network robustness by mea-
suring the packet receipt rates at various destination nodes
in the model networks. Packet receipt rate is the ratio of
number of packets successfully received at sink/destination
nodes to the number of packets sent by the source node(s).
While biological systems do not strictly communicate using
information packets, they do employ signal transduction
pathways that can be thought of as a series of activation
steps, depending on concentration thresholds. This analogy
can be taken further, given that biology is often redun-
dant, in the sense that many pathways may be activated
to achieve a single goal, reminiscent of flooding. We have
described such similarities in detail before [5, 10, 11]. This
paper builds upon our previous work and explores properties
crucial for robustness in transcriptional networks to design
specialized wireless sensor network topologies.

The procedure followed here is described in Fig. 1.
Section 2.1 describes the network extraction–as shown in
Fig. 1 (Step 1)–from E. coli and Yeast model networks
using the GeneNetWeaver software [21]. Section 2.2 details
the simulation setup and the determination of robustness
(Fig. 1 (Step 2)) using NS-2 software. Section 3 describes

the support vector machine technique used to identify data
patterns followed by the determination of labels using k-
means clustering algorithm, and feature definition.

2 Methods

2.1 Model transcriptional networks

The GeneNetWeaver software [21] is used here to extract
subnetworks from transcriptional network datasets for the
bacterium Escherichia coli and the common baker’s yeast
Saccharomyces cerevisiae. One hundred networks each of
five different network sizes n = 100, 200, 300, 400, and
500, where n is the number of nodes, were considered. For
simplicity, we will refer to networks derived from S. cere-
visiae as ‘Yeast’ networks, whereas the bacterial networks
will be referred to as E. coli networks. For our purposes,
we map the transcription factors as transmitting/forwarding
nodes, the genes as sinks while the edges represent inter-
actions between participating nodes; thus, we ignored the
regulatory type of each link.

2.2 Simulation setup

Network simulator (NS-2) [18] is used here to simulate
packet transmissions in the mapped network. Nodes cor-
responding to genes that code for transcription factors are
taken as the source nodes, whereas nodes corresponding to
non-regulating genes are considered to be the sink nodes.
While source nodes can send and forward packets, sink
nodes may only receive packets without forwarding them
onto others. We adopt a flooding type protocol, wherein
each non-sink node may forward the received packets to its
outgoing edges.

To account for noise, three different loss scenarios are
considered, in which up to 20 %, 35 % and 50 % of pack-
ets can be lost in transit. This affects the packet receipt rate,
which is determined to be the ratio of number of packets
received at all sinks to the number of packets transmitted
by source nodes, which we represent as a percentage of the
total sent packets. This dynamical system is perturbed by
fluctuating the loss level. Since the simulation setup consid-
ers channel fluctuation and congestion-based perturbations,
we consider a network more robust when it exhibits a higher
level of packet receipts.

2.3 Motif structural redundancy and packet receipt

What is the impact of structural redundancy, contributed by
transcriptional motifs like FFLs (e.g. Fig. 2 (b)(1)), on the
information flow (packet transmission) through a complex
network? To examine this, we first tracked and identified all
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Fig. 1 Schematic of the procedure followed in this work

paths (node-hops) traveled by successfully received packets.
We then used this history to identify all FFLs that possess a
nonempty intersection with these successful paths.

3 Support vector machine modeling

Among several others, support vector machine (SVM) is a
supervised machine learning (ML) technique used for clas-
sification of data [7]. Our goal here is to use SVMs to first
identify, and then to determine, which topological features
of transcriptional networks best capture the robustness of
a network. An SVM model identifies a classifier (bound-
ary that separates data) which best classifies the given data.
While linear classifier suits well in some instances, others
may require non-linear separation boundaries. The imple-
mentation of such linear or non-linear boundaries in an
SVM model is achieved using kernel functions; possible
kernel functions include: linear, polynomial, radial basis
function (RBF) and sigmoid. An SVM model predicts the
target value of the test data given the features.

A schematic of the SVM dataset is shown in Fig. 2a.
It contains a set of instances, that are combinations of
labels and features. The term label is attributed to an out-
put which describes a feature, which is a property of the
dataset. In addition, each feature is assigned a unique ID.
For example, we employed ten datasets, which constitute
five sampled subnetworks each from the datasets for E.
coli and yeast. Each of these five datasets corresponds to
a particular network size, as measured by the number of
nodes, i.e. n = 100, 200, 300, 400, or 500. One hundred
networks were sampled from the source datasets for each
size, and each such sampled subnetwork is an example of an
instance.

We used Python and scikit-learn package [19] to
identify features and build SVM classification models.
scikit-learn utilizes the popular ML libraries libsvm and
liblinear . We follow the data preprocessing and model
selection steps from [8]. We perform data scaling after
feature determination (Section 3.5) and a grid search
(Section 3.4) to identify best parameters to classify data.
Our goal is two-fold: a) to build a classification model and
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b) rank features. Feature ranking is performed using analy-
sis of variance F-test which does not use the model created
by SVM.

3.1 Assigning labels for SVM

As shown in Fig. 1, packet receipt rates are calculated from
each network using NS-2 from each network instance, and
then a k-means clustering algorithm is employed to gen-
erate appropriate labels. k-means algorithm is applied to
packet receipt rates (PRRs) as noted in Fig. 2. The k-means
algorithm partitions a number of points into clusters by first
randomly assigning a center for each cluster; then, uses the
‘distance’ of each point to all cluster centers to determine
which cluster to assign any given point. This process is
iterated until the clusters are defined so as their ‘centers’
no longer change. Our two resultant vectors now are the
label vector Y (100 rows ×1 column) and the correspond-
ing feature vector X (100 rows ×16 columns). Each row in
label vector Y corresponds to each row in feature vector X

(Fig. 2a). The vectors X and Y together are termed as the
dataset since it contains labels and features for a particular
network size at a specific perturbation level.

3.2 Data pruning

A one-size-fits-all SVM model may not fully explain pat-
terns within our datasets, such as statistical outliers of
packet receipt from the NS-2 simulations, which become
evident when clusters are identified using k-means; because
statistical outliers represent rare, large fluctuations, they

may erroneously end up defining their own cluster. To avoid
this problem, the dataset is pruned by removing the labels
and their corresponding data instances from the feature
instances. Consider the label vector Y with four clusters
(IDs: 0, 1, 2, 3) to be {1 : 37, 0 : 34, 3 : 28, 2 : 1}. Only
one point belongs to cluster ID 2 and hence that point is dis-
carded along with the corresponding feature instance vector.
Now, the training and testing is performed on Y which is 99
rows ×1 column and X which is 99 rows ×16 columns.

3.3 Training and testing

The pruned data is used as training and testing sets for the
SVMmodels. Each dataset is split into 75 % training and 25
% testing sets. In order to avoid overfitting the data, 5-fold
cross validation is used to randomize the 75/25 split into
training/testing datasets. In a 5-fold cross validation test, the
split is performed five different times; labels are stored in
a vector, and corresponding feature instances are stored in
another, different vector. Continuing the example stated in
the Section 3.2, now the training set contains {1 : 27, 0 :
26, 3 : 21} and the testing set contains {1 : 10, 0 : 8, 3 : 7}.

3.4 Parameter selection

A grid search is performed to identify the ‘best’ parameter
set in which to build an SVM model. Grid search uses k-
fold cross validation and builds a classifier for each set of
parameters. Each classifier is then tested using the F1 score,
which is a weighted average of precision and recall [19].
The set of parameters used are shown in Table 1. C is the
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Table 1 Grid search
parameters identified using the
cross validation method
described (20 % perturbation)

Network size(s) Kernel C Gamma (γ ) Degree

Yeast: 100, 500 RBF 100, 1 0.1, 2 –

Yeast: 200, 300, 400 Polynomial 1, 1000, 10 1, 1, 1 2, 1, 1

E. coli: 100, 200, 300, 400, 500 RBF 10, 10, 100, 1, 100 1, 0.1, 0.1, 2, 1 –

regularization constant and γ is a kernel hyper-parameter. 1,
10, 100, 1000 are used as C values for Linear, RBF, Poly-
nomial kernels. The set of values 0.0001, 0.001, 0.01, 0.1, 1
and 2 are used as γ for RBF kernel. A γ value of 1 is used
for polynomial kernel. 1, 2, 3, 4, 5 are used as degree val-
ues (applicable only to Polynomial kernel). Large C overfits
the data (high cost for misclassification) while large γ in
polynomial kernel ensures a smoother decision boundary.

3.5 Features

ML techniques use underlying properties, referred to as fea-
tures, of the data to describe relationships. For each data
instance, features are mapped to corresponding labels, as
described below. Given a network graph, G(V, E), wherein
V is the set of supporting vertices, and E is the set of edges
linking those vertices, we define the following SVM fea-
tures: features defined based on the network topology are
given in Sections 3.5.1 to 3.5.11, whereas features defined in
terms of NS-2 simulation traces are given by Sections 3.5.12
to 3.5.13. These latter features are hereafter referred to as
‘path-based features’. In total, sixteen features are studied;
all features/metrics are normalized to the interval [−1, 1] to
remove any artificial bias. The normalization was done as
follows:

Fjs = 2 ×
(

Fj − Fmin

Fmax − Fmin

)
− 1, (1)

wherein F is the set of features, Fjs is the scaled j th fea-
ture value, Fj is the j th feature value, Fmax and Fmin are
maximum and minimum values in F .

3.5.1 Network density

Network density (ND) is a measures of the number of
edges in the network, |E|, against all possible edges,
|V | (|V | − 1). Thus, it can be given by the following equa-
tion:

ND = |E|
|V | (|V | − 1)

. (2)

3.5.2 Average shortest path

The average shortest path (ASP) of a network is the short-
est of all path-lengths, min {d (V1, V2)}, measured between

any two network nodes V1 and V2. This metric captures the
ability of two nodes to communicate and is given by:

ASP =
∑

V1,V2∈V

min {d (V1, V2)}
|V | (|V | − 1)

. (3)

3.5.3 Degree centrality

Degree centrality of a node (ndc) is defined as the number
of edges incident on the node. Thus, it provides a measure
of reception to others within a network and is given by:

ndc = deg(n)

|V | − 1
(4)

wherein n denotes the node and deg(n) is its degree. In
order to identify the impact of genes, which are regulated by
transcription factors, the collective average degree central-
ity of genes (ADCG) is considered as a feature, along with
average degree centrality of the network (ADC).

3.5.4 Transcription factor percentage

Transcription factor percentage (TFP) is a measure of the
fraction of networked nodes that serve as transcription
factors which regulate genes and is given by:

T FP = |VT F |
|V | , (5)

wherein |VT F | is the total number of transcription factors in
the network.

3.5.5 Genes percentage

In complement to TFP metric, Eq. 5, we define the genes
percentage (GP) as the fraction of networked that can be
identified as genes. This quantity can be calculated with the
equation:

GP = |VG|
|V | , (6)

wherein, |VG| is the number of gene nodes.

3.5.6 Source to sink edge percentage

Larger networks are more likely to support links that
directly connect source to sinks within the network, facil-
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itating information flow. Thus, we propose a metric that
quantifies this property: the source to sink edge percentage
(SSEP), which we define as the fraction of direct edges,
|ESS |, from source nodes to sink nodes compared to the total
number of edges in the network:

SSEP = |ESS |
|E| . (7)

3.5.7 FFL abundance

FFL abundance (FFLD) is the ratio of total edges in the net-
work that intersect with edges from at least one FFL to the
total edges in the network, and is given by:

FFLD = |EFFL|
|E| , (8)

where EFFL : number of edges participating in FFLs.

Fig. 3 Variation of top 5
features in each E. coli (panel
(a)) and yeast (panel (b))
networks, at losses 20 % and 50
% (Sizes = 100, 200, 300, 400,
500)

(a)

(b)
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3.5.8 FFLDED

Figure 2(b)(1) illustrates an FFL, which is hierarchical and
composed of two regulatory paths. The first is a ‘direct’
linkage from nodes A to C, whereas an ‘indirect’ path
accounts for regulation of node C through node B. Here,
the FFL direct-edge density (FFLDED) is the ratio of FFL

direct edges, |EFFLDE |, to the total edges in the network,
and is given by:

FFLDED = |EFFLDE |
|E| . (9)

Note that the FFLDED may be > 1, because several FFLs
may utilize the same direct-edge linkage.

Fig. 4 Variation in normalized
ANOVA F-values for the top 5
features in each E. coli (panel
(a)) and yeast (panel (b))
networks, at losses 20 % and 50
% (Sizes = 100, 200, 300, 400,
500)

(a)

(b)
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3.5.9 FFLSSPD

The FFL source to sink edge density (FFLSSPD), is the
fraction of direct source-sink edges that are also part of an
FFL to the total number of source-to-sink edges in the net-
work. This metric decouples the influence of FFLs from all
other source-to-sink edges in the network.

3.5.10 FFLDEP

The FFLDED metric above accounts for the fraction of
direct-edge FFL links present in the network. However, a
single link may potentially appear more than once if it is
‘shared’ among two or more FFLs. We define a separate
measure that ignores multiple copies of any single link,
which is given by:

FFLDEP = |EFFLDE |
|E| , (10)

wherein |EFFLDE | is the number of unique direct-edges in
FFLs embedded in the network.

3.5.11 FFLIDEP

Indirect FFL edge percentage (FFLIDEP) is the ratio of the
number of unique FFL indirect edges to the total number of
sequential, two-step paths in the network. Thus, it is similar

to FFLDED, but measured against the indirect edge of the
FFL as follows:

FFLIDEP = |EFFLIDE |
|ET EP | , (11)

wherein |EFFLIDE | is the number of indirect edges (two-
step paths) in FFLs, and |ET EP | is the total number of
sequential two-edge paths in the network.

3.5.12 Direct-edge trace participation

Each NS-2 simulation results in a set of ‘traces’ that map
packet-transport histories for packets sent and received
successfully from source to sinks. Similar to Eq. 9, but
considering packet trace history, we measure the ratio of
the number of unique FFL direct edges that participate
in successful packet paths to the total number of unique
FFL direct edges, termed FFLDSPATH. Another feature
FFLDOSPATH can be defined similar to FFLDSPATH if
we allow for duplication of FFL direct-edges; this metric
allows for FFL direct edges to participate multiple times in
successful packet delivery.

3.5.13 Indirect-edge trace participation

Finally, we measure the ratio of the number of unique active
FFL indirect edges that participate in successful packet trace
histories to the number of unique FFL indirect edges. This

Fig. 5 Variation of FFL
participating direct and indirect
edge-based features at 20 %, 35
% and 50 % loss for E. coli
networks (Sizes = 100, 200, 300,
400, 500)
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Fig. 6 Variation of FFL
participating direct and indirect
edge-based features at 20 %, 35
% and 50 % loss for Yeast
networks (Sizes = 100, 200, 300,
400, 500)

metric is termed FFLIDSPATH. Similarly, we allow for
the multiple counting of a single FFL indirect path in the
contribution to successful packet trace history. This metric
is termed FFLIDOSPATH; i.e., FFL indirect edges can be
leveraged more than once to successfully deliver a packet.

3.6 Feature ranking

The identified features are ranked using the analysis of vari-
ance (ANOVA) F-value metric. This metric compares the
inter-class variance to intra-class variance [19]. A higher
F-value denotes higher significance of a feature. F-value
captures feature significance individually but not the mutual
feature dependence.

4 Important features

4.1 Packet receipt rates in transcriptional networks

Generally, all simulated packet-transport scenarios exhib-
ited packet receipt rates that decreased, on average, with an
increase in the loss model. This trend persisted across sub-
networks sampled from both E. coli and yeast networks, of
all sizes, but the smaller subnetworks (n = 100) exhibited
the most variability. That larger networks were less efficient
should be expected: the number of possible paths between
two nodes increases as the network increases. Because pack-
ets may ‘disappear’ during any given hop between nodes,
the increase in total edges should correlate with a sub-

(a) (b) (c) (d)

Fig. 7 Feature importance for different network sizes and perturbation levels (loss %); each cell is an average of 100 runs. Feature importance
ranges from 0 to 1. Higher feature importance value signify higher importance



200 Mobile Netw Appl (2016) 21:191–205

sequent decrease in received packets, independent of the
global network topology.

4.2 Feature ranking in transcriptional networks

In the NS-2 simulations, channel noise and congestion
based packet drops account for internal perturbations. As
mentioned above, fluctuation in packet loss (%) is con-
sidered as a perturbation/stressor to the information flow.
This channel loss stressor is used in the SVM models to
explore the significance of motifs on structural redundancy
and packet receipt rates.

4.2.1 Top-ranking features

Fifteen different SVM models, one for each pair of net-
work size and perturbation level, are used to select fea-
tures/metrics for one specific type of transcriptional net-
work. Let us examine the feature selection in E. coli net-
works for one of the fifteen SVM model instances. For each
network size, the top five features are selected, according to
the criterion that each the most ‘influential’ features should
occur at least three times in the top five features as scored
across different network sizes. For E. coli networks, this top-
ranked set is given by the features: TFP, FFLIDOSPATH,
ASP, FFLIDEP, ADCG, FFLD (Fig. 3a). Similarly, fea-
tures so identified from yeast networks are: FFLIDEP, TFP,
FFLD, GP, FFLIDOSPATH (Fig. 3b). All influential fea-
tures identified from the SVM models in terms of packet
receipt rates relate to the FFL motifs.

4.2.2 Feature stability at different perturbation levels

As a preliminary experiment, we tested the prevalence of
transcriptional network features at different noise perturba-
tion levels. Here, our intention is to assess if structural or
dynamic features prevail in feature significance. The result
of this on E. coli networks is shown in Fig. 3a1 and on Yeast
networks in Fig. 3b. FFLIDEP ranks consistently higher in
most cases (except at network size 100) than other features.
Similarly, FFLD and GP rank in the top two or three at dif-
ferent network sizes. An interesting observation is that three
(FFLIDEP, FFLD, FFLIDOSPATH) out of five top ranked
features are related to FFLs.

4.2.3 Feature ranking across different network sizes

We next investigate if the relative importance of features
vary across different network sizes. Figure 4a shows that
in E. coli, TFP ranks consistently stable in most cases at

1For the figure to be legible, X and Y labels are displayed only once.
This is done for Figs. 3a – 6.

35 % and 50 % perturbation levels (except at network size
300). FFLIDOSPATH, FFLD and FFLIDEP rank higher in
some instances. Figure 4b shows the relative importance
of features in Yeast. Here, FFLIDEP is relatively stable
across different network sizes while FFLD and GP are sta-
ble at some cases but not conclusively overall. Hence, a
combination of conventional metrics (GP and FFL-derived
features) can be used to engineer networks that are robust to
perturbation.

4.2.4 Comparison of FFL based features

The results from the above two studies motivate us to inves-
tigate the variation of FFL based features only instead of the
top five identified features. A general trend can be observed
from Fig. 5 that FFL-based features have higher significance
(based on normalized ANOVA F-value) from network sizes
300 and above. Also Fig. 5 shows that FFLIDEP is ranked
first among the six FFL based features in certain instances
(100, 200, 300 and one instance in 400, 500 network sizes).
Figure 6 shows the ranking for Yeast networks. FFLIDEP
ranks the highest for all network sizes and perturbation lev-
els. Correlation between FFLDSPATH and FFLDOSPATH
(derived from FFLDSPATH) is not always proportional sug-
gesting that there is more to FFL participation than the
number of successful FFL direct path contribution; the posi-
tion of FFLs in the network might also play a critical role.
FFLDEP, FFLIDEP and FFLIDOSPATH consistently rank
as the top three features at different perturbation levels. This
directly reveals the importance of the percentage of FFL
direct edges present in the network and the number of times
those edges were used in successful packet transmissions.

5 Role of FFLs in information transmission

Our goal here is to study the structural role of FFLs in infor-
mation transmission. Specifically, does the indirect path
(A → B → C in Fig. 2b; FFLIDEP is determined based
on such paths) in FFLs stand out when the network is per-
turbed? Our assumption being is that when a network is
perturbed, direct FFL edges (A → C in Fig. 2b: FFLDEP
is determined based on such edges) are destroyed and infor-
mation transmission occurs via the indirect path. In order
to study this feature importance, we use random forest
regression.

In Section 3.1 (followed in [12] and [13]), we used
k-means to cluster packet receipt rates and identified impor-
tant features using F-ANOVA metric after performing SVM
classification. In a significant improvement in methodology,
we modify the problem from an unsupervised technique
(to cluster output labels) to supervised regression problem
as it is more suited to the context of the problem we are
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Fig. 8 Relative importance of
FFLDEP vs FFLIDEP at
different perturbation levels
(loss %) and network sizes.
Each data point is an average of
100 runs

trying to address. Specifically: 1) given a sample set, can
we effectively determine feature (input for any network)
importance that impacts biological network robustness (net-
work output)? 2) training a model on a given a sample set,
how effectively can we predict robustness values for a new
network? We explore these questions next.

5.1 Data

In order to comprehensively analyze E. coli subnetworks,
we increased the sample size from 100 to 1000 for each net-
work size (100, 200, 300, 400 and 500). After pruning out
the networks that are disconnected, we ended up with 974,
943, 957, 932 and 941 samples for network sizes from 100
to 500 respectively. We also increased the number of per-
turbation levels from 3 (20 %, 35 % and 50 %) to 7 (10 %,
20 %, 35 %, 50 %, 75 % and 90 %). This helps to better
understand which features are prominent at varying network
perturbation levels. Feature correlation was performed to
prune the feature set from 16 (from Section 3.5 and [12, 13])
to 15 in this experiment. We also changed the feature scaling
from [-1, 1] (in Section 3.5) to [0, 1] for this study.

5.2 Random forests

We experimented with various machine learning strategies
including randomized PCA, LDA, linear regression and
recursive feature elimination. Randomized PCA could not
exploit the output label (network packet receipt rate in

our case) data to minimize feature space. LDA performed
poorly and linear regression models such as LASSO and
ElasticNet yielded poor coefficient of determination values.
For feature ranking, recursive feature elimination tech-
niques were tried; here, each feature is removed and model
performance is estimated. The model most impacted (nega-
tively) reveals the most important feature. These techniques
did not yield good coefficient of determination values either
which prompted us to explore random forests (RF) [3] to
identify best network characteristics.

RF is an ensemble approach to solve classification and
regression tasks and uses several trees (estimators) to predict
the outcome of test data. A tree is constructed from sam-
ple data filtered from the training dataset. At each terminal
node of the tree, m features are selected out of the feature
set and a best feature is identified where the tree is split into
child nodes. This is repeated until the selected sample size
from the training data is the least. By using several trees and
averaging the predictions, the variance across the trees is
reduced. Then, mean squared error (MSE) is used to deter-
mine the best of estimators to build the RF prediction model.
We tested 19 different estimators (10 to 100 in steps of 5)
to build the RF models; the one with least MSE is selected
to calculate feature importance. The entire RF algorithm is
executed for 100 runs to negate variations in feature impor-
tance calculation due to randomization. Hence, at each run,
the following are calculated: MSE (best out of 19 runs), fea-
ture importance and coefficient of determination (using the
model with least MSE out of 19 estimators). The importance
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of each feature is calculated by averaging the total reduction
in node impurity (as in scikit toolkit [19]) across all estima-
tors. The feature importance reported in Fig. 7a, b, c and d
(for different network sizes) are an average of all the 100
runs. Seven different RF learning models are implemented
in each of these Figures. A total of thirty five different mod-
els (seven RF models for each network size at five network
sizes) are used to derive the conclusions. Figure 7 shows that
the features which stand out vary from one network size to
the other and one perturbation level to another.

5.3 Feature importance

It can be observed that FFLIDEP emerges as a strong fea-
ture at higher loss. Features like Density, TFP and GP show
up to be more important than others in multiple instances.
We can recollect that FFLIDEP is the percentage of indirect
FFL edges that are present in the network compared to the
total edges. Our primary hypothesis is to test if the reduc-
tion in feature importance of FFLDEP at higher loss leads to
higher importance of FFLIDEP. We explicitly observe this
in Fig. 8; this hypothesis is actually true for all network sizes
except 100. Hence, we intended to scan the entire E. coli
regulatory network for these patterns and introduce a way to
understand FFL distribution as described below.

5.4 Model prediction

In order to measure the performance of the RF model, we
use a standard metric—coefficient of determination (COD).
CODmeasures the predicted value performance against real
value (packet receipt rate in our case). Good regression
models will have a COD value closer to 1 and poor models
will have a value closer to 0. Figure 9 present COD before
(15 features described earlier) and after (number of features
varies according to the model) feature reduction. For feature
reduction, we first deduce feature importance and retain all
features that have higher than average feature importance
in a particular model. Figure 9 shows that feature reduction
does not impact COD in majority of cases; hence, we retain
models developed without feature reduction.

5.5 Signal transduction

Figure 10 is used as a reference to explain the following
concepts. We consider FFLs that follow, what we term, a
shortest path switch. Shortest path switch in FFLs is defined
as follows: shortest path from node A to node C is always
via the direct edge. However, under high noise the FFL
direct edge may potentially be destroyed making the infor-
mation flow from node A to node C occur via the indirect
path (via node B). Note that this path switch only happens
because there were no other shortest paths from node A to

Fig. 9 COD before and after feature reduction using RF model for
n = 100, 200, 300, 400 and 500 respectively

the sink other than the indirect A → B → C path, which
in turn implies, that the shortest path from A to the sink has
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Fig. 10 Categorization of FFLs
into peripheral/non-peripheral
and embedded/canonical types

increased by one-hop. Here we identify all FFLs that switch
the shortest path from the direct to the indirect FFL path.

We first group FFLs into two categories: canonical and
embedded. FFLs with no additional edges among the nodes
are considered to be canonical. FFLs with additional edges
among the nodes are considered to be embedded. This is
illustrated in Fig. 10. Further, we group each of these FFL
categories into peripheral and non-peripheral FFLs. Periph-
eral FFLs are the ones in which the node being transcribed
has no out degree, while in non-peripheral FFLs the nodes
being transcribed have non-zero out degree.

Our interest to study FFLDEP and FFLIDEP in particular
is due to the fact that these two FFL-derived features effec-
tively capture the FFL path switch from direct to indirect for
information transmission. Our idea to identify FFLs that are
central to the E. coli network led to the study of the distribu-
tion of peripheral and non-peripheral categories of canonical
and embedded FFLs. First, we identified all canonical and
embedded FFLs. A majority of FFLs (64.5 % and 80.5 %
respectively) switched paths due to the direct edge deletion

in canonical and embedded FFLs. Figure 11 presents the
detailed distribution of the physical location of FFLs within
the E.coli network. This reveals that only a small number
of FFLs (6 canonical non-peripheral and 26 embedded non-
peripheral FFLs) participate in signal transduction within
this network. Effectively, only the gene nodes in these fil-
tered FFLs have outgoing edges enabling them to participate
in signal transduction. Controlling the nodes in these fil-
tered FFLs can establish critical patterns prevalent in the
regulatory network.

Our next objective is to explore the significance of
FFLs in signal transduction within the entire E. coli net-
work. Signal transduction can be explained as follows: in
a transcriptional network, the nodes (genes or transcrip-
tion factors) that are regulated by transcription factor nodes
could influence other nodes. In the context of information
networks, this translates to the following: nodes that receive
information can forward the data to other nodes. Following
our FFL categorization, in order to understand the location
of the FFLs responsible for signal transduction, we observe

Fig. 11 Distribution of
categorized FFLs in E. coli.
Column 2 presents the number
(and the relative percentage) of
respective FFL category.
Column 3 presents the number
of respective FFLs with path
switches. In other words, we
first count all the shortest paths
from source to sinks that pass
through the direct FFL edge
(A → C in Fig. 2). Then, we
knockout the direct edge and
determine the number of
shortest paths that involve the
indirect FFL path (A → B → C

in Fig. 2). All such FFLs with
indirect path switches are
presented in Column 3

Type of FFL # of FFLs (% of corresponding FFLs) # of FFLs with path switch (%)

Canonical 956 (51.4%) 617 (64.5%)

Embedded 904 (48.6%) 728 (80.5%)

Canonical non-peripheral 24 (2.5%) 6 (25%)

Embedded non-peripheral 76 (8.4%) 26 (34%)

Canonical peripheral 932 (97.5%) 611 (65.5%)

Embedded peripheral 828 (91.6%) 702 (84.78%)
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Fig. 12 The distribution of 6
canonical non-peripheral FFLs:
number of hops to nearest sink
nodes from topmost
transcription factor (TF0,
equivalent to A in Fig. 2b) in an
FFL. X-axis represents the
number of hops it takes to reach
sink node. Y-axis represents the
number of nodes that can reach
the sink node. For example, in
(f) there are 20 nodes that can
reach their sink nodes within a
distance of 2 hops (a) (b) (c)

(d) (e) (f)

the distribution of six canonical non-peripheral FFLs (row
3, column 2 from Fig. 11) within the E. coli network. This is
represented in Fig. 12 2. To this end, for each such FFL, we
determine shortest paths from the topmost FFL node (equiv-
alent to A in Fig. 2b, assumed to be a transcription factor)
to the nearest sink node. We can notice in Fig. 12 that only
two FFLs (c, f) make an impact in signal transduction.

6 Discussion & conclusion

We reported two machine learning approaches to under-
stand the contributing factors to biological network robust-
ness. Our experiments revealed the importance of modeling
the problem of network robustness prediction as a super-
vised regression learning technique (random forests). This
work improves the framework required to capture biologi-
cal network robustness from the perspective of information
transmission at different perturbation levels using which
important network characteristics could be determined.

Building on this research, engineered networks can be
created that are robust under lossy conditions using the fea-
tures identified as important in this work. Researchers have
proposed methods in the past to develop complex systems

2Similar figures for 26 embedded non-peripheral FFLs are not pre-
sented here

ensuring specific topological aspects-for instance, retain-
ing overall degree distribution while growing networks in
the Barabasi-Albert preferential attachment model [2]. Such
models can be improved to generate complex networks by
including the FFL derived features to ensure robust system
behavior [17]. These features include average shortest path
and the feed-forward loop motif. Each such structure con-
tains two edge disjoint paths for a transcription factor node
to regulate a gene node. This structure plays a prominent
role in information forwarding at high perturbation levels.
Most canonical FFLs exhibit only a single shortest path
to their sink that passes through FFL direct edge; under
noise when this direct edge becomes unavailable, infor-
mation transport switches to the indirect FFL path which
alternately suggest that the shortest path to sink for this FFL
has increased by one-hop. While this work only explores
the structural contribution of FFLs, other motifs (bifan, for
instance) have also been shown to be promising in their con-
tribution to biological network robustness. Recent research
has also highlighted bow-tie motifs that play a role in bio-
logical signalling and information processing [4]. These
motifs can introduce interesting dimensions to our work by
adding new feature types to the network topologies.
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