
Design and Implementation of Various File Deduplication
Schemes on Storage Devices

Kuan-Wu Su1
& Jenq-Shiou Leu1

& Min-Chieh Yu1
&

Yong-Ting Wu1
& Eau-Chung Lee2 & Tian Song3

Published online: 15 January 2016
Springer Science+Business Media New York 2016

Abstract As smart devices are revolutionized in recent years,
people may generate enormous amount of various sized data
and store them in the local or remote file system in their daily
lives. With cheaper and easy to use private cloud storage ap-
pliances helping to handle the increasing demand of storing
and sharing big volume of data, effective file deduplication
schemes can greatly increase the space efficiency in private
cloud storage systems as well as preserve network bandwidth.
In the paper, we aim at designing and implementing several
file deduplication schemes built in the private cloud storage
appliance, based on different duplication checking rules, in-
cluding file name, file size, and file partial/full content hash
value. Experiment results show using partial content hashing
based file deduplication scheme achieves a reasonably bal-
anced performance without overutilized limited local compu-
tational resources.

Keywords File deduplication . Cloud system . Storage
devices

1 Introduction

The emerging technical gadgets, like digital TV, smartphone,
pad have rapidly driven a large volume of digit data demand
for sharing, exchanging, and data storage. Many applications
have been widely deployed in them and generate a lot of
multimedia data in people’s daily lives, such as images or
video clips captured by the digital cameras or cameras bun-
dled in smartphones, driving the demand for more remote
cloud storage. In addition, on account of the heterogeneity
of the modern smart devices, people are more likely to own
duplicated multimedia data in much different storage systems,
resulting in ineffective storage utilization.

The increase of demand for remote storage give popularity
to many public cloud storage services but most of them with
fairly limited storage space and cumbersome interface, hence
many turn to private cloud storage appliances equipped with
extra computational power that can run private cloud applica-
tions and services. However, the large amount of files from
mixed sources are stored and shared by various storage ser-
vices as active data, thus duplication occurs when different
applications and services synchronize and sometimes generate
different copies in the local private cloud storage file system,
most of the time spread in different folders under deep direc-
tory sub-folders. Meanwhile, multiple clients using the same
private cloud storage may unintentionally create additional
backups and copies as well.

While deduplication appliances have been widely adopted
by enterprises and offices in their own storage area network
(SAN) [1], network attached storage (NAS) appliances are just
become popular for smaller private clouds, such as, in a home
setup environment using just a single NAS device of limited
computational resource and limited network bandwidth to al-
leviate all incoming requests. With proper deduplication
scheme running, the volume of information to manage is

* Jenq-Shiou Leu
jsleu@mail.ntust.edu.tw

Eau-Chung Lee
ytlee@qnap.com

Tian Song
tiansong@ee.tokushima-u.ac.jp

1 Department of Electronic and Computer Engineering, National
Taiwan University of Science and Technology, Taipei, Taiwan

2 QNAP Inc, Taipei, Taiwan
3 Department of Electrical and Electronic Engineering, School of

Engineering, Tokushima University, Tokushima, Japan

Mobile Netw Appl (2017) 22:40–50
DOI 10.1007/s11036-016-0677-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-016-0677-9&domain=pdf

effectively reduced, and significantly lessening the time and
space required for file management. Hong, et al. [2] proposed
their file deduplication scheme to improve the storage utiliza-
tion of SAN. Bobbarjung, et al. then used the concept of file
partitioning to increase the efficiency of the file deduplication
scheme [3]. The aforementioned schemes are running with the
online storage, which may not be suitable for small private
cloud storage. Min, et al. [4] proposed a deduplication scheme
divided files into chucks and manage the chuck SHA-1 hash
value as fingerprints based on file content types. More recent-
ly, Li, et al. [5] presented several new deduplication construc-
tions in a hybrid cloud architecture. Stanek, et al. [6] focus on
security in file deduplication, and showed an encryption
scheme based on file popularity in cloud storage environment.

However, a lot of traditional deduplication schemes focus
on scenarios where files are in cold storage state and are col-
lected via a large body of users [3], or on the other hand
dealing with inline active files where latency and backup
speed is the primary concern [4]. Rarely do they consider a
small group of cooperated users sharing limited private cloud
storage resources, and these files are neither totally inactive
nor always active every day, but most of the files are active
within a year, while only about 20% are active within a month
[7]. At the same time, the emerging technical gadgets enable
just a handful of users to generate enoughmultimedia data that
would fill up a shared private cloud media quickly without
deduplication schemes build-in.

Although most recent studies focused more on cloud stor-
age deduplication across many users, and naturally issues like
file security, illegal access, violation of access, and identifying
unauthorized files via side-channels [8], etc. But for a private
cloud with limited clients, a reasonable way to share file is to
dump shared files in a shared file pool, where everyone in the
group has access. In the meantime, the tragedy of the digital
commons arises where no one wants to manage the space
quota of this limited shared storage space, while a lot of the
shared files are duplicated over and over by different users
before been accessed again months, even years later, and by
then no one is sure these files are duplicated. Implementing an
inline deduplication scheme during access is a way to solve
this issue, but a lot of moderate NAS appliances do not have
such feature, while a lot of offline deduplication scheme is too
costly to run as constant background processes.

In this paper, we present the implementation and evaluation
of a file deduplication scheme that can run reasonably using
only few computational resources in suchmixed cloud storage
scenario, where deduplication is not a constant need for inline
file access, but could be run manually on demand as applica-
tions or automatically in the background for private cloud
storage appliances such as NAS devices.

The rest of the paper is organized as follows: Section 2
provides a more detail discussion about the issues regarding
deduplication in mixed cloud systems environment. Section 3

presents the data structures, process flows used in our
deduplication schemes, followed by theoretical analysis in
Section 4. In Section 5, the experiment environment with cor-
responding evaluation results are presented, and finally, a brief
conclusion in Section 6.

2 Deduplication issues

Below is a representation of the scenario described in
Section 1 as Fig. 1. As described above in introduction, in a
hybrid/mixed cloud environment of limited group of users,
they can share a common private cloud file pool locally, while
at the same time different users may use different public cloud
services. For some files are uploaded directly to the shared
private cloud, but other files mostly from roaming devices
are updated to public cloud services, and then automatically
synchronized to the private cloud server, such as a NAS ap-
pliance. Even so, some NAS appliances have their own API or
applications for mobile devices to directly synchronize file to
private cloud, where some users may choose to synchronize
their files via USB or other means to local PCs before these
files are uploaded to the private cloud. All these different
synchronization and upload behaviors from users often create
many different copies of the same file in the shared file pool.

There are many storage deduplication schemes and designs
can be implemented to reduce storage cost [9]. Most of them
have trade-off between utilization and performance as shown
in Fig. 2.

In order to implement a scheme under the mixed cloud
storage scenario in Fig. 1, we need to find a balance between
utilization of storage space in limited private cloud storage, at
the same time considering the computational resource re-
quired. Emphasize too much on inline primary storage would
cost too much computational resources where a modest pri-
vate cloud storage appliances may not have, but too much on
unpopular files and treat it like traditional inactive cold stor-
age, it would likely needs complex multi-stages file system
structure, or unnecessary access control via constant transmis-
sion bandwidth to check redundancy.

More than often the issue is not to design a complex or
complete top-down system, but simply a flexible and adapt-
able application that can be run concurrently with other ser-
vices within the private cloud storage appliance. At the same
time without needing to redesign or re-implemented existing
file access scheme.

There are several important deduplication considerations
need to be addressed:

– The first consideration is the data granularity, how large
are the files or chunks of files needed to be deduplicated
and what’s their file size distribution, also whether to
chop files into equal sized blocks to increase

Mobile Netw Appl (2017) 22:40–50 41

deduplucation efficiency. With more and more data gen-
erated bymultimedia enabled devices, and increasing res-
olution in displays, the overall size of the files needed to
be deduplucated now ranging from KB, to MB, all the
way to GB level files are commonwith larger files raise in
overall ratio. Even with the fast storage medium and high
speed internet bandwidth, a very large file or a boundle of
files needed to be synchronized might take minutes even
hours to be transfered between different storages.

– The second consideration is storage type. From ac-
tive data stored in primary storage system like local
hard drive to memory card, or SSD in active work-
ing devices or computer systems, to secondary stor-
age media like NAS devices, or private cloud stor-
age appliances, to off-site like cold storage data
farms or removable permanent storage mediums.
For the most part, active files are most often stored
in primary storage system, where they are constant-
ly modified, rewritten, or generated, while data in
cold storage is mostly immutable. But in the mid-
dle, the data in secondary storage is semi-active.
They are constantly synchronized with active data,
or accessed via web APIs, and become achieved
from time to time.

– The other consideration is when deduplication scheme is
performed. Inline or in-band deduplication means the
checking of duplicated files or blocks of data is performed
before written into storage medium. While offline or off-
band, sometimes referred as post processing scheme per-
formed deduplication after they are written into the stor-
age medium. However offline deduplication temporarily
requires more storage space.

– And finally the consideration of indexing, giving each
file/block fingerprints, can greatly increase the speed of
deduplication checks, and let inline deduplication have
higher spatial utilization, or less bandwidth during data
transfer between different level of storages. But for large
quantities of data, this step needs to be achieved in a
limited time window, and shouldn’t consume too much
computational resources. Another benefit of indexing is
to make sure only unique data is sent to cloud storage
services, also reduce the unnecessary comparison of the
whole files after them reach the cloud storage servers.
The use of indexing can also help increase the efficiency
of file searching across multiple cloud storages.

In this paper, we choose the scenario as shown in Fig. 1
where a secondary storage medium is used in a private cloud,

Fig. 1 Mixed cloud storage
scenario

Fig. 2 Example of deduplication
trade-off

42 Mobile Netw Appl (2017) 22:40–50

where multiple users can access and share data under the same
private cloud with network attached storage (NAS), where
their smart devices can roam outside of local area network.
But these devices may also be linked to other public cloud
storage services as their default cloud storage option with
limited online storage space, hence the secondary private
cloud storage space becomes the backend services where less
active and large files are shared and stored. Due to the nature
of different users might prefer different public cloud storage
services, the private cloud storage has to account for the un-
coordinated and sometimes unavoidable user activities that
generate redundancy files by accident.

Since the NAS device has its own processing power and
enough storage space usually up to several TB of storage
space, but the computational resources have to be shared by
various applications and services running in the background,
hence an offline post processing scheme is preferred and often
times a trade-off between accuracy and efficiency needs to be
struck.

The most intuitive deduplication strategy is finding the files
with the same file name or size. However, such a strategy may
cause an inaccurate deduplication result. Therefore, an index
approach uses hash function in deduplication post process
should be included. However, a full content based indexing
with complex hash calculation may consume too much com-
putational resources [10]. A compromised way is by taking a
partial content based hashing calculation, which should result
in faster response time, with some sacrifices [11, 12]. In this
paper, we implement 4 types of post processing deduplication
schemes running as a client enabled application with a Web
API, and perform comprehensive evaluation to depict their
effectiveness.

3 Deduplication scheme implementation

The detailed data structures and process flows for four post
processing deduplication schemes on private cloud NAS de-
vice, including by the filename, by the size, by partial and full
file hash values are illustrated as follows.

A Data Structures
To implement the file deduplication system, we need to

define the data structures first, and then use the data struc-
tures to carry out the file deduplication procedure.

1) By the filename
This is the most intuitive and easiest approach

of deduplication schemes. The user may copy files
to another folder but forget to delete the old ones.
Hence, the main goal of this approach is to find
and show the properties of those files with the
same filename

Figure 3 shows the data structure of the
filename based approach. An node is generated
by the deduplication procedure and it contains
the nameTree, nameList and nameInfoList. The
definitionsof these data structures are listed
below.

a) nameTree
This node is the header in the filename based

approach. The procedure converts the filename into
ASCII (American Standard Code for Information
Interchange) values and store the summation value
in node_key. The address of nameList is stored in
list_pointer. Moreover, The addresses of previous
and next nameTrees are stored in previous and next
respectively.

b) nameList
The list is used to store the filename (name) of

files with the same node_key. The deduplication
scheme would change the value of is_dup to note
if the filename is duplicated. The address of
nameInfoList is stored in link_info. Furthermore,
the address of next nameList is stored in link_next.

c) nameInfoList
The main property of the file is stored in this

list, including the filesize (size), the filepath
(path), and the file last modified time (mtime).
Additionally, the address of next nameInfoList is
stored in link_next.

2. By file size
The approach is based on an intutive idea that

the same file has the same file size, and when
large files are common, the chances of different
files as the same size is low. The user may copy
files to another location and change their names,
but forget to delete the original ones. Therefore,
the approach is able to find out those files with
the same file size, and showing the details in the
user interface.

Figure 4 shows the data structure of the ap-
proach. An node created in the approach contains
the sizeTree, and sizeInfoList. Their definitions
and functions are listed below.

node_key

list_pointer

previous next

nameTree

nameTree nameTree

name

link_info

link_next

nameList

nameList

is_dup

size

path

mtime

nameInfoList

nameInfoList

link_next

Fig. 3 The data structure in the filename based approach

Mobile Netw Appl (2017) 22:40–50 43

a) sizeTree
This node is the header in the file size based ap-

proach. The procedure stores the file size value in
node_key. The deduplication scheme changes the
value of is_dup to note if the file size is the same.
The address of sizeInfoList is stored in info_pointer.
Moreover, The addresses of previous and next
sizeTree are stored in previous and next respectively.

b) sizeInfoList
The main property of the file is stored in this list,

including the filename (name), the filepath (path),
and the fi le last modified time (mtime) .
Additionally, the address of next sizeInfoList is
stored in link_next.

3. By hash values
In order to avoid deleting different files of the same

file size as a false positive match, the calculated hash
values are used to determine wither for those files
with the same file size are indeed different files. The
scheme calculates the MD5 (Message-Digest
algorithm number 5) hash values [13] of the file con-
tent, with both the representative block as part of the
file, or the compelte file hash values as indexes to
improve the accuracy of the duplication check. The
size of the representative block depends on the file
size. If the file size is smaller than 10KB, the block
size equals to the file size, if larger than 10K, the size
of the representative block is 10KB.

Figure 5 shows the data structure of the approach.
Since the approach is an extended approach of the file
size approach, a node created in the approach contains
the sizeTree, MD5List, and sizeInfoList, which are
listed below.

a) sizeTree
The address ofMD5List is stored in list_pointer.

The rest parameters are the same as the data struc-
tures in the file size based approach.

b) MD5List
The list is used to store the calculated MD5 hash

value (MD5_hash) of files with the same node_key.
The deduplication scheme would change the value
of is_dup to note if the MD5 hash value is

duplicated. The address of sizeInfoList is stored in
link_info. Moreover, The address of next MD5List
is stored in link_next.

c) sizeInfoList
The list is identical with sizeInfoListmentioed in

the file size based approach.
B Processing Flows

The processing flows and descriptions of all designed
approaches are as follows:

1) Find the duplicated filename among files
For the filename based approach, the process

chooses one file first in the selected directory and
use the ASCII code to convert the filename of the
chosen file as node_key. Then, the process
searches all nameTree to find out the existing
nameTree with the calculated node_key. Once the
nameTree with same node_key is found, the pro-
cess would check if the filename in the nameList is
the same as the chosen file. If there is a match, the
process inserts the new nameInfoList after the one
in the existing nameTree, and changes the value of
is_dup to note that the duplicated file with the
same filename is found. If no match founds, the
process takes the chosen file as a new file, insert
the new nameList next to the old one, and then
stores the property of the new file into its own
nameInfoList.

However, if there is no any existing nameTree
with the calculated node_key, the process creates a
new instance of nameTree and stores the file infor-
mat ion in to nameLis t and nameIn foLis t .
Subsequently, the process would continue until
there is no any unchecked file in the selected di-
rectory. The entire processing flow is shown in
Fig. 6.

2) Find the same file size among files
For the file size based approach, the process

chooses one file first in the selected directory and
store the file size value of the chosen file as node_-
key. Then, the process would search all sizeTree to
find out if there exists one sizeTree with the same

name

path

mtime

sizeInfoList

sizeInfoList

link_next

node_key

is_dup

previous next

sizeTree

sizeTree sizeTree

info_pointer

Fig. 4 The data structure in the file size based approach

name

path

mtime

sizeInfoList

sizeInfoList

link_next

size

MD5List

MD5List

link_info

MD5_hash

link_next

is_dup

node_key

is_dup

previous next

sizeTree

sizeTree sizeTree

list_pointer

Fig. 5 The data structure in the MD5 hash value based approach

44 Mobile Netw Appl (2017) 22:40–50

node_key. Once the sizeTree with the same node_-
key is found, the process inserts the new
sizeInfoList after the one in the existing sizeTree,
and changes the value of is_dup to note that the
duplicated file with the same file size is found.

However, if there is no any existing sizeTree
with the calculated node_key, the process creates
a new instance of sizeTree and store the file infor-
mat ion in to nameLis t and nameIn foLis t .
Subsequently, the process loops until there is no
unchecked file in the selected directory. The entire
processing flow is shown in Fig. 7.

3) Find the same MD5 hash value among files
Since the approach is an extension of file size

based approach, the processing flow of the MD5
hash based approach is similar to the file size
based approach. Once the sizeTree with same
node_key is found, the process calculates
MD5_hash of the chosen file. After that, the pro-
cess would check if MD5_hash in the MD5List is
the same as the one of the chosen file. If there is a
match, the process inserts the new sizeInfoList
after the one in the existing sizeTree, and changes
the value of is_dup to note that the duplicated file
with the same MD5 hash value is found. If no

match founds, the process takes the chosen file
as a new file, insert the new MD5List next to
the old one, and then store the file property of
the new file into its own sizeInfoList. The entire
processing flow is shown in Fig. 8

C Time Complexity of file deduplication algorithms
Assuming that the storage devices have N files, the

time complextiy of the filename based approach
would be O(N logN), since the algorithm would
maintain a tree structure when checking each file,
and the time complexity of manipulating a tree struc-
ture isO(logN). Meanwhile, because of a similar pro-
cess flow, the complexity of the file size based ap-
proach would also be O(N logN)

For the MD5 hash based approach, the time com-
plexity can be divided into two parts: the complexity
of the first part is O(N logN) since the MD5 hash
based approach is an extension of file size based
one, and the complexity of the second part is O(N)
due to the MD5 hash value calculation process.
Hence, The complexity of the MD5 hash based ap-
proach would be O(N logN) +O(N). In addition, the
worst-case scenario of the time complexity of the sec-

ond part may be N Nþ1ð Þ
2 ¼ O N 2

� �
, if hash values of

all files need to be calculated.

Start

Calculate

node_key

Search node_key of all

nameTree

Find the existing

name Tree with

same node_key

Yes

End

Choose one file in

selected directory

No

Yes

Check whether file name is

the same

Insert the new

nameInfoList after

the existing one

Insert the new

nameList after the

existing one

Yes

No

Any unchecked file in

the directory?

Create a new

instance of

nameTree

No

Fig. 6 The processing flow in the filename based approach

Start

Calculate

node_key

Search node_key of all

sizeTree

Find the existing

sizeTree with same

node_key

Yes

End

Choose one file in

selected directory

No

Yes

Insert the new

sizeInfoList after the

existing one

Any unchecked file in

the directory?

Create a new

instance of

sizeTree

No

Fig. 7 The processing flow in the file size based approach

Mobile Netw Appl (2017) 22:40–50 45

4 Theoretical analysis and qualitative analysis

In this section, we analyze the average-case time complexity
of a linear based scheme and a hash based lookup scheme
from a probabilistic viewpoint [14].

4.1 General average-case complexity analysis about time
cost

First, we introduce how to conduct a general average-case
time complexity analysis for a scheme. Assume that a scheme
S with a set D of inputs such that S has the definiteness and
stop properties onD. LetW be a set of sizes of inputs and let ||
be a size function of inputs in D. Let t(d) be the time cost
function for S. Meanwhile, the following two conditions hold
for each size w in W:

& The set {d∈D : |d| =w} is finite;

& A probability function is defined on the set of inputs of
size w and is denoted by Pw

By definition,

X
dj j¼w

Pw ¼ 1 ð1Þ

For each sizew inW the restriction of the time cost function
t(⋅) to inputs of sizew is a random variable; it is denoted by τw.
The random variable τw assumes natural numbers are values.
The probability distribution of τw is denoted by pwk, that is,
the probability that for an input d of size w, τw is equal to k.
Notice that the average time complexity is

Tave wð Þ ¼
X
dj j¼w

Pw dð Þ⋅t dð Þ ¼
X
k ≥0

k
X

dj j¼w;t dð Þ¼k

pw dð Þ
0
@

1
A ¼

X
k ≥0

kpwk

ð2Þ

For each sizew inW, that is, the average time complexity of
S for input size w is equal to the mean value E(w) of the
random variable τw. Apart from the function E(w) the statis-
tical properties of the running time of S are also characterized
by the variance function V(w) and standard deviation D(w) of
τw with w ranging over W, where

V wð Þ ¼
X
k ≥0

k‐Tave wð Þð Þ2p
wk

ð3Þ

and

D wð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
V wð Þ

p
ð4Þ

These quantities determine how much the random variables
τw are concentrated around their mean values. The smaller the
standard deviation the better concentration of τw around its
mean value is. To find the statistical quantities E(w),V(w), and
D(w), the method of generating function is used. The gener-
ating function for random variables τw is

Pw zð Þ ¼
X
k ≥0

pwkz
k ð5Þ

with arguments and values being real numbers. Therefore,

P
0
w 1ð Þ ¼

�X
k ≥0

kpwkz
k‐1

�
1ð Þ ¼

X
k ≥0

kp
wk

ð6Þ

By (2) and (6), we can get

E wð Þ ¼ P
0
w 1ð Þ ð7Þ

Next

P
0 0
w 1ð Þ ¼

X
k ≥0

k k‐1ð Þpwkzk‐2 1ð Þ ¼
X
k ≥0

k k‐1ð Þp
wk

ð8Þ

Start

Calculate

node_key

Search node_key of all

sizeTree

Find the existing

sizeTree with same

node_key

Yes

End

Choose one file in

selected directory

No

Yes

Check whether MD5_hash
is the same

Insert the new

sizeInfoList after the

existing one

Insert the new

MD5List after the

existing one

Yes

No

Any unchecked file in

the directory?

Create a new

instance of

sizeTree

No

Calculate

MD5_hash

Fig. 8 The processing flow in the hash value based approach

46 Mobile Netw Appl (2017) 22:40–50

By (2), (3) and (8), we can get

V wð Þ ¼
X
k ≥0

k‐P
0
w 1ð Þ

� �2
p

wk
¼ P

0 0
w 1ð Þ þ P

0
w 1ð Þ‐P0

w 1ð Þ2 ð9Þ

4.2 The time complexity analysis about the hash based
lookup scheme

Base on previous subsection, assume an array H[0..M−1] is
used to store the elements of A and a hash function h : A→
{0,1,… ,M−1} is used to associate an item of H with an
element x of A. The computation of h(x) should be very fast
and h should distribute the elements of A as uniformly as
possible. For a given x, if position H[h(x)] is empty, it means
that x∉A and x can be stored at this position. If H[h(x)] is
occupied, then either H[h(x)] = x or H[h(x)] ≠ x. In the first
case, the lookup process ends with the result true; in the sec-
ond, the collision problem happens. A common solution to the
collision problem is separate chaining to maintain in each
entry H[h(x)], i=0,1,… ,M−1, a linear chain of elements
x∈A such that h(x) = i. The probabilistic analysis of separate
chaining is shown as follows. We start this analysis from the
assumption that for A= {x1,… , xn} the corresponding se-
quence of hash codes, h1=h(x1),… ,hn=h(xn), has the prob-
ability of occurrence 1/Mn, that is, the probability that hi= j for
1≤ i≤n and 0≤ j<M is 1/M.

Let us consider T−(n). Assume that h(x) = j when an unsuc-
cessful search for x happens. Denoting by pnk the probability
that the list H[j] has length k we have

pnk ¼ n
k

� �
1
M

� �k

1−
1
M

� �n−k

ð10Þ

Since the value jappears k times in a sequence h1,… ,hn with
the probability defined by the Bernoulli schema, now we have

P−
n zð Þ ¼

X
k ≥0

pnkz
kþ1 ð11Þ

which can easily be transformed to a simpler form

P−
n zð Þ ¼ z

M
þ 1−

1
M

� �n

z ð12Þ

By differentiating (12), we have

P−
n
0 zð Þ ¼ z

M
þ 1−

1
M

� �n−1 nz
M

þ z
M

þ 1−
1
M

� �
ð13Þ

P−
n
00 zð Þ ¼ z

M
þ 1−

1
M

� �n−2

n−1
M

nz
M

þ z
M

þ 1−
1
M

� �
þ z

M
þ 1−

1
M

� �
n
M

þ 1
M

� �� � ð14Þ

By (13) and (14), we can get

P−
n
0 1ð Þ ¼ n

M
þ 1 ð15Þ

P−
n
00 1ð Þ ¼ n n−1ð Þ

M2 þ 2n
M

ð16Þ

E− nð Þ ¼ P−
n
0 1ð Þ ¼ n

M
þ 1 ð17Þ

V− nð Þ ¼ P−
n
00 1ð Þ þ P−

n
0 1ð Þ− P−

n
0 1ð Þ� �2

¼ n n−1ð Þ
M 2 þ 2n

M
þ n

M
þ 1

� �
−

n
M

þ 1
� �2

¼ n M−1ð Þ
M2

ð18Þ

and denoting by α=n/M, that is, the definition of table H, we
obtain

E− nð Þ ¼ αþ 1; V− nð Þ≅α; D− nð Þ≅ ffiffiffiffi
α

p
; ð19Þ

To estimate E+(n), that is, the average cost in a successful
case, consider the function nE+(n). Its value is equal to the
total number of steps performed when all n elements of A
are searched for. But the list of length k contributes 1

2k
k þ 1ð Þ steps to the total. Consequently, since there are M
lists, we have

nEþ nð Þ ¼ M
X
k ≥0

k k þ 1ð Þ
2

pnk ð20Þ

and according to the definition of Pn
−(z) we obtain

Eþ nð Þ ¼ M
2n

X
k ≥0

k k þ 1ð Þpnk ¼
M
2n

P−
n
00 1ð Þ ¼ n−1

2M
þ 1≅

1
2
αþ 1 ð21Þ

4.3 Qualitative analysis

Followed the analysis of the scheme from previous
sub-section using hash function values as indexing mecha-
nism searching for a matching file content and determine
which part of the file can be used as representative block,
has a generic lookup time complexty of O(1), and worst case
time complexity of O(n), if the original files are chopped into
n blocks. The storage overhead for these blocks and hash
values is O(n) + hash table size.

It is prudent to apply a cryptographic hash function as the
index [15]. Such function has the property such that it is com-
putationally infeasible to find two distinct files/blocks with the
same value, and preserve the assumption that files/blocks hash
values can be used as file fingerprints. The MD5 hash has a

Mobile Netw Appl (2017) 22:40–50 47

length of 128 bit (16 bytes) hash value, usually represents as
32 hex numbers. The calculation of MD5 hash can be ex-
tremely fast at the level of hundreds of MB per seconds even
for mobile devices that has limited computational resources.
And assuming its hash value is spread in a uniform distribu-
tion, the probability of the event that one or more collisions
occur is bounded by

p≤
m m‐1ð Þ

2
⋅2−128 ð22Þ

Assuming a collection of m files in a 10TB level private
cloud secondary storage NAS device, even consider every
file/block to be the minimum size of 1KB. The number of
unique files could be as many as 102, the probability of a
collision should be smaller than 10−18. And since most

multimedia files shared in private cloud storage are much
larger than 1KB, the collision probability using MD5 as hash
value function for file deduplication index is neglectable.
However as storage capacity continues to grow each year, a
more collision resistant hash function, like SHA family cryp-
tographic hash functions with more than 160 bit (20 bytes)
digits long hash value, could be used in the future, and also
make cross cloud storage indexing scheme secure.

A secure cryptographic hash function can also function as
an unique handle when deduplications needed to be per-
formed across multiple storage systems, in both inline or post
processing schemes.

5 Evaluation and experiment results

5.1 Evaluation environment

To evaluate the performance of implemented schemes, we
used a typical network-attached storage (NAS) device as the
storage device to run four deduplication check schemes de-
scribed in Section 3. The NAS used in the evaluation is QNAP
NAS TS-269L, and its specification is shown in Table 1.

dup_file

1K_G1Top

KB

MB

GB

1K

10K

990K

Group1

Group15

diff_files x9

diff_files x9

folder1

folder5

folder1

folder5

Group1

Group5

diff_files x9

diff_files x9

folder1

folder5

folder1

folder5

1M

10M

50M

950M

Group1

Group2

diff_files x4

diff_files x4

folder1

folder2

folder1

folder2
5G

1G

dup_file

1K_G15

dup_file

1M_G1

dup_file

1M_G5

dup_file

1G_G1

dup_file

1G_G2

Duplication filename file

(empty file)

Fig. 9 The directory tree diagram
of of the testing scenario

Table 1 Evaluation environmet specification

Unit Detail

CPU Intel® Atom™ 1.86 GHz Dual-core Processor

HDD TOSHIBA DT01ACA300, SATA III, 7200rpm, 3TB

Memory 1GB DDR3-1066 RAM

48 Mobile Netw Appl (2017) 22:40–50

In the evaluation, we design three different testing scenar-
ios to test these four file deduplication schemes. The testing
scenarios are distinguished by the file size and named by KB,
MB, and GB. The diagram of testing scenario is shown in
Fig. 9.

From the study of [7], the distribution of individual file
sizes can range from as small as several KB, up to 4GB, where
half of all bytes are in files larger than 30MB. Where smaller
size file have more duplications than larger files, while the
distribution of number of different size files follows, where
larger files are mostly exact copy of each other if they are
duplicated with fewer copies. The setup of each scenario in
our evaluation experiments are as follows.

1) KB scenario, the total file size of the first sub-folder 1K is
1 kilobyte, the second sub-folder 10K is 10 kilobytes, and
so on. Respectively, the total file size of each under the i
sub-folders is Skb=10i, and the values of i are ranged
from 1 to 99. There are 15 group-folders in each
sub-folder, and each group-folder has 5 end-folders. In
each end-folder, there are 10 files with 9 different files
and 1 duplicated file from another end-folder, and 1 fixed
duplicated filename file. The total file amount in the sce-
nario is 82,500.

2) MB scenario, the total file size of the first sub-folder 1M
is 1 megabyte, and the second sub-folder 10M is 10
megabytes. The total file size of each under the j
sub-folders is Smb=50j mega-bytes, and the value of j is
ranged from 1 to 19. There are 5 group-folders in each
sub-folder. Additionally, each group-folder has 5
end-folders. In each end-folder, there are 9 different files,
1 duplicated file, and 1 fixed duplicated filename file. The
total file amount in the scenario is 5775.

3) GB scenario, the total file size of each sub-folder k is
Sgb= k gigabytes, and the value of u is ranged from 1 to
5. There are only 2 group-folders in each sub-folder.
Additionally, each group-folder has 2 end-folders. In each

end-folder, there are 4 different files, a duplication file,
and a duplicated filename file. The total file amount in the
scenario is 120.

5.2 Evaluation results

The overall combined evaluation results of three scenarios
using four file deduplication schemes are shown in Tables 2,
3, 4, and 5. In Table 2, BFilename^ represents the filename
based duplication approach; BFile Size^ represents the file size
based duplication approach; BMD5^ represents the MD5 hash
based approach; MD5 (Partial) represents the scheme only
using a partial of the file content as representative blocks to
calculate the MD5 hash value, while MD5 (Full) uses the
complete file content to calculate the MD5 hash value, always
assume to be in worst case.

Table 2 shows the experiment result of running time of
each scenario. It shows using partial file as representative
block for larger files to calculate hash value is indeed within
reasonable running time, and significantly faster on the mag-
nitude of 10 folds to 100 folds. While in KB sized files almost
all file contents have to be used to generate hash value file
fingerprint.

Table 3 shows the experiment result of CPU usage of each
scenario. It shows using MD5 as hash function to calculate
each file/block fingerprint is fast enough, and doesn’t cost
significant amount of computational resources in each case.

Table 4 shows the experiment result of memory usage of
each scenario. It verifies that very limited memory space is
needed during MD5 hash value calculation..

Finally in Table 5, we observe that as expected the filename
based approach and the file size based approach perform faster
compared to MD5 hash value based ones. And worst case
scenario (or safer option) as the time complexity of full file
MD5 hash value based approach required much more

Table 4 Memory usage for each scenario

File Name File Size MD5 (Partial) MD5 (Full)

KB 5.8% (57MB) 5.8% (58MB) 8.0% (79MB) 8.0% (79MB)

MB 0.1% (1384B) 0.4% (4292B) 0.6% (6488B) 0.6% (6476B)

GB neglectable neglectable <1% (884B) <1% (888B)

Table 3 CPU usage for each scenario

File Name File Size MD5 (Partial) MD5 (Full)

KB 8.2% 10.7% 12.2% 12.3%

MB 2.4% 6.7% 21.0% 24.9%

GB neglectable neglectable 24.7% 24.9%

Table 2 Time evaluation for each scenario

Filename File Size MD5 (Partial) MD5 (Full)

KB 1m13s 1m16s 3m52s 3m52s

MB 5.2s 6.6s 41.4s 43m49s

GB 0.53s 0.64s 47.6s 11m33s

Table 5 Overall evaluation result

Filename File Size MD5 (Partial) MD5 (Full)

Time usage 1m19s 1m21s 5m37s 58m17s

CPU usage ratio 8.2% 12.2% 24.9% 24.9%

Memory usage
ratio

6.1% (60MB) 6.3% (62MB) 8.6% (85MB) 8.6% (85MB)

Mobile Netw Appl (2017) 22:40–50 49

computational resources and significant slower than partial
one. All evaluation results of the filename and the file size
based approaches are similar due to the complexities of the
filename based one and the file size based one are identical.
However, using partials of larger files as representative blocks
to calculate MD5 hash value performs only slightly worse
than simple filename or file size based approaches, and can
be considered as a reasonable trade-off between accuracy and
efficiency for a post processing deduplication scheme.

From the results above, we can see that the CPU usage of
each scenario is below 25%, where in partial MD5 scheme the
weight average of CPU usage based on file size is 19.3%,
while the full MD5 scheme is 20.7%. The CPU usage is lim-
ited due to the pipeline process in MD5.

Where compare the total computational time, the partial
MD5 scheme is 10 times faster than full MD5 scheme.
Since MD5 is several magnitude faster than other more recent
cryptography hash algorithm, such as SHA family, It can be
safely assume that implementing with more complex cryptog-
raphy algorithm would considerable slow down the
deduplication process, even when just using partial file as
representative block as fingerprint.

But the most constraint resource in a private cloud storage
appliance, such as a NAS device is the memory. Since it is not
built to run GUI interface, and usually has a very limited
memory to work with. Our schemes all use very little memory
less than 100MB. This is quite crucial as a background pro-
cess or to be run manually while the NAS appliance has other
applications need to run in parallel, and serves its main func-
tion as cloud storage device.

6 Conclusion

Implementing effective file deduplication schemes running in
small private cloud storages are crucial in balancing network
bandwidth usage, local computational resources, and the uti-
lization of storage space. In this paper, we have introduced and
verified several deduplication schemes to test their viability.
The experimental results show the use of partial file based
hash value scheme is successful in meeting the criteria. The
network web based API user interface for these schemes im-
plemented on NAS devices is practical and functional for
daily use. Bridging the current gap of deduplication appli-
ances in small private cloud storage services, and connected
the mixed used of many public cloud storage services parallel

with multiple sources of data generated by uncoordinated
users.

The hash function based file fingerprint indexing scheme
also has the potential to be expanded into a cross platform
cloud storage deduplication and data sharing, searching, man-
agement service in the future.

Acknowledgments The authors gratefully acknowledge the financial
support from the BAiming For the Top University Program^ funded by
Ministry of Education, Taiwan.

References

1. Tate J, Beck P, Ibarra HH, Kumaravel S, Miklas L (2012)
Introduction to storage area networks and system networking.
IBM Redbooks

2. Hong B, Plantenberg D, Long DD, & Sivan-Zimet M (2004)
BDuplicate Data Elimination in a SAN File System^. In MSST
(pp. 301–314)

3. Bobbarjung DR, Jagannathan S, Dubnicki C (2006) Improving
duplicate elimination in storage systems. ACM Trans Storage
(TOS) 2(4):424–448

4. Min J, Yoon D, Won Y (2011) Efficient deduplication techniques
for modern backup operation. Comput IEEE Trans on 60(6):824–
840

5. Li J, Li YK, Chen X, Lee PP, Lou W (2015) A hybrid cloud ap-
proach for secure authorized deduplication. Parallel and Distrib Sys
IEEE Trans on 26(5):1206–1216

6. Stanek J, Sorniotti A, Androulaki E, Kencl L (2014) A secure data
deduplication scheme for cloud storage in financial cryptography
and data security. Springer, Berlin Heidelberg, pp 99–118

7. Meyer DT, Bolosky WJ (2012) A study of practical deduplication.
ACM Trans Storage (TOS) 7(4):14

8. Harnik D, Pinkas B, Shulman-Peleg A (2010) Side channels in
cloud services: deduplication in cloud storage. Security & Privacy
IEEE 8(6):40–47

9. Paulo J, Pereira J (2014) A survey and classification of storage
deduplication systems. ACM Comput Surveys (CSUR) 47(1):11

10. Meister D., & Brinkmann A (2009) Multi-level comparison of data
deduplication in a backup scenario. In Proceedings of SYSTOR
2009: The Israeli Experimental Systems Conference (p. 8). ACM

11. Henson V (2003) An Analysis of Compare-by-hash. In HotOS (pp.
13–18)

12. Malhotra J, & Bakal J (2015) A survey and comparative study of
data deduplication techniques. In Pervasive Computing (ICPC),
2015 International Conference on (pp. 1–5). IEEE

13. Rivest R (1992) The MD5 message-digest algorithm. RFC 1321
14. Banachowski L, Kreczmar A, Rytter W (1991) Analysis of

Algorithms and Data Structures
15. Quinlan S, & Dorward S (2002) Venti: A New Approach to

Archival Storage. In FAST (Vol. 2, pp. 89–101).2

50 Mobile Netw Appl (2017) 22:40–50

	Design and Implementation of Various File Deduplication Schemes on Storage Devices
	Abstract
	Introduction
	Deduplication issues
	Deduplication scheme implementation
	Theoretical analysis and qualitative analysis
	General average-case complexity analysis about time cost
	The time complexity analysis about the hash based lookup scheme
	Qualitative analysis

	Evaluation and experiment results
	Evaluation environment
	Evaluation results

	Conclusion
	References

