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Abstract As an enabling technology for dynamic spectrum
access (DSA), cognitive radio (CR) is widely regarded as one
of the most promising technologies for future the fifth gener-
ation (5G) wireless communications. Although there have
been significant prior researches to combat interference on
primary users (PUs), the problem of mitigating mutual inter-
ference between secondary users (SUs), -which is tightly
coupled with SU’s spectrum leasing- is still not understood
well. This paper proposes a DSA algorithm based on game
theory, which jointly performs spectrum leasing and interfer-
ence mitigation among SUs. The problem is modeled as an
oligopolistic competition using Stackelberg model. We have
carefully studied the SU’s spectrum utilization behavior with
respect to various criteria of the proposed game theoretic mod-
el. Simulation results shows that, Compared with Cournot
game model, the proposed scheme enables SUs to efficiently
utilize the licensed spectrum shared with PUs in a dynamic
environment while maximizing the spectrum utilization.

Keywords Cognitive radio . Dynamic spectrum access .

Game theory . Nash equilibrium

1 Introduction

With the rapid development of wireless communication tech-
nology and fast growth for spectrum demand, spectrum re-
sources become increasingly scarce and one of the bottle-
necks, restricting the development of wireless communica-
tions [1, 2]. Prior studies show that the fixed spectrum alloca-
tion policies result in poor spectrum utilization around 15 %
[3, 4]. There are two main reasons for the poor spectrum
utilization: i) Spectrum is a limited resource and fixed spec-
trum policies will naturally lead to scarce spectrum. ii) Li-
censed spectrum is used very sporadically [1, 3, 4]. Realizing
the poor spectrum efficiency of conventional fixed spectrum
allocation policies, cognitive radio (CR) is proposed to im-
prove the spectrum utilization [5–7], which alleviates the con-
tradiction between the lack of spectrum resources and the
growing demand for wireless access by enabling secondary
users (SUs) to intelligently search and utilize the unused spec-
trum holes in licensed spectrum and thereby increasing the
spectrum efficiency [8–10]. CR is also one of the dominant
candidate technologies for the fifth generation (5G) wireless
communication technologies [11, 12]. 5G systems are
envisioned to integrate conventional licensed cellular radio
and intelligent dynamic radio into a holistic system, realizing
the CR concepts [9, 13, 14]. Unlike traditional radios, CRmay
change its objectives as radio scenarios vary, which provides a
feasible scheme for SUs efficiently using the licensed spec-
trum in dynamic environment [10, 15].

The benefit of CR will depend on the dynamic spectrum
access (DSA) schemes, which can provide a feasible solution
for SUs to use the licensed spectrum in a dynamic
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environment efficiently. This requires SUs to detect spectrum
holes across three domains; time, space, and frequency [16,
17]. Achieving DSA in cognitive radio networks (CRNs) re-
quires addressing various issues in spectrum access behavior,
spectrum sharing mode, and spectrum access mode, which has
been well studied in [18–20]. Most of the prior works are
devoted to performance analysis of DSA in CRNs [21]; game
theory, auction, graph coloring, and mathematical program-
ming are employed to optimize the performance of underlying
spectrum access strategy [22, 23]. The urge to adapt to the
dynamic environments and challenges associated with provid-
ing network-wide information makes centralized approaches
less attractive [22]. That calls for tractable approaches to ac-
commodate for distributed nature of CRNs. Game theory has
been recognized as an interesting tool to model and analyze
the cognitive behaviors in CRNs. Specifically, the distributed
nature and both cooperative and non-cooperative DSA behav-
iors can well be captured by game theory [24, 25].

In order to assess spectrum access in CR environments,
one-shot, non-cooperative games based on continuous and
discrete reformulations of the Cournot game model was ex-
plored in [26], which reveals equilibrium situations that may
be reached in simultaneous access scenarios of two and three
users. A collision-constrained network selection (CCNS)
method was proposed based on Markov queuing mode in
[27], which maximizes allowable arrival rate of SUs subject
to a target collision probability for the primary users (PUs). In
the work, SUs select the shortest time delay to access network
through the analysis of the SUs waiting transmission delay. In
[28], a cooperative asynchronous multi-channel spectrum ac-
cess MAC protocol was proposed, which uses a single trans-
ceiver and is fully asynchronous. However, it does not con-
sider control frame constraints. In [23], simulation study based
onM/G/1 queuing model was explored to evaluate the perfor-
mance of PUs without closed attention to specifics of primary
users and licensed channels. An intervention framework was
proposed in [29], which protects the spectrum owner’s inter-
ests and enforces market regulations. In the framework, sec-
ondary networks offer offload services to a primary network
(PN) in exchange for temporary access to the PN’s spectrum.
To allocate unused frequency bands efficiently, two non-
cooperative games named interference minimization game
and capacity maximization game were proposed [30], which
reflect the target of data radios and voice radios, respectively.
The problem of spectrum pricing in a CRN is explored in [31],
which formulates it as an oligopoly market consisting of a few
firms and a consumer. A market equilibrium was explored in
multichannel sharing CRNs [32]: it is assumed that every
subchannel is orthogonally licensed to a single primary user
(PU), and can be shared with multiple secondary users (SUs).
A distributed and coordinated radio resource allocation algo-
rithm was proposed for orthogonal frequency division multi-
ple access (OFDMA)-based cellular networks to self-organize

efficient and stable frequency reuse patterns [33], which can
mitigate interference in self-organizing LTE networks. A sim-
ple self-organization rule was proposed based on minimizing
cell transmit power [34], following which a distributed cellu-
lar network is able to converge into an efficient resource reuse
pattern, which can mitigate interference in OFDMA femtocell
networks. A market-clearing model was proposed for spec-
trum trade in CRNs [35]. A general soft decision SMSE
(SDSMSE) framework was proposed [36], which extends
the original SMSE framework to achieve synergistic CR ben-
efits of overlay and underlay techniques.

The prior work mainly considers the SUs interference to
the PUs and not the mutual interference among SUs. SUs
could potentially interfere with each other in attempt to simul-
taneously access the channel in CRNs. In this work, we pro-
pose a spectrum access algorithm based on game theory,
which overcomes the problem of mutual interference among
SUs. We have modeled the spectrum access problem as an
oligopolistic competition model in game theory. We have per-
formed an intensive analysis to characterize the SUs’ spectrum
utilization behavior with respect to various criteria of the pro-
posed game theoretic model. In particular we have carefully
studied the existing of Nash equilibrium, the game process,
the convergence of SUs, the total spectrum amount rented by
SUs, and SU’s revenue.

The remainder of this paper is organized as follows.
Section 2 illustrates the proposedDSA algorithm. In Section 3,
our intensive simulation study validates the efficiency of the
proposed scheme. Section 4 concludes the paper.

2 The proposed DSA algorithm

With intelligent sensing to obtain available spectrum informa-
tion, CRNs can monitor spectrum environment and adjust
system parameters effectively. In this section, a general model
of DSA is presented based on game theory in CRNs; then the
system model of SUs dynamic access is explored. The DSA
algorithm based game theory is analyzed and secondary user’s
utility function is given. And the Nash equilibrium solution of
the proposed algorithm is deduced by maximizing the utility
of SUs, and obtaining spectrum bandwidth rented by all SUs.
And the notations of the proposed algorithm are shown in
Table 1.

2.1 System model

The DSA system in CRNs consists of three parts: PUs, SUs,
and spectrum pool. In this paper, we only consider the game
process among SUs. And the system model is shown in Fig. 1.

Considering there areN game players, the strategic space of
the players is S1,⋯,SN, the utility function is μ1,⋯,μN. There-
fore, a general model of game theory can be expressed as:
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G ¼ N ; S1;⋯; SN ;μ1;⋯;μNf g; ð1Þ

where the strategic space for each game player i is Si, si is
strategy and si∈Si, {s1,⋯,sN} is the strategy combination for
all players. The utility function of each game player i is μi, and
μi(S) represents the utility of game player i choosing strategic
component {s1,⋯,sN}.

The general game model satisfies three basic elements: 1)
the number N of game players; 2) strategy space Si of each
player i; 3) the strategic combination {s1,⋯,sN}, and the util-
ity μi(S) of each game player i.

PUs include a base station and some users. Spectrum pool
will accomplish centralized distribution of available spectrum
within a specific area or location, adjust the process of spec-
trum sharing between communication devices, and monitor

the server of the relevant spectrum. Spectrum rented by SUs
can be used for communication between SU and PU, SU and
access point, and can also be used for ad hoc network of SUs.
The system workflow is shown in Fig. 2.

The system works as follows:

1) In order to rent spectrum, PUs establishes the connection
to spectrum pool and send their request information in-
cluding idle spectrum and the utility function.

2) Spectrum pool will broadcast rental spectrum request in-
formation and rules to all SUs with the same price, and the
price will change along with the market supply and
demand.

3) Different SUs rent a certain spectrum bandwidth, and ob-
serve the market supply and demand, then adjust their
rental spectrum bandwidth to achieve maximum benefit.

4) Spectrum pool determines whether game among the SUs
reaches a steady state, namely whether the amount of rent-
al spectrum bandwidth on the market and spectrum band-
width that all SUs rent are stable. If the game does not
reach steady state, all SUs continue to wait for the end of
the game. If the steady state is reached, then the game will
stop and the selected SU rents corresponding spectrum.

5) The SUs establish communication connection to the PUs,
and then decide to loan spectrum to the PUs, in accor-
dance with spectrum price of the market stability when
the game among the SUs reaches a steady state.

6) The SU uses the spectrum of PUs for packets transmis-
sion, and then will return spectrum to the PUs after task
ending.

In 4), spectrum pool judges whether the game reaches
steady state by observing whether game results are the same
three times in a row. If game results of three times are the

Table 1 Notations

Notation Description

N Number of game participants

Si Strategy set that game player i

μi Utility function for game player i

si Particular strategy

us(bi) Utility function of SUi with bandwidth bi
up(B) Total utility function of PUs

C(B) Rental costs of PUs

ki
(s) Transmission efficiency

ν Spectrum alternative factor

γ Signal-to-noise ratio (SNR)

θBER Threshold of the bit error rate

bi Spectrum bandwidth of SUi share

p Spectrum price that SUs pay to PU

x,y,τ Non-negative constant
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Fig. 1 System model
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same, it shows that game is in stable equilibrium, and all SUs
do not need to make decisions to carry out the game.

Spectrum access in CRNs is related to the selected strate-
gies of SUs in game. Spectrum access game includes game
process among SUs, game process among PUs and the united
game process between PUs and SUs. In the game among SUs,
the participants are SUs, and action strategy is selected to loan
spectrum bandwidth. The decision-making process is that SUs
select corresponding spectrum bandwidth for data transmis-
sion. While in the game among PUs, participants are the PUs
with licensed spectrum, and action strategy is to select the
number of rental spectrum. The decision-making process is
to determine the number of PUs selecting spectrum on loan
to SUs. For the united game process between PUs and SUs,
the participants are PUs and SUs, where action strategy of the
PUs is to select the number of rental spectrum, and the action
strategy of the SUs is to select loan spectrum bandwidth. The
decision-making process of the PUs is to determine the num-
ber of rental spectrum, and the decision-making process of the
SU is to decide leasing spectrum bandwidth.

In order to depict the spectrum competition accurately, the
DSA problem is modeled as an oligopolistic competition
using Stackelberg model, which aims to improve spectrum
bandwidth that the SUs loan, while improving the spectrum
utilization of the PUs. When game is stable, the utility of SUs
reaches the maximum, thus the enthusiasm of leased spectrum
is highest. And then SUs will communicate with other ends by
the leased spectrum, which improves the spectrum utilization
of idle licensed spectrum efficiently.

2.2 Stackelberg game algorithm

In the Stackelberg game algorithm, all SUs rent the same
quality spectrum, and the same price fluctuates with the

market demand. The behavior of SU is selfish and uncooper-
ative, and it carries out the game among the SUs according to
the loaned spectrum bandwidth. Due to some factors, such as
the different network delay between each SU and spectrum
pool server, all SUs do not take loan strategy simultaneously.
According to Stackelberg game model, all participants will be
separated into two groups. And a group of SUs take the strat-
egy firstly, which will be the leaders in the game. And then the
other group of SUs will take suitable game strategy according
to the prior SU’s strategy, which will be the followers. Ac-
cording to the historical strategy, SUs will optimize their be-
haviors and select the most suitable strategy to gain more
benefits. After some rounds of repeated game, the spectrum
bandwidth leased by SUs will reach Nash equilibrium.

The goal of the game algorithm is to maximize the spec-
trum bandwidth leased by SUs, while the goal of the proposed
solution is to maximize the utility of the SUs. Hence, the
following analysis will consider the utility of SUs.

We can get the utility function us(bi) of SUi with the benefit
of bandwidth bi for data transmission:

us bið Þ ¼ k sð Þ
i bi−

1

2
Nbi

2 þ 2νbi
XN

j≠i
b j

 !
−pbi; ð2Þ

where ν is spectrum alternative factor, whichmeans the size of
the bandwidth requested by SUi is affected by other SUs.
When ν = 0, SUi is not affected by other SUs; when ν = 1,
other SUs have maximum influence on SUi. We only consider
the utility of the SUs when ν = 0, and therefore according to
Eq. (2), we can obtain the utility function us(bi) of the SUs:

us bið Þ ¼ k sð Þ
i bi−

1

2
Nbi

2−pbi: ð3Þ

To maximize the utility of the PUs, the utility of the PUs
can be set as a function of bandwidth price, therefore, the total
utility function up(B) of the PUs is:

up Bð Þ ¼
XN

i¼1

pbi−
XN

i¼1

C Bð Þ; ð4Þ

where p is the spectrum price that SUs pay to the PUs, bi is the
spectrum bandwidth that the SUs loan, andC(B) is rental costs
of the PUs. Rental costs are defined as follows:

C Bð Þ ¼ xþ y
XN

i¼1

bi

 !τ

; ð5Þ

where x,y,τ are non-negative constant, τ≥1 (ensure the pricing
function is a convex function).

In order to obtain ki
(s), the SUs adopt adaptive modulation

technology, and the transmission rate can dynamically adjust
according to the channel quality. By adopting multiple

Game state

stability

Selected SUs access to the

corresponding spectrum

Yes

No

PUs rent spectrum

Send idle spectrum

information to spectrum pool

Spectrum pool broadcasts

rental spectrum information

All SUs take loan strategy

(spectrum bandwidth)

Fig. 2 Workflow of the system

820 Mobile Netw Appl (2015) 20:817–827



quadrature amplitude modulations (MQAM), bit error rate
(BER) single-input single-output Gaussian noise channel can
be approximated expressed as:

BER≈0:2exp −1:5γ
.

2k−1
� �� �

; ð6Þ

where γ is receiver signal-to-noise ratio, k is the transmission
efficiency, namely ki

(s) in expression (2). θBER is the threshold
of BER, and then the transmission efficiency can be formulat-
ed as:

k ¼ log2 1þ Kγð Þ; ð7Þ
where K is:

K ¼ 1:5

ln 0:2
.
θBER

� � : ð8Þ

According to Eqs. (6), (7) and (8), we can obtain:

k sð Þ
i ¼ log2 1þ 1:5

ln 0:2
.
θBER

� � γ
0
@

1
A: ð9Þ

The deduction of the utility function of PUs is with respect
to spectrum bandwidth, which can maximize utility. At the
same time, we can get the relationship between spectrum price
and spectrum bandwidth:

up Bð Þ ¼
XN

i¼1

pbi−
XN

i¼1

C Bð Þ; ð10Þ

∂up bð Þ
∂bi

¼ p−τy
XN

i¼1

bi

 !τ−1

¼ 0; ð11Þ

p ¼ τy
XN

i¼1

bi

 !τ−1

; ð12Þ

according to the expressions (10), (11) and (12), we can get
the utility function of the SUs as:

us bið Þ ¼ log2 1þ 1:5

ln 0:2
.
θBER

� � γ
0
@

1
Abi

−
1

2
Nbi

2−τy
XN

i¼1

bi

 !τ−1

bi

ð13Þ

2.3 Algorithm analysis

In the proposed algorithm, we assume that the SUi can obtain
its utility function us(bi) with information of spectrum pool.
All SUs do not take loan strategy simultaneously. But a group

of SUs take the strategy firstly. And then another group of the
SUs will take corresponding suitable strategy according to the
previous SUs’ strategy. Based on the historical strategies, the
SUs will select the optimized strategy to guide their game
behaviors. With some round of repeated games, the spectrum
bandwidth leased by the SUs will reach Nash equilibrium. The
flow chart of Stackelberg game algorithm is shown in Fig. 3.
And DSA algorithm based on Stackelberg game model is
shown in Algorithm 1.

Algorithm 1: DSA algorithm
Input: N,θBER,γ,x,y,τ
Output: bi, us(bi)
1. Calculate us(bi) according to (13) with

the initial value.
2. Calculate spectrum bandwidth bi with

(14) when utility function of SUi+1 ob-
tain the maximum value.

3. According to the formula (15), obtain

strategy summation value ∑
n

i¼1
bi.

4. Calculate us(Bi) of the prior SUi accord-
ing to (13) with the initial value.

5. Substitute (16) into (17), calculate Bi
when utility function of the prior SUi

obtain the maximum value.
6. According to (19), calculate summation

value ∑
m

i¼1
Bi.

7. Substitute (19) into (16), calculate

strategy values of n following SUs ∑
n

i¼1
bi.

n following SUs take lease strategy
(Spectrum bandwidth)

Game state

stability

Strategy values of n following SUs with

unknown parameters

Yes

No

m prior SUs take strategy

(Spectrum bandwidth)

Game state

stability

Yes

Strategy values of

m prior SUs

No

S
u
b
stitu

ted
in
to

Strategy values of

n following SUs

The selected SUs

access to PUs

Fig. 3 Flow chart of Stackelberg game algorithm
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The proposed algorithm works as follows:

Step 1: With the initial value of θBER, γ, τ and y, for example,
θBER=10

−4, γ=15.4dB, τ=2, y=1/2, we can calcu-
late the utility function us(bi) of SUi according to
expression (13), in the case the strategy value of

the prior SUi isBi, and the summation is ∑
m

i¼1
Bi, where

m is the number of the prior SUs, n is the number of
the following SUs. Then we can get the utility func-
tion of the following SUi is:

us bið Þ ¼ 2−
Xm

i¼1

Bi−
Xn

j≠i
b j−bi

 !
bi−

1

2
nþ mð Þbi2:

ð14Þ

Step 2: Equation (14) is a quadratic function, and solve the
value of bi when the function obtain the maximum
value:

bi ¼ 1

2þ nþ m
2−
Xm

i¼1

Bi−
Xn

j≠i
b j

 !
: ð15Þ

Step 3: According to the Eq. (15), we obtain strategy values
of n following SUs:

Xn

i¼1

bi ¼
n 2−

Xm

i¼1

Bi

 !

1þ 2nþ m
: ð16Þ

Step 4: Then the utility function of the prior SUi is:

us Bið Þ ¼ 2−
Xn

i¼1

bi−
Xm

j≠i
B j−Bi

 !
Bi−

1

2
nþ mð ÞBi

2:

ð17Þ

Step 5: Substitute (16) into the Eq. (17), and then we can
calculate spectrum bandwidth Bi when utility func-
tion of the prior SUi obtain the maximum value.

Bi ¼ 1þ nþ m

2n2 þ m2 þ 3nmþ 3nþ 3mþ 2
2−
Xm

j≠i
B j

 !
:

ð18Þ

Step 6: According to the Eq. (18), we obtain strategy values
of m prior SUs.

Xm

i¼1

Bi ¼ 2m 1þ nþ mð Þ
2n2 þ 2m2 þ 4mnþ 2nþ 3mþ 1

: ð19Þ

Step 7: Substitute expression (19) into the Eq. (16), then we
can get strategy values of n following SUs as:

Xn

i¼1

bi ¼
n 4n2 þ 2m2 þ 6mnþ 4nþ 4mþ 2
� �

1þ 2nþ mð Þ 2n2 þ 2m2 þ 4mnþ 2nþ 3mþ 1
� � :

ð20Þ

Lemma 1 For the proposed DSA algorithm based on
Stackelberg model, there are N game players, the strategic
space of the players is S1,⋯,SN, the utility function is μ1,
⋯,μN, the Nash equilibrium is existence.

Proof According to the game model defined in (1), in the
proposed DSA algorithm, there are N SUs, which indicates
the set of participants is limited.

And the strategic space for each game player i is Si, si is
strategy and si∈Si, {s1,⋯,sN} is the strategy combination for
all players. The strategic set is closed and bounded convex set.

According to the description of the utility function us(bi) of
SUi with the benefit of bandwidth bi as shown in expression
(2) and (13), we can see that the utility function us(bi) in action
space is continuous, quasi-concave function.

The analysis mentioned above shows that game process of
the proposed scheme satisfies the conditions of the existence
of Nash equilibrium.

This completes the proof.

3 Performance analysis

In order to evaluate the performance of the proposed scheme,
the DSA algorithm is implemented in Matlab simulation plat-
form. In the simulation, all SUs are with same capacity. In
order to analyze competition among SUs, the simulation con-
siders the spectrum access times during the user choice, mu-
tual interference between users and the scale of secondary
CRNs. And the performance of the proposed scheme will be
evaluated in the terms of Nash equilibrium, convergence of
the game process, and the total amount of leased spectrum of
SUs.

3.1 Effectiveness of the proposed algorithm

In this scenario, we consider there are two SUs, namely SU1

and SU2. The leased bandwidth of two SUs are b1 and b2
respectively, and the values of b1 and b2 are initialized sto-
chastically. The response function curves of two SUs are
shown in Fig. 4, respectively.

According to the expression (15), the values of b1 and b2
are in the range [0, 2]. Assume that b1 increases 0.1 by step,
the value of b2 gradually decreases until 0 with the increasing
of b1. On the contrary, if b2 increases 0.1 by step, the value of
b1 gradually decreases until 0 with the increasing of b2, and
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the intersection of two curves is the Nash equilibrium point,
where both b1 and b2 are 0.4. The results show that the pro-
posed DSA is convergent and will reach the steady state.

In the second scenario, we will focus on the detailed game
process of SUs and the convergence of the proposed game
algorithm with varying number of SUs. And the results are
shown in Figs. 5, 6 and 7, with 4, 6 and 8 SUs respectively.
When the game reaches steady state, the strategy values of
SUs converge to their Nash equilibrium points respectively.

As shown in Fig. 5, the spectrum bandwidth leased by SUs
will vary with the game process of 4 SUs competing idle
spectrum of PUs as game times increasing. In initialization,
we set the initial strategy values of the prior SU1 and SU2 as
0.125MHz and 0.75MHz respectively, and the initial strategy
values of the following SU1 and SU2 are 0.08 MHz and
0.5 MHz respectively. Since the initial strategy values of all
SUs are not identical and not equal to the Nash equilibrium
point, each SU will adjust its strategy. As game times increas-
ing, the strategy values of 4 SUs gradually approach to the

Nash equilibrium point in the game process. And after 5
games, they reach the steady state and converge to their Nash
equilibrium points respectively. From Fig. 5, we can see the
Nash equilibrium point of the prior SUs is always greater than
that of the following SUs, which demonstrates the first-mover
advantage in Stackelberg game algorithm.

From Fig. 6, we can see the game results with 6 SUs. In this
case, we set that the initial strategy values of the prior SU1,
SU2 and SU3 as 0.1 MHz, 0.4 MHz and 0.8 MHz, and the
initial strategy values of following SU1, SU2 and SU3 are
0.05 MHz, 0.25 MHz and 0.6MHZ respectively. In order to
obtain more spectrums, all SUs will adjust their game strate-
gies to achieve more benefit. During the repeated games, the
strategy values of 6 SUs fluctuate obviously and come to
approach to the Nash equilibrium point gradually. After 6
rounds game, they reach the steady state and converge to their
Nash equilibrium points. As shown in Fig. 6, Nash equilibri-
um point of the prior SUs is always greater than that of the
following SUs. However, the value of the former is slightly
higher than that of the latter.

As shown in Fig. 7, we can see the similar results. And the
initial strategy values of the prior SU1, SU2, SU3 and SU4 are
0.1 MHz, 0.2MHZ, 0.4MHZ and 0.8MHZ respectively. And
the initial strategy values of the following SU1, SU2, SU3 and
SU4 are 0.05 MHz, 0.3 MHz, 0.5 MHz and 0.75MHZ respec-
tively. Each SU will adjust its strategy to get more bandwidth.
With the game times increasing, the strategy values of 8 SUs
oscillate obviously in the game process. After 7 games, all
SUs get to the steady state and converge to their Nash equi-
librium points. However, the difference of Nash equilibrium
points between the prior SUs and the following SUs is very
slight.

From Figs. 5, 6 and 7, we can see that, with limited idle
spectrum limited of PUs, if the number of game participants is
small, the strategy value (spectrum bandwidth) of the prior
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SUs is greater than that of the following SUs when the game
reaches the steady state. The results show the first-mover ad-
vantage in Stackelberg game. However with the increasing of
the number of SUs, the strategy value of prior SUs is closer to
that of following SUs at steady state. And the game times of
reaching Nash equilibrium point will not increase greatly,
which shows that the greater number of game participants,
the less obvious the first-mover advantage in Stackelberg
model is. At the same time, free spectrum bandwidth leased
by each SU will decrease; while the proposed DSA based
Stackelberg game algorithm solves the fairness of leasing idle
spectrum resources among SUs. And the total spectrum band-
width leased by all SUs also increased. The results show that
the proposed DSA maximizes the utilization of spectrum re-
sources efficiently.

The total amount of spectrum leased by SUs with different
SNR and varying number of SUs is shown in Fig. 8. When the

game reaches the steady state, the spectrum bandwidth leased by
SUs will vary with the number of SUs increased from 2 to 30.

As shown in Fig. 8, when the number of SUs is 2, the total
spectrum bandwidth leased by SUs is minimum. When SNR
is 15.4 dB, the bandwidth is 0.824 MHz, while the bandwidth
is 0.682 MHz when SNR is 11 dB. With the number of SUs
increasing, the total spectrum bandwidth leased by SUs in-
creases obviously. When the number of SUs is larger than
15, the total spectrum bandwidth leased by SUs will increase
slowly. And when the number of SUs is 30, the total spectrum
bandwidth leased by SUs approaches to the total idle spectrum
bandwidth of PUs, and the bandwidths are 0.984 MHz
(SNR=15.4 dB) and 0.821 MHz (SNR=11 dB) respectively.
The results show the higher SNR, the more total spectrum
bandwidth leased by SUs.

The income of SUs at steady state with different SNR and
varying number of SUs is shown in Fig. 9, where the number
of SUs increases from 2 to 30.

In Fig. 9, when the number of SUs is 2, the income of SUs
is the maximum. The income of SUs is 0.63 when SNR is
15.4 dB, while that is 0.44 when SNR is 11 dB. The reason is
spectrum oversupply when the number of SUs is very small,
and the price of PUs’ idle spectrum is cheap. However, with
the number of SUs increasing, the income of SUs decreases
significantly, and when the number of SUs is more than 15,
the income of SUs will decrease slowly and flat. When there
are 30 SUs, the income of SUs is 0.51 as SNR is 15.4 dB, and
that is 0.36 as SNR is 11 dB. This is because the limited
spectrum resources of PUs, and with the number of SUs in-
creasing, the requirements of leasing idle spectrum increase.
Therefore, spectrum price will rise accordingly. The results
demonstrate the higher SNR will help SUs to obtain more
income. The reason is that SUs with higher SNR will help
SUs to detect the idle spectrum accurately, which will increase
idle spectrum of PUs.
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3.2 Performance comparison

In order to validate the effectiveness of the proposed scheme,
in this scenario, the spectrum bandwidth leased by SUs and
income of SUs are explored and compared with the Cournot
game model [26].

The amount of spectrum bandwidth leased by SUs at
steady state with different algorithms is shown in Fig. 10,
where we considers the cases with different SNR, and the
number of SUs varying from 2 to 30.

As shown in Fig. 10, with the same SNR, the total amount
of spectrum bandwidth leased by SUs based on Stackelberg
game model is greater than that based on Cournot game mod-
el. For example, when the number of SUs is 5, the spectrum
bandwidth leased by SUs is 0.924 MHz of the proposed
scheme with SNR 15.4 dB, which is higher about
0.014 MHz than that based on Cournot game. The reason is
that Cournot game model is complete information static game
model, and all game participants take game strategy simulta-
neously. While the proposed scheme based on Stackelberg
game model, is a dynamic game model, and a part of game
participants will take the strategy firstly, and then the follow-
ing game participants will optimize their own game strategies
based on the game strategy of the prior game participants.
Therefore, such scheme will help the following participants
can pursue more spectrum bandwidth and get more benefit.
With the number of SUs increasing, the total spectrum leased
by SUs of the two game algorithms will increase rapidly. Then
the total bandwidth leased by SUs will increase slowly when
the number of SUs is larger than 10. This is because that the
idle spectrum of PUs is abundant when the number of game
participant is small. Therefore, the total bandwidth leased by
SUs will increase obviously. As the number of participants
increasing, idle spectrum of PUs will not increase accordingly,

which leads to the total bandwidth leased by SUs increasing
slowly. However, total spectrum leased by SUs of two algo-
rithms comes to close and tends to coincide when the number
of SUs increases to 30. The reason is that first-mover advan-
tage of Stackelberg model will disappear gradually as the
number of participants increasing. It’s obviously that the
higher SNR, the more spectrum bandwidth rented by SUs is.
The results show that the proposed scheme can achieve better
game performance in term of bandwidth leased by SUs.

The income of SUs at steady state for different algorithms
is shown in Fig. 11, where we considers the cases with differ-
ent SNR, and the number of SUs varying from 2 to 30.

As shown in Fig. 11, with the same SNR, the income of
SUs for two game models will decrease obviously, especially
for the total number of SUs is less than 10. And then the
income will degrade slightly. The reason is the limited idle
spectrum resources of PUs. And as the number of SUs in-
creasing, the idle spectrum resources will become scarcity,
and spectrum price will correspondingly increase, which will
lead to the income of SUs decrease accordingly. In addition,
the income of SUs based on Stackelberg game model is lower
than that based on Cournot game model. For example, the
income of the former is 0.63, and that of the latter is 0.64 when
there are 2 SUs and SNR is 15.4 dB. This is because the total
amount of spectrum bandwidth leased by SUs based on
Stackelberg game model is higher than that of the latter as
shown in Fig. 10. However when the number of SUs ap-
proaches to 30, the income of SUs of two schemes comes to
coincide. When the SNR changes from 15.4 to 11 dB, the
incomes of SUs of two game model algorithms will reduce
accordingly. The reason is lower SNR will lead to decreasing
of the total amount of idle spectrum bandwidth, and the spec-
trum price is not changed. Hence, the income of SUs will
degrade correspondingly.

5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Total number of SUs 

)z
H

M(
s

U
S

yb
desael

htdi
wdnab

murtcep
S

Cournot SNR=15.4dB

Cournot SNR=11dB
Stackelberg SNR=15.4dB

Stackelberg SNR=11dB

Fig. 10 Spectrum bandwidth leased by SUs of different algorithms

5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Total number of SUs 

)z
H

M(
s

U
S

fo
e

mocnI

Cournot SNR=15.4dB

Cournot SNR=11dB

Stackelberg SNR=15.4dB

Stackelberg SNR=11dB

Fig. 11 Income of SUs with different algorithms

Mobile Netw Appl (2015) 20:817–827 825



4 Conclusion

This paper proposed a novel DSA algorithm for CRNs based
on game theory, which captures the game behavior among
SUs during a specific leased spectrum and efficiently accounts
for mutual interference between SUs for various sizes of
CRNs. The problem is modeled as an oligopolistic competi-
tion model. And we have employed the Nash equilibrium
solution of Stackelberg model in order to obtain the bandwidth
of SUs’ leased spectrum. An intensive analysis has been pre-
sented to characterize the SUs’ leased spectrum utilization
behavior with respect to various criteria of the proposed game
theoretic model. In particular, the existing of Nash equilibri-
um, the game process, the convergence of SUs, the total SUs’
leased spectrum, and the SUs’ income have been carefully
investigated. Simulation study shows that our proposed
scheme enables SUs to efficiently utilize the licensed spec-
trum shared with PUs in a dynamic environment while max-
imizing the spectrum utilization rate. The performance of pro-
posed DSA algorithm was investigated under different SNR
regimes. We have found as SNR increased, the aggregated
bandwidth of the SUs’ leased spectrum will be increased.
Similarly, increasing SNR will increase SUs’ income. We
have also compared Stackelberg with Cournot model for the
case of same SNR to provide additional insights. We have
observed that Stackelberg model improves the spectrum utili-
zation by increasing the aggregated amount of SUs leased
spectrum. However, the increasing in leased spectrum comes
with boosting the spectrum lease price, which results in lower
income for Stackelberg model in comparing to Cournot
model.
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