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Abstract Autonomic computing (AC) is characterized
by self-* such as self-configuration, self-healing, self-
optimization, self-protection and more which run simulta-
neously in autonomic systems (ASs). Hence, self-* is a set
of self- ’s. Each self- in self-* is called self-* action. Our
way to interpret self-* is to say that self-* actions are run-
ning on ASs. In this paper, algebraic objects called monoids
are tasked with encoding the self-* action’s perspective in
all this, i.e. what the self-* action can do, and what happens
when different self-* actions are done in succession.

Keywords Autonomic computing · Cycle monoid · Free
monoid · Monoid · Monoid homomorphism · Presented
monoid · Self-* · Self-* action

1 Introduction

A common way to interpret self-* in autonomic systems
(ASs) is to say that self-* actions are running on ASs.
Triggers of self-* actions from self-* can be performed con-
currently to transform one AS state into another. A first
rule for self-* actions is this: the performance of a sequence
of several self-* actions is itself the performance of a
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self-* action - a more complex self-* action, but a self-
* action nonetheless. Algebraic objects called monoids are
tasked with encoding the self-* action’s perspective in all
this, i.e. what the self-* action can do, and what happens
when different self-* actions are done in succession. A
monoid can be construed as a set of self-* actions, together
with a formula that encodes how a sequence of self-*
actions is itself considered a self-* action. In this paper we
concentrate on monoids.

2 Outline

The paper is a reference material for readers who already
have a basic understanding of ASs and are now ready to
know the novel approach for formalizing self-* in ASs using
algebraic language.

Formalization is presented in a straightforward fash-
ion by discussing in detail the necessary components and
briefly touching on the more advanced components. Several
notes explaining how to use the algebraic structures, includ-
ing justifications needed in order to achieve the particular
results, are presented.

We attempt to make the presentation as self-contained
as possible, although familiarity with the notions of self-*
in ASs is assumed. Acquaintance with the algebra and the
associated notion of algebraic structures is useful for rec-
ognizing the results, but is almost everywhere not strictly
necessary.

The rest of this paper is organized as follows: Section 3
includes some major work related directly to the content of
the paper. In Section 4, AC is described as self-*. Section 5
presents algebraic objects called monoids to be tasked with
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encoding the self-* action’s perspective. In Section 6, we
specify monoid self-* actions. Section 7 presents monoid
homomorphisms. Finally, a short summary is given in
Section 8.

3 Related work

The topic of AC has seen a number of developments through
various research investigations following the IBM initiative
such as AC paradigm in [1–5]; different approaches and
infrastructures in [6–10] for enabling autonomic behaviors
[11–14]; core enabling systems, technologies, and services
in [15–20] to support the realization of self-* properties in
autonomic systems and applications; specific realizations of
self-* properties in autonomic systems and applications in
[21–27]; architectures and modeling strategies of autonomic
networks in [28–30]; middleware and service infrastructure
as facilitators of autonomic communications in [31–33];
approaches in [34–36] to equipping current networks with
autonomic functionality for migrating this type of networks
to autonomic networks.

Moreover, AC has also been intensely studied by var-
ious areas of engineering including artificial intelligence,
control systems and human orientated systems [37–40].
Autonomic computing has been set as an important require-
ment for systems devised to work in new generation global
networked and distributed environments like wireless net-
works, P2P networks, Web systems, multi-agent systems,
grids, and so on [41–45]. Such systems pose new chal-
lenges for the development and application of autonomic
computing techniques, due to their special characteristics
including: nondeterminism, context-awareness and goal-
and inference-driven adaptability [37, 46–48].

Finally, the choice of the underlying formalization
requires a close look at models for AC. Hence, our
interest centers on formal approach to AC taking advan-
tage of category theory [46]. In fact, categories were
first described by Samuel Eilenberg and Saunders Mac
Lane in 1945 [49], but have since grown substantially to
become a branch of modern mathematics. Category the-
ory spreads its influence over the development of both
mathematics and theoretical computer science. The cate-
gorical structures themselves are still the subject of active
research, including work to increase their range of practical
applicability.

4 Autonomic computing as self-*

Autonomic computing (AC) imitates and simulates the natu-
ral intelligence possessed by the human autonomic nervous
system using generic computers. This indicates that the

nature of software in AC is the simulation and embodiment
of human behaviors, and the extension of human capability,
reachability, persistency, memory, and information process-
ing speed [50]. AC was first proposed by IBM in 2001
where it is defined as

“Autonomic computing is an approach to self-
managed computing systems with a minimum of
human interference. The term derives from the body’s
autonomic nervous system, which controls key func-
tions without conscious awareness or involvement”
[51].

AC is generally described as self-*. Formally, let self-* be
the set of self- ’s. Each self- to be an element in self-* is
called a self-* action. That is,

self-* = {self- ‖ self- is a self-* action} (1)

Note that the symbol ‖ is read as “so that” in the paper.
We see that self-CHOP is composed of four self-* actions
of self-configuration, self-healing, self-optimization and
self-protection. Hence, self-CHOP is a subset of self-*.
That is, self-CHOP = {self-configuration, self-healing, self-
optimization, self-protection} ⊂ self-*. Every self-* action
must satisfy some certain criteria, so-called self-* proper-
ties. In [6], T.D. Wolf and T. Holvoet classified the self-*
properties in autonomic networks.

In its AC manifesto, IBM proposed eight actions setting
forth an AS known as self-awareness, self-configuration,
self-optimization, self-maintenance, self-protection (secu-
rity and integrity), self-adaptation, self-resource- allocation
and open-standard-based [51]. Kinsner pointed out that
these actions indicate that IBM perceives AC is a mimicry of
human nervous systems [52]. In other words, self-awareness
(consciousness) and non-imperative (goal-driven) behaviors
are the main features of ASs [50].

5 Monoids of self-*

A monoid of self-* is a sequence (SELF -∗, skip, |), where
SELF -∗ is a set of self-* actions, skip ∈ SELF -∗ is an
action, and |: SELF - ∗ ×SELF -∗ → SELF -∗ is a con-
currence, such that the following conditions hold for all
se-m, se-n, se-p ∈ SELF -∗:

• se-m | skip = se-m,
• skip | se-m = se-m, and
• (se-m | se-n) | se-p = se-m | (se-n | se-p)

The way they are written here is called infix notation.
We refer to skip as the identity action and to | as the
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concurrence formula for the monoid. We call the first two
rules identity laws and the third rule the associativity law for
monoids.

Alternatively, the rules of identity and associativity can
be stated

• | (se-m, skip) = se-m,
• | (skip, se-m) = se-m, and
• | (| (se-m, se-n), se-p) =| (se-m, | (se-n, se-p))

The way they are written above is called prefix nota-
tion. Note that we often use infix notation without men-
tioning it. That is, given a concurrence |: SELF - ∗
×SELF -∗ → SELF -∗, we may write se-a | se-b rather
than | (se-a, se-b).

There is a monoid with only one action, ({skip}, skip, | )
where |: {skip} × {skip} → {skip} is the unique con-
currence. We call this monoid the trivial monoid, and
sometimes denote it 1.

In monoid (SELF -∗, skip, |), given actions
se-m1, se-m2, se-m3, se-m4 there are five different ways
to parenthesize the concurrence se-m1 | se-m2 | se-m3 |
se-m4, and the associativity law for monoids will show
them all to be the same. We have

((se-m1 | se-m2) | se-m3) | se-m4 = (se-m1 | se-m2) | (se-m3 | se-m4)

= (se-m1 | (se-m2 | se-m3)) | se-m4

= se-m1 | (se-m2 | (se-m3 | se-m4))

= se-m1 | ((se-m2 | se-m3) | se-m4)

In fact, the concurrence of any list of monoid self-*
actions is the same, regardless of parenthesization. There-
fore, we can unambiguously write se-m1 | se-m2 | se-m3 |
se-m4 rather than any given parenthesization of it. This
is known as the coherence theorem and can be found
in [53].

5.1 Free monoids of self-*

Let SELF -∗ be a set of self-* actions. A list in SELF -∗
is a pair (n, f ) where n ∈ N is a natural number (called
the length of the list) and f : n → SELF -∗ is a function,
where n = {1, 2, . . . , n}. We may denote such a list by

(n, f ) = [f (1), f (2), . . . , f (n)]
The empty list is the unique list in which n = 0; we may

denote it by []. Given a self-* action se-x ∈ SELF -∗ the
singleton list on se-x is the list [se-x]. Given a list L =
(n, f ) and a number i ∈ N with i � n, the ith entry of L is
the self-* action f (i) ∈ SELF -∗.

Given two lists L = (n, f ) and L′ = (n′, f ′), define
the concatenation of L and L′, denoted L ‡ L′, to be the list

(n+n′, f ‡f ′), where f ‡f ′ : n + n′ → SELF -∗ is given
on i � n + n′ by

(f ‡ f ′)(i) =
{

f (i) if i � n

f ′(i − n) if i � n + 1
(2)

Let SELF -∗ = {se-a, se-b, se-c, . . . , se-z}. The follow-
ing are self-* actions of List (SELF -∗):

[se-a, se-b], [se-p], [se-p, se-a, se-a], . . .

The concatenation of [se-a, se-b] and [se-p, se-a, se-a]
is [se-a, se-b, se-p, se-a, se-a]. The concatenation of any
list with [] is just itself.

A free monoid generated by SELF -∗ is the sequence
(List (SELF -∗), [], ‡), where List (SELF -∗) is the set
of lists of self-* actions in SELF -∗, where [] ∈
List (SELF -∗) is the empty list, and where ‡ is the opera-
tion of list concatenation. We refer to SELF -∗ as the set of
generators for the free monoid (List (SELF -∗), [], ‡).

A free monoid generated by ∅ is the sequence
(List (∅), [], ‡) where List (∅) consists only of the empty
list. It is the trivial free monoid.

In the section below, we will define the monoid
(List (SELF -∗), [], ‡) by specifying some generators and
some relations. Lists of generators provide us all the possi-
ble ways to write self-* actions of (List (SELF -∗), [], ‡).
The relations allow us to have two ways of writing the same
self-* actions.

5.2 Presented monoids of self-*

Let SELF -∗ be a finite set of self-* actions, let n ∈ N

be the number of relations we declare, and for each 1 �
i � n, let mi and m′

i be self-* actions of List (SELF -∗).
The monoid presented by generators SELF -∗ and rela-
tions {(mi, m

′
i ) where 1 � i � n} is the monoid

(List (SELF -∗)/ ∼, [], ‡) defined fully when ∼ denotes
the equivalence relation on (List (SELF -∗) generated by
{xmiy ∼ xm′

iy where x, y ∈ List (SELF -∗), 1 � i � n}.
Every free monoid (List (SELF -∗), [], ‡) is a presented

monoid, because we can just take the set of relations to be
empty.

Let SELF -∗ = {se-a, se-b, se-c, se-d}. The idea
of presented monoids is that you notice that list of
self-* actions [se-a, se-a, se-c] always gives the same
result as list of self-* actions [se-d, se-d]. You also
notice that list of self-* actions [se-c, se-a, se-c, se-a]
is the same thing as doing nothing. In this case, we
have m1 = [se-a, se-a, se-c], m′

1 = [se-d, se-d], and
m2 = [se-c, se-a, se-c, se-a], m′

2 = [] and relations
{(m1, m

′
1), (m2, m

′
2)}. Really this means that we are equat-

ing m1 with m′
1 and m2 with m′

2, which for convenience
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we will write out [se-a, se-a, se-c] = [se-d, se-d] and
[se-c, se-a, se-c, se-a] = []. To see how this plays out,

we give an example of a calculation in List (SELF -∗)/∼.
Namely,

[se-b, se-d, se-d, se-a, se-c, se-a, se-a, se-c, se-d] = [se-b, se-a, se-a, se-c, se-a, se-c,

se-a, se-a, se-c, se-d]
= [se-b, se-a, se-a, se-a, se-c, se-d]
= [se-b, se-a, se-d, se-d, se-d]

5.3 Cyclic monoids of self-*

A monoid is called cyclic if it has a presentation involving
only one generator. Let se-a be a self-* action; we look at
some cyclic monoids generated by {se-a}.

With no relations the monoid will be the free
monoid on one generator, and will have underlying set
{[], [se-a], [se-a, se-a], [se-a, se-a, se-a], . . .}, with iden-
tity list [] and concatenation such that [se-a, se-a]‡[se-a] =
[se-a, se-a, se-a, se-a] = se-a4. Note that se-a4 is short-
hand for [se-a, se-a, se-a, se-a].

With the relation se-a ∼ [] we will get the trivial
monoid, a monoid having only one action. Consider the
cyclic monoid with generator se-a and relation se-a7 =
se-a4. This monoid has seven actions

{[] = se-a0, se-a = se-a1, se-a2, se-a3, se-a4, se-a5, se-a6}

and we know that

se-a6‡se-a5 = se-a7‡se-a4 = se-a4‡se-a4 = se-a7‡se-a = se-a5

We can depict this monoid as follows

6 Actions of monoid of self-*

Let AS be a set of autonomic system states. A self-* action
of monoid (SELF -∗, skip, |) on AS, or simply a self-*
action of SELF -∗ on AS or a SELF -∗ action on AS, is a
function

�: SELF - ∗ ×AS → AS

such that the following conditions hold for all se-m, se-n ∈
SELF -∗ and all s ∈ AS:

• skip � s = s

• se-n � (se-n � s) = (se-n | se-n) � s

Alternately, it is sometimes useful, we can rewrite � as
α : SELF - ∗ ×AS → AS and restate the above conditions
as

• α(skip, s) = s

• α(se-n, α(se-n, s)) = α(se-n | se-n, s)

The following proposition expresses the notion of auto-
nomic system in terms of free monoids and their actions on
finite sets.

Proposition 1 Let SELF -∗ and AS be finite non-empty
sets of self-* actions and autonomic system states, respec-
tively. Giving a function α : SELF -∗×AS → AS is equiv-
alent to giving an action of the free monoid List (SELF -∗)

on AS.

Proof We know that function δ : List (SELF -∗) × AS →
AS constitutes an action of the monoid List (SELF -∗) on
the setAS if and only if, for all s ∈ AS we have δ([], s) = s,
and for any two actions m,m′ ∈ List (SELF -∗) we have
δ(m, δ(m′, s)) = δ(m ‡ m′, s). Let

A={δ :List (SELF -∗)×AS →AS ‖δconstitutes anaction}
We need to prove that there is an isomorphism of sets

φ : A
∼=−→ HomSet(SELF - ∗ ×AS, AS)

Given an element δ : List (SELF -∗) × AS → AS in
A, define φ(δ) on an element (se-a, s) ∈ SELF - ∗ ×AS

by φ(δ)(se-a, s)
def= δ([se-a], s), where [se-a] is the one-

element list.
We now define ψ : HomSet(SELF - ∗ ×AS, AS) →

A. Given an element f ∈ HomSet(SELF - ∗ ×AS, AS)

define ψ(f ) : List (SELF -∗) × AS → AS on a pair
(L, s) ∈ List (SELF -∗) × AS, where L = [δ1, . . . , δn]
as follows. By induction, if n = 0, put ψ(f )(L, s) = s;
if n � 1, let L′ = [δ1, . . . , δn−1] and put ψ(f )(L, s) =
ψ(f )(L′, f (δn, s)).

We checks easily that ψ(f ) satisfies the two rules of
action above, making it an action of List (SELF -∗) on AS.
It is also easy to check that φ and ψ are mutually inverse,
completing the proof.
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It follows that an autonomic system is an action of a free
monoid on a finite set.

7 Monoid homomorphisms

Let M : (SELF -∗, skip, |) and M′ : (SELF -∗′, skip′, |′)
be monoids. A monoid homomorphism f from M to M′,
denoted f : M → M′, is a function f : SELF -∗ →
SELF -∗′ satisfying two conditions:

• f (skip) = skip′
• f (se-a | se-b) = f (se-a) |′ f (se-b), for all

se-a, se-b ∈ SELF -∗
The set of monoid homomorphisms from M to M′ is
denoted HomMon(M,M′).

Let SELF -∗ = {se-a, se-c, se-g, se-u} and let
SELF -∗′ = SELF -∗3, the set of triplets in SELF -∗. Let
M = List (SELF -∗) be the free monoid on SELF -∗
and let M′ = List (SELF -∗′) denote the free monoid on
SELF -∗′. There is a monoid homomorphism F : M′ →
M given by sending m = (se-a, se-b, se-c) to the list
[se-a, se-b, se-c].

Given any monoids List (SELF -∗) there is a unique
monoid homomorphism from List (SELF -∗) to the triv-
ial monoid 1. There is also a unique homomorphism
1 → List (SELF -∗). These facts together have an
upshot: between any two monoids List (SELF -∗) and
List (SELF -∗′) we can always construct a homomorphism

List (SELF -∗) → 1 → List (SELF -∗′)

which we call the trivial homomorphism
List (SELF -∗) → List (SELF -∗′). A morphism
List (SELF -∗) → List (SELF -∗′) that is not trivial is
called a nontrivial homomorphism.

Proposition 2 let F(SELF -∗) : (List (SELF -∗), [], ‡) be
the free monoid on SELF -∗, and let M : (M, skip, |) be
any monoid. There is a natural bijection

HomMon(F (SELF -∗),M)
∼=−→ HomSet(SELF -∗, M)

Proof We provide a function φ : HomMon(F (SELF -∗),

M) −→ HomSet(SELF -∗, M) and a function ψ :
HomSet(SELF -∗, M) −→ HomMon(F (SELF -∗),M)

and show that they are mutually inverse. Let us first con-
struct φ. Given a monoid homomorphism f : F(SELF -∗)

−→ M, we need to provide φ(f ) : SELF -∗ −→ M .

Given any se-g ∈ SELF -∗ we define φ(f )(se-g)
def=

f [se-g].
Now let us construct ψ . Given p : SELF -∗ −→ M ,

we need to provide ψ(p) : List (SELF -∗) −→ M such
that ψ(p) is a monoid homomorphism. For a list L =

[se-g1, . . . , se-gn] ∈ List (SELF -∗), define ψ(p)(L) :
p(se-g1) | . . . | p(se-gn) ∈ M . In particular, ψ(p)([]) =
skip. It is not hard to see that this is a monoid homo-
morphism. It is also easy to see that φ; ψ(p) = p for
all p ∈ HomSet(SELF -∗, M). We show that ψ; φ(f ) =
f for all f ∈ HomMon(F (SELF -∗),M). Choose L =
[se-g1, . . . , se-gn] ∈ List (SELF -∗). Then

ψ(φf )(L) = (φf )(se-g1) | . . . | (φf )(se-gn)

= f [se-g1] | . . . | f [se-gn]
= f ([se-g1, . . . , se-gn])
= f (L)

8 Conclusions

In this paper, based on algebraic objects called monoids, we
have algebraically specified to autonomic computing (AC)
from which some useful properties of AC emerge. Monoids
are tasked with encoding the perspective of self-* action in
all this, i.e. what the self-* action can do, and what hap-
pens when different self-* actions are done in succession. A
monoid is construed as a set of self-* actions, together with
a formula that encodes how a sequence of self-* actions is
itself considered a self-* action.
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