
Mobile Netw Appl (2016) 21:3–9
DOI 10.1007/s11036-015-0615-2

Algebraically Autonomic Computing

Phan Cong Vinh1

Published online: 26 May 2015
© Springer Science+Business Media New York 2015

Abstract Autonomic computing (AC) is characterized
by self-* such as self-configuration, self-healing, self-
optimization, self-protection and more which run simulta-
neously in autonomic systems (ASs). Hence, self-* is a set
of self- ’s. Each self- in self-* is called self-* action. Our
way to interpret self-* is to say that self-* actions are run-
ning on ASs. In this paper, algebraic objects called monoids
are tasked with encoding the self-* action’s perspective in
all this, i.e. what the self-* action can do, and what happens
when different self-* actions are done in succession.

Keywords Autonomic computing · Cycle monoid · Free
monoid · Monoid · Monoid homomorphism · Presented
monoid · Self-* · Self-* action

1 Introduction

A common way to interpret self-* in autonomic systems
(ASs) is to say that self-* actions are running on ASs.
Triggers of self-* actions from self-* can be performed con-
currently to transform one AS state into another. A first
rule for self-* actions is this: the performance of a sequence
of several self-* actions is itself the performance of a

� Phan Cong Vinh
pcvinh@ntt.edu.vn

1 Faculty of Information Technology, Nguyen Tat Thanh
University, 300A Nguyen Tat Thanh street, Ward 13,
District 4, Ho Chi Minh City, Vietnam

self-* action - a more complex self-* action, but a self-
* action nonetheless. Algebraic objects called monoids are
tasked with encoding the self-* action’s perspective in all
this, i.e. what the self-* action can do, and what happens
when different self-* actions are done in succession. A
monoid can be construed as a set of self-* actions, together
with a formula that encodes how a sequence of self-*
actions is itself considered a self-* action. In this paper we
concentrate on monoids.

2 Outline

The paper is a reference material for readers who already
have a basic understanding of ASs and are now ready to
know the novel approach for formalizing self-* in ASs using
algebraic language.

Formalization is presented in a straightforward fash-
ion by discussing in detail the necessary components and
briefly touching on the more advanced components. Several
notes explaining how to use the algebraic structures, includ-
ing justifications needed in order to achieve the particular
results, are presented.

We attempt to make the presentation as self-contained
as possible, although familiarity with the notions of self-*
in ASs is assumed. Acquaintance with the algebra and the
associated notion of algebraic structures is useful for rec-
ognizing the results, but is almost everywhere not strictly
necessary.

The rest of this paper is organized as follows: Section 3
includes some major work related directly to the content of
the paper. In Section 4, AC is described as self-*. Section 5
presents algebraic objects called monoids to be tasked with

mailto:pcvinh@ntt.edu.vn

4 Mobile Netw Appl (2016) 21:3–9

encoding the self-* action’s perspective. In Section 6, we
specify monoid self-* actions. Section 7 presents monoid
homomorphisms. Finally, a short summary is given in
Section 8.

3 Related work

The topic of AC has seen a number of developments through
various research investigations following the IBM initiative
such as AC paradigm in [1–5]; different approaches and
infrastructures in [6–10] for enabling autonomic behaviors
[11–14]; core enabling systems, technologies, and services
in [15–20] to support the realization of self-* properties in
autonomic systems and applications; specific realizations of
self-* properties in autonomic systems and applications in
[21–27]; architectures and modeling strategies of autonomic
networks in [28–30]; middleware and service infrastructure
as facilitators of autonomic communications in [31–33];
approaches in [34–36] to equipping current networks with
autonomic functionality for migrating this type of networks
to autonomic networks.

Moreover, AC has also been intensely studied by var-
ious areas of engineering including artificial intelligence,
control systems and human orientated systems [37–40].
Autonomic computing has been set as an important require-
ment for systems devised to work in new generation global
networked and distributed environments like wireless net-
works, P2P networks, Web systems, multi-agent systems,
grids, and so on [41–45]. Such systems pose new chal-
lenges for the development and application of autonomic
computing techniques, due to their special characteristics
including: nondeterminism, context-awareness and goal-
and inference-driven adaptability [37, 46–48].

Finally, the choice of the underlying formalization
requires a close look at models for AC. Hence, our
interest centers on formal approach to AC taking advan-
tage of category theory [46]. In fact, categories were
first described by Samuel Eilenberg and Saunders Mac
Lane in 1945 [49], but have since grown substantially to
become a branch of modern mathematics. Category the-
ory spreads its influence over the development of both
mathematics and theoretical computer science. The cate-
gorical structures themselves are still the subject of active
research, including work to increase their range of practical
applicability.

4 Autonomic computing as self-*

Autonomic computing (AC) imitates and simulates the natu-
ral intelligence possessed by the human autonomic nervous
system using generic computers. This indicates that the

nature of software in AC is the simulation and embodiment
of human behaviors, and the extension of human capability,
reachability, persistency, memory, and information process-
ing speed [50]. AC was first proposed by IBM in 2001
where it is defined as

“Autonomic computing is an approach to self-
managed computing systems with a minimum of
human interference. The term derives from the body’s
autonomic nervous system, which controls key func-
tions without conscious awareness or involvement”
[51].

AC is generally described as self-*. Formally, let self-* be
the set of self- ’s. Each self- to be an element in self-* is
called a self-* action. That is,

self-* = {self- ‖ self- is a self-* action} (1)

Note that the symbol ‖ is read as “so that” in the paper.
We see that self-CHOP is composed of four self-* actions
of self-configuration, self-healing, self-optimization and
self-protection. Hence, self-CHOP is a subset of self-*.
That is, self-CHOP = {self-configuration, self-healing, self-
optimization, self-protection} ⊂ self-*. Every self-* action
must satisfy some certain criteria, so-called self-* proper-
ties. In [6], T.D. Wolf and T. Holvoet classified the self-*
properties in autonomic networks.

In its AC manifesto, IBM proposed eight actions setting
forth an AS known as self-awareness, self-configuration,
self-optimization, self-maintenance, self-protection (secu-
rity and integrity), self-adaptation, self-resource- allocation
and open-standard-based [51]. Kinsner pointed out that
these actions indicate that IBM perceives AC is a mimicry of
human nervous systems [52]. In other words, self-awareness
(consciousness) and non-imperative (goal-driven) behaviors
are the main features of ASs [50].

5 Monoids of self-*

A monoid of self-* is a sequence (SELF -∗, skip, |), where
SELF -∗ is a set of self-* actions, skip ∈ SELF -∗ is an
action, and |: SELF - ∗ ×SELF -∗ → SELF -∗ is a con-
currence, such that the following conditions hold for all
se-m, se-n, se-p ∈ SELF -∗:

• se-m | skip = se-m,
• skip | se-m = se-m, and
• (se-m | se-n) | se-p = se-m | (se-n | se-p)

The way they are written here is called infix notation.
We refer to skip as the identity action and to | as the

Mobile Netw Appl (2016) 21:3–9 5

concurrence formula for the monoid. We call the first two
rules identity laws and the third rule the associativity law for
monoids.

Alternatively, the rules of identity and associativity can
be stated

• | (se-m, skip) = se-m,
• | (skip, se-m) = se-m, and
• | (| (se-m, se-n), se-p) =| (se-m, | (se-n, se-p))

The way they are written above is called prefix nota-
tion. Note that we often use infix notation without men-
tioning it. That is, given a concurrence |: SELF - ∗
×SELF -∗ → SELF -∗, we may write se-a | se-b rather
than | (se-a, se-b).

There is a monoid with only one action, ({skip}, skip, |)
where |: {skip} × {skip} → {skip} is the unique con-
currence. We call this monoid the trivial monoid, and
sometimes denote it 1.

In monoid (SELF -∗, skip, |), given actions
se-m1, se-m2, se-m3, se-m4 there are five different ways
to parenthesize the concurrence se-m1 | se-m2 | se-m3 |
se-m4, and the associativity law for monoids will show
them all to be the same. We have

((se-m1 | se-m2) | se-m3) | se-m4 = (se-m1 | se-m2) | (se-m3 | se-m4)

= (se-m1 | (se-m2 | se-m3)) | se-m4

= se-m1 | (se-m2 | (se-m3 | se-m4))

= se-m1 | ((se-m2 | se-m3) | se-m4)

In fact, the concurrence of any list of monoid self-*
actions is the same, regardless of parenthesization. There-
fore, we can unambiguously write se-m1 | se-m2 | se-m3 |
se-m4 rather than any given parenthesization of it. This
is known as the coherence theorem and can be found
in [53].

5.1 Free monoids of self-*

Let SELF -∗ be a set of self-* actions. A list in SELF -∗
is a pair (n, f) where n ∈ N is a natural number (called
the length of the list) and f : n → SELF -∗ is a function,
where n = {1, 2, . . . , n}. We may denote such a list by

(n, f) = [f (1), f (2), . . . , f (n)]
The empty list is the unique list in which n = 0; we may

denote it by []. Given a self-* action se-x ∈ SELF -∗ the
singleton list on se-x is the list [se-x]. Given a list L =
(n, f) and a number i ∈ N with i � n, the ith entry of L is
the self-* action f (i) ∈ SELF -∗.

Given two lists L = (n, f) and L′ = (n′, f ′), define
the concatenation of L and L′, denoted L ‡ L′, to be the list

(n+n′, f ‡f ′), where f ‡f ′ : n + n′ → SELF -∗ is given
on i � n + n′ by

(f ‡ f ′)(i) =
{

f (i) if i � n

f ′(i − n) if i � n + 1
(2)

Let SELF -∗ = {se-a, se-b, se-c, . . . , se-z}. The follow-
ing are self-* actions of List (SELF -∗):

[se-a, se-b], [se-p], [se-p, se-a, se-a], . . .

The concatenation of [se-a, se-b] and [se-p, se-a, se-a]
is [se-a, se-b, se-p, se-a, se-a]. The concatenation of any
list with [] is just itself.

A free monoid generated by SELF -∗ is the sequence
(List (SELF -∗), [], ‡), where List (SELF -∗) is the set
of lists of self-* actions in SELF -∗, where [] ∈
List (SELF -∗) is the empty list, and where ‡ is the opera-
tion of list concatenation. We refer to SELF -∗ as the set of
generators for the free monoid (List (SELF -∗), [], ‡).

A free monoid generated by ∅ is the sequence
(List (∅), [], ‡) where List (∅) consists only of the empty
list. It is the trivial free monoid.

In the section below, we will define the monoid
(List (SELF -∗), [], ‡) by specifying some generators and
some relations. Lists of generators provide us all the possi-
ble ways to write self-* actions of (List (SELF -∗), [], ‡).
The relations allow us to have two ways of writing the same
self-* actions.

5.2 Presented monoids of self-*

Let SELF -∗ be a finite set of self-* actions, let n ∈ N

be the number of relations we declare, and for each 1 �
i � n, let mi and m′

i be self-* actions of List (SELF -∗).
The monoid presented by generators SELF -∗ and rela-
tions {(mi, m

′
i) where 1 � i � n} is the monoid

(List (SELF -∗)/ ∼, [], ‡) defined fully when ∼ denotes
the equivalence relation on (List (SELF -∗) generated by
{xmiy ∼ xm′

iy where x, y ∈ List (SELF -∗), 1 � i � n}.
Every free monoid (List (SELF -∗), [], ‡) is a presented

monoid, because we can just take the set of relations to be
empty.

Let SELF -∗ = {se-a, se-b, se-c, se-d}. The idea
of presented monoids is that you notice that list of
self-* actions [se-a, se-a, se-c] always gives the same
result as list of self-* actions [se-d, se-d]. You also
notice that list of self-* actions [se-c, se-a, se-c, se-a]
is the same thing as doing nothing. In this case, we
have m1 = [se-a, se-a, se-c], m′

1 = [se-d, se-d], and
m2 = [se-c, se-a, se-c, se-a], m′

2 = [] and relations
{(m1, m

′
1), (m2, m

′
2)}. Really this means that we are equat-

ing m1 with m′
1 and m2 with m′

2, which for convenience

6 Mobile Netw Appl (2016) 21:3–9

we will write out [se-a, se-a, se-c] = [se-d, se-d] and
[se-c, se-a, se-c, se-a] = []. To see how this plays out,

we give an example of a calculation in List (SELF -∗)/∼.
Namely,

[se-b, se-d, se-d, se-a, se-c, se-a, se-a, se-c, se-d] = [se-b, se-a, se-a, se-c, se-a, se-c,

se-a, se-a, se-c, se-d]
= [se-b, se-a, se-a, se-a, se-c, se-d]
= [se-b, se-a, se-d, se-d, se-d]

5.3 Cyclic monoids of self-*

A monoid is called cyclic if it has a presentation involving
only one generator. Let se-a be a self-* action; we look at
some cyclic monoids generated by {se-a}.

With no relations the monoid will be the free
monoid on one generator, and will have underlying set
{[], [se-a], [se-a, se-a], [se-a, se-a, se-a], . . .}, with iden-
tity list [] and concatenation such that [se-a, se-a]‡[se-a] =
[se-a, se-a, se-a, se-a] = se-a4. Note that se-a4 is short-
hand for [se-a, se-a, se-a, se-a].

With the relation se-a ∼ [] we will get the trivial
monoid, a monoid having only one action. Consider the
cyclic monoid with generator se-a and relation se-a7 =
se-a4. This monoid has seven actions

{[] = se-a0, se-a = se-a1, se-a2, se-a3, se-a4, se-a5, se-a6}

and we know that

se-a6‡se-a5 = se-a7‡se-a4 = se-a4‡se-a4 = se-a7‡se-a = se-a5

We can depict this monoid as follows

6 Actions of monoid of self-*

Let AS be a set of autonomic system states. A self-* action
of monoid (SELF -∗, skip, |) on AS, or simply a self-*
action of SELF -∗ on AS or a SELF -∗ action on AS, is a
function

�: SELF - ∗ ×AS → AS

such that the following conditions hold for all se-m, se-n ∈
SELF -∗ and all s ∈ AS:

• skip � s = s

• se-n � (se-n � s) = (se-n | se-n) � s

Alternately, it is sometimes useful, we can rewrite � as
α : SELF - ∗ ×AS → AS and restate the above conditions
as

• α(skip, s) = s

• α(se-n, α(se-n, s)) = α(se-n | se-n, s)

The following proposition expresses the notion of auto-
nomic system in terms of free monoids and their actions on
finite sets.

Proposition 1 Let SELF -∗ and AS be finite non-empty
sets of self-* actions and autonomic system states, respec-
tively. Giving a function α : SELF -∗×AS → AS is equiv-
alent to giving an action of the free monoid List (SELF -∗)

on AS.

Proof We know that function δ : List (SELF -∗) × AS →
AS constitutes an action of the monoid List (SELF -∗) on
the setAS if and only if, for all s ∈ AS we have δ([], s) = s,
and for any two actions m,m′ ∈ List (SELF -∗) we have
δ(m, δ(m′, s)) = δ(m ‡ m′, s). Let

A={δ :List (SELF -∗)×AS →AS ‖δconstitutes anaction}
We need to prove that there is an isomorphism of sets

φ : A
∼=−→ HomSet(SELF - ∗ ×AS, AS)

Given an element δ : List (SELF -∗) × AS → AS in
A, define φ(δ) on an element (se-a, s) ∈ SELF - ∗ ×AS

by φ(δ)(se-a, s)
def= δ([se-a], s), where [se-a] is the one-

element list.
We now define ψ : HomSet(SELF - ∗ ×AS, AS) →

A. Given an element f ∈ HomSet(SELF - ∗ ×AS, AS)

define ψ(f) : List (SELF -∗) × AS → AS on a pair
(L, s) ∈ List (SELF -∗) × AS, where L = [δ1, . . . , δn]
as follows. By induction, if n = 0, put ψ(f)(L, s) = s;
if n � 1, let L′ = [δ1, . . . , δn−1] and put ψ(f)(L, s) =
ψ(f)(L′, f (δn, s)).

We checks easily that ψ(f) satisfies the two rules of
action above, making it an action of List (SELF -∗) on AS.
It is also easy to check that φ and ψ are mutually inverse,
completing the proof.

Mobile Netw Appl (2016) 21:3–9 7

It follows that an autonomic system is an action of a free
monoid on a finite set.

7 Monoid homomorphisms

Let M : (SELF -∗, skip, |) and M′ : (SELF -∗′, skip′, |′)
be monoids. A monoid homomorphism f from M to M′,
denoted f : M → M′, is a function f : SELF -∗ →
SELF -∗′ satisfying two conditions:

• f (skip) = skip′
• f (se-a | se-b) = f (se-a) |′ f (se-b), for all

se-a, se-b ∈ SELF -∗
The set of monoid homomorphisms from M to M′ is
denoted HomMon(M,M′).

Let SELF -∗ = {se-a, se-c, se-g, se-u} and let
SELF -∗′ = SELF -∗3, the set of triplets in SELF -∗. Let
M = List (SELF -∗) be the free monoid on SELF -∗
and let M′ = List (SELF -∗′) denote the free monoid on
SELF -∗′. There is a monoid homomorphism F : M′ →
M given by sending m = (se-a, se-b, se-c) to the list
[se-a, se-b, se-c].

Given any monoids List (SELF -∗) there is a unique
monoid homomorphism from List (SELF -∗) to the triv-
ial monoid 1. There is also a unique homomorphism
1 → List (SELF -∗). These facts together have an
upshot: between any two monoids List (SELF -∗) and
List (SELF -∗′) we can always construct a homomorphism

List (SELF -∗) → 1 → List (SELF -∗′)

which we call the trivial homomorphism
List (SELF -∗) → List (SELF -∗′). A morphism
List (SELF -∗) → List (SELF -∗′) that is not trivial is
called a nontrivial homomorphism.

Proposition 2 let F(SELF -∗) : (List (SELF -∗), [], ‡) be
the free monoid on SELF -∗, and let M : (M, skip, |) be
any monoid. There is a natural bijection

HomMon(F (SELF -∗),M)
∼=−→ HomSet(SELF -∗, M)

Proof We provide a function φ : HomMon(F (SELF -∗),

M) −→ HomSet(SELF -∗, M) and a function ψ :
HomSet(SELF -∗, M) −→ HomMon(F (SELF -∗),M)

and show that they are mutually inverse. Let us first con-
struct φ. Given a monoid homomorphism f : F(SELF -∗)

−→ M, we need to provide φ(f) : SELF -∗ −→ M .

Given any se-g ∈ SELF -∗ we define φ(f)(se-g)
def=

f [se-g].
Now let us construct ψ . Given p : SELF -∗ −→ M ,

we need to provide ψ(p) : List (SELF -∗) −→ M such
that ψ(p) is a monoid homomorphism. For a list L =

[se-g1, . . . , se-gn] ∈ List (SELF -∗), define ψ(p)(L) :
p(se-g1) | . . . | p(se-gn) ∈ M . In particular, ψ(p)([]) =
skip. It is not hard to see that this is a monoid homo-
morphism. It is also easy to see that φ; ψ(p) = p for
all p ∈ HomSet(SELF -∗, M). We show that ψ; φ(f) =
f for all f ∈ HomMon(F (SELF -∗),M). Choose L =
[se-g1, . . . , se-gn] ∈ List (SELF -∗). Then

ψ(φf)(L) = (φf)(se-g1) | . . . | (φf)(se-gn)

= f [se-g1] | . . . | f [se-gn]
= f ([se-g1, . . . , se-gn])
= f (L)

8 Conclusions

In this paper, based on algebraic objects called monoids, we
have algebraically specified to autonomic computing (AC)
from which some useful properties of AC emerge. Monoids
are tasked with encoding the perspective of self-* action in
all this, i.e. what the self-* action can do, and what hap-
pens when different self-* actions are done in succession. A
monoid is construed as a set of self-* actions, together with
a formula that encodes how a sequence of self-* actions is
itself considered a self-* action.

Acknowledgments Thank you to NTTU (Nguyen Tat Thanh Uni-
versity, Vietnam) for the constant support of our work which cul-
minated in the publication of this paper. As always, we are deeply
indebted to the anonymous reviewers for their helpful comments and
valuable suggestions which have contributed to the final preparation of
the paper.

References

1. Ganek A (2006) Autonomic computing: concepts, infras-
tructure and applications. In: Overview of autonomic com-
puting: origins, evolution, direction, 1st edn. CRC Press,
pp 3–18

2. Bustard DW, Sterritt R (2006) Autonomic computing: concepts,
infrastructure and applications. In: A requirements engineering
perspective on autonomic systems development, 1st edn. CRC
Press, pp 19–34

3. Renesse RV, Birman KP (2006) Autonomic computing: con-
cepts, infrastructure and applications. In: Autonomic computing:
a system-wide perspective, 1st edn. CRC Press, pp 35–48

4. Parashar M (2006) Autonomic computing: concepts, infrastruc-
ture and applications. In: Autonomic grid computing: concepts,
requirements, and infrastructure, 1st edn. CRC Press, pp 49–70

5. Sweitzer JW, Draper C (2006) Autonomic computing: concepts,
infrastructure and applications. In: Architecture overview for auto-
nomic computing, 1st edn. CRC Press, pp 71–98

6. Wolf TD, Holvoet T (2006) Autonomic computing: concepts,
infrastructure and applications. In: A taxonomy for self-* proper-
ties in decentralized autonomic computing, 1st edn. CRC Press,
pp 101–120

8 Mobile Netw Appl (2016) 21:3–9

7. Anthony R, Butler A, Ibrahim M (2006) Autonomic computing:
concepts, infrastructure and applications. In: Exploiting emer-
gence in autonomic systems, 1st edn. CRC Press, pp 121–148

8. Abdelwahed S, Kandasamy N (2006) Autonomic computing:
concepts, infrastructure and applications. In: A control-based
approach to autonomic performance management in computing
systems, 1st edn. CRC Press, pp 149–168

9. Sadjadi SM, McKinley PK (2006) Autonomic computing: con-
cepts, infrastructure and applications. In: Transparent autonomiza-
tion in composite systems, 1st edn. CRC Press, pp 169–188

10. Steenkiste P, Huang AC (2006) Autonomic computing: con-
cepts, infrastructure and applications. In: Recipe-based service
configuration and adaptation, 1st edn. CRC Press, pp 189–208

11. Vinh PC (2006) Formal aspects of dynamic reconfigurability in
reconfigurable computing systems. PhD thesis, London South
Bank University, London

12. Vinh PC, Bowen JP (2007) A formal approach to aspect-oriented
modular reconfigurable computing. In: Proceedings of 1st IEEE
& IFIP international symposium on theoretical aspects of software
engineering (TASE). Shanghai, China, 6–8 June. IEEE Computer
Society Press, pp 369–378

13. Vinh PC, Bowen JP (2008) Formalization of data flow comput-
ing and a coinductive approach to verifying flowware synthesis.
LNCS Trans Comput Sci 1(4750):1–36

14. Vinh PC (2007) Homomorphism between AOMRC and Hoare
model of deterministic reconfiguration processes in reconfig-
urable computing systems. Sci Ann Comput Sci XVII:113–145

15. Liu H, Parashar M (2006) Autonomic computing: concepts, infras-
tructure and applications. In: A programming system for autono-
mic self-managing applications, 1st edn. CRC Press, pp 211–236

16. Heinis T, Pautasso C, Alonso G (2006) Autonomic computing:
concepts, infrastructure and applications. In: A self-configuring
service composition engine, 1st edn. CRC Press, pp 237–252

17. Chess DM, Hanson JE, Kephart JO, Whalley I, White SR (2006)
Autonomic computing: concepts, infrastructure and applications.
In: Dynamic collaboration in autonomic computing, 1st edn. CRC
Press, pp 253–274

18. Schwan K et al (2006) Autonomic computing: concepts, infras-
tructure and applications. In: AutoFlow: autonomic information
flows for critical information systems, 1st edn. CRC Press, pp
275–304

19. Adams R et al (2006) Autonomic Computing: concepts, infras-
tructure and applications. In: Scalable management – technologies
for management of large-scale, distributed systems, 1st edn. CRC
Press, pp 305–328

20. Durham L, Milenkovic M, Cayton P, Yousif M (2006) Autonomic
computing: concepts, infrastructure and applications. In: Platform
support for autonomic computing: a research vehicle, 1st edn.
CRC Press, pp 329–350

21. Menascé DA, Bennani MN (2006) Autonomic computing: con-
cepts, infrastructure and applications. In: Dynamic server alloca-
tion for autonomic service centers in the presence of failures, 1st
edn. CRC Press, pp 353–368

22. Griffith R, Valetto G, Kaiser G (2006) Autonomic computing:
concepts, infrastructure and applications. In: Effecting runtime
reconfiguration in managed execution environments, 1st edn. CRC
Press, pp 369–388

23. Chakravarti A, Baumgartner G, Lauria M (2006) Autonomic
computing: concepts, infrastructure and applications. In: Self-
organizing scheduling on the organic grid, 1st edn. CRC Press, pp
389–412

24. Bhat V, Parashar M, Kandasamy N (2006) Autonomic comput-
ing: concepts, infrastructure and applications. In: Autonomic data
streaming for high-performance scientific applications, 1st edn.
CRC Press, pp 413–434

25. Khargharia B, Hariri S (2006) Autonomic computing: concepts,
infrastructure and applications. In: Autonomic power and per-
formance management of internet data, 1st edn. CRC Press, pp
435–470

26. Jiang G et al (2006) Autonomic computing: concepts, infrastruc-
ture and applications. In: Trace analysis for fault detection in
application servers, 1st edn. CRC Press, pp 471–492

27. Qu G, Hariri S (2006) Autonomic computing: concepts, infrastruc-
ture and applications. In: Anomaly-based self protection against
network attacks, 1st edn. CRC Press, pp 493–522

28. Meer SVD et al (2008) Advanced autonomic networking and
communication. In: Technology neutral principles and concepts
for autonomic networking, 1st edn. Whitestein series in soft-
ware agent technologies and autonomic computing. Springer,
pp 1–25

29. López JAL, Munoz JMG, Padial JM (2008) Advanced autonomic
networking and communication. In: A Telco approach to auto-
nomic infrastructure management, 1st edn. Whitestein series in
software agent technologies and autonomic computing. Springer,
pp 27–42

30. Fahy C et al (2008) Advanced autonomic networking and com-
munication. In: Modelling behaviour and distribution for the
management of next generation networks, 1st edn. Whitestein
series in software agent technologies and autonomic computing.
Springer, pp 43–62

31. Greenwood D, Ghizzioli R (2008) Advanced autonomic net-
working and communication. In: Autonomic communication with
RASCAL hybrid connectivity management, 1st edn. Whitestein
series in software agent technologies and autonomic computing.
Springer, pp 63–80

32. Nguengang G et al (2008) Advanced autonomic networking and
communication. In: Autonomic resource regulation in IP mili-
tary networks: a situatedness based knowledge plane, 1st edn.
Whitestein series in software agent technologies and autonomic
computing. Springer, pp 81–100

33. Calisti M, Ghizzioli R, Greenwood D (2008) Advanced autonomic
networking and communication. In: Autonomic service access
management for next generation converged networks, 1st edn.
Whitestein series in software agent technologies and autonomic
computing. Springer, pp 101–126

34. Razzaque MA, Dobson S, Nixon P (2008) Advanced autonomic
networking and communication. In: Cross-layer optimisations for
autonomic networks, 1st edn. Whitestein series in software agent
technologies and autonomic computing. Springer, pp 127–148

35. Amoud RR et al (2008) Advanced autonomic networking and
communication. In: An autonomic MPLS DiffServ-TE domain,
1st edn. Whitestein series in software agent technologies and
autonomic computing. Springer, pp 149–168

36. Chen J et al (2008) Advanced autonomic networking and com-
munication. In: Game theoretic framework for autonomic spec-
trum management in heterogeneous wireless networks, 1st edn.
Whitestein series in software agent technologies and autonomic
computing. Springer, pp 169–190

37. Wang Y (2007) Toward theoretical foundations of autonomic
computing. Int J Cogn Inf Nat Intell (IJCiNi) 1(3):1–16

38. Jin X, Liu J (2004) From individual based modeling to auton-
omy oriented computation. In: Nickles M, Rovatsos M, Weiss
G (eds) Agents and computational autonomy: potential, risks, and
solutions, volume 2969 of Lecture Notes in Computer Science.
Springer, Berlin, pp 151–169

39. Pacheco O (2004) Autonomy in an organizational context. In:
Nickles M, Rovatsos M, Weiss G (eds) Agents and com-
putational autonomy: potential, risks, and solutions, volume
2969 of Lecture Notes in Computer Science. Springer, Berlin,
pp 195–208

Mobile Netw Appl (2016) 21:3–9 9

40. Witkowski M, Stathis K (2004) A dialectic architecture for com-
putational autonomy. In: Nickles M, Rovatsos M, Weiss G (eds)
Agents and computational autonomy: potential, risks, and solu-
tions, volume 2969 of Lecture Notes in Computer Science.
Springer, Berlin, pp 261–273

41. Parashar M, Hariri S (eds) (2006) Autonomic computing:
concepts, infrastructure and applications, 1st edn. CRC Press. 568
pp

42. Calisti M, Meer SVD, Strassner J (eds) (2008) Advanced auto-
nomic networking and communication. Whitestein series in soft-
ware agent technologies and autonomic computing. Springer, 190
pp

43. Ko S, Gupta I, Jo Y (2007) Novel mathematics-inspired
algorithms for self-adaptive peer-to-peer computing. In: Seru-
gendo GDM, Flatin JPM, Jelasity M (eds) Proceedings of 1st
international conference on self-adaptive and self-organizing
systems (SASO’07). IEEE Computer Society Press, Boston,
pp 3–12

44. Yang B, Liu J (2007) An Autonomy Oriented Computing (AOC)
approach to distributed network community mining. In: Seru-
gendo GDM, Flatin JPM, Jelasity M (eds) Proceedings of 1st
international conference on self-adaptive and self-organizing
systems (SASO’07). IEEE Computer Society Press, Boston,
pp 151–160

45. Butera W (2007) Text display and graphics control on a paintable
computer. In: Serugendo GDM, Flatin JPM, Jelasity M (eds) Pro-
ceedings of 1st international conference on self-adaptive and self-
organizing systems (SASO’07). IEEE Computer Society Press,
Boston, pp 45–54

46. Vinh PC (2009) Autonomic computing and networking. In: For-
mal aspects of self-* in autonomic networked computing systems.
Springer, pp 381–410

47. Vinh PC (2014) Toward formalized autonomic networking. Mob
Netw Appl 19(5):598–607

48. Vinh PC (2014) Self-adaptation in collective adaptive systems.
Mob Netw Appl 19(5):626–633

49. Lawvere FW, Schanuel SH (1997) Conceptual mathematics: a first
introduction to categories, 1st edn. Cambridge University Press,
Cambridge

50. Wang Y (2007) Exploring machine cognition mechanisms for
autonomic computing. Int J Cogn Inf Nat Intell (IJCINI) 1(2):i–v

51. IBM (2001) Autonomic computing manifesto. Retrieved from
http://www.research.ibm.com/autonomic/

52. Kinsner W (2007) Towards cognitive machines: multiscale mea-
sures and analysis. Int J Cogn Inf Nat Intell (IJCINI) 1(1):28–
38

53. van Oosten J (2002) Basic category theory. Department of Mathe-
matics, Utrecht University, The Netherlands

http://www.research. ibm.com/ autonomic/

	Algebraically Autonomic Computing
	Abstract
	Introduction
	Outline
	Related work
	Autonomic computing as self-*
	Monoids of self-*
	Free monoids of self-*
	Presented monoids of self-*
	Cyclic monoids of self-*

	Actions of monoid of self-*
	Monoid homomorphisms
	Conclusions
	Acknowledgments
	References

