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Abstract Data collection and dissemination in wireless
sensor networks (WSN) for Internet of Things (IoT) require
stable multi-hop networking path from source to sink. How-
ever, due to the limited energy capacity, relay nodes that
run out of battery may cause disconnected path and result
in failure of end-to-end data transmission in WSN-based
IoT. Therefore, besides saving energy in itself, each sensor
involved in the multi-hop transmission activity also needs
a feasible strategy to select the relay nodes by leveraging
their residual energy and multi-hop IoT network connec-
tivity. In this paper, we first analyze energy consumption
model and data relay model in WSN-based IoT, and then
propose the concept of “equivalent node” to select relay
node for optimal data transmission and energy conservation.
A probabilistic dissemination algorithm, called ENS PD, is
designed to choose the optimal energy strategy and prolong
the lifetime of whole network. Extensive simulation and real
testbed results show that our models and algorithms can
minimize energy consumption while guarantee the quality
of communication in WSN-based IoT in comparison with
other methods.
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1 Introduction

Recently, a variety of pervasive technologies, e.g. intelligent
sensing [1, 2], low-power processing [3, 4], and wireless
communication [5, 6], offer unprecedented opportunities to
enable the creation of Internet of Things (IoT) [7]. Typical
IoT applications include sustainable transportation, security
surveillance, inventory tracking, mobile health and smart
grid networks, where smart objects outfitted with sensors,
actuators and radio frequency identification (RFID) inter-
act with each other and cooperate with their neighbors for
sensory data collection and control message delivery. In per-
vasive network and applications for IoT, wireless sensor
network (WSN) [8–10] is a critical part of the information
infrastructure in industrial control, logistics management,
environmental monitoring, and civilian life.

As one of the most important parts of IoT, wireless sensor
networks have been widely studied and deployed in wire-
less environments to collect and transmit data through the
coordination among sensor nodes and sink nodes. However,
the unique characteristics of sensor nodes and their wire-
less communication also pose significant challenges for the
application of WSN-base IoT. One of complex and intrigu-
ing questions in WSN design is how to maximize the energy
efficiency of whole network, because of the limited bat-
tery supply per node. As a data-centric multi-hop network,
data relay is a fundamental operation in WSN to transmit
data collected at sensor in the network towards a common
sink, with the help of relay nodes. On one hand, these relay
nodes present a flexible way to connect with each other to
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relay data to sink through hop-by-hop method. On the other
hand, the lifetime of relay nodes affects the availability of
connected multi-hop path to sink. Therefore, it is crucial to
understand the energy consumption both from per-node and
whole network aspects. A feasible energy strategy to select
the relay nodes by leveraging their residual energy and
multi-hop network connectivity is needed for the provision
of such information.

In this paper, we study the energy consumption in
WSN-based IoT by theoretic analysis on a particular kind
of IoT deployment, called one-dimensional queue net-
work. This deployment scheme is widely used in many
industrial monitoring and management of IoT applications,
e.g. street lighting, electrified railway, product pipeline,
power grids, structural health, etc. Those IoT applica-
tions consist of many small sensors and control units,
that need to collaborate with each other and relay spatial-
temporal information to maintain the stability of whole
system.

For example, as shown in Fig. 1, traditional street light-
ing consumes lots of electric power due to the absence of
lighting management. We have observed that most street
lighting systems are deployed in urban or rural area as
one-dimensional queue network, and then we designed a
corresponding WSN-based IoT solution for smart street
lighting. In our solution, every street lamp is equipped with
a motion sensor that can detect nearby object moving and
relay sensing data. In the one-dimensional lighting network
illustrated by Fig. 1, once the source node detects motion
behavior in its sensing range, it will choose other motion
sensors attached on other street lamps to relay the motion
message to sink through multi-hop dissemination. When
sink node obtains this motion message, it will send the mes-
sage to control center by Internet, and then the control center
can make intelligent decision and send back commands to
turn on some lamps to light the street for moving object.
Since not every street lamp is always chosen to turn on for
lighting, this smart light solution can be used for energy
saving and lamp maintenance.

In addition, to keep this WSN-based smart street light-
ing work in Fig. 1, we need an optimal energy strategy to
guarantee the lifetime of per sensor node and whole sensor
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Fig. 1 WSN-based IoT solution for smart street lighting

network, since relay node may run out of battery and then
causes disconnection in the multi-hop IoT network. This
potential problem could happen in other one-dimensional
WSN-based IoT application as well. Therefore, it motivates
us to design an algorithm to balance energy consumption in
WSN-based IoT. Different from previous works that only
focus on the maximal payoff of each sensor node, we also
concern about optimal energy strategy for whole network,
so that the practical one-dimensional queue network can
achieve maximal efficient usage of energy to relay data in
WSN-based IoT.

Each sensor node in our energy model selects appropri-
ate energy strategy to relay data based on the source node
of the data. To facilitate the study of the system and better
plan of the optimal energy strategy for each sensor node,
we apply the idea of opportunity routing theory [11–13] in
our study and propose the concept of “equivalent node”,
namely EEN, to select relay node and minimize overall
energy consumption. Source node locates virtual equivalent
node at the optimal position in queue model, and then real
neighbor nodes around the equivalent node will be chosen
opportunistically with different probabilities to relay data to
sink.

In addition, a probabilistic data dissemination algo-
rithm, called ENS PD (ENergy Saving via Probabilis-
tic Dissemination), is designed to calculate equivalent
node and select optimal relay node for data relay. Relay
nodes are selected by our QoS (quality of service)-aware
energy strategy and probabilistically relay the data, so
that the calculated optimal power of transmission can be
achieved.

The remainders of the paper are organized as follows.
Section 2 reviews the related work. Section 3 introduces
relevant network models and assumptions. Section 4 pro-
vides theoretical analysis of the optimal transmission power.
Section 5 gives a general solution to calculate optimal
energy strategy and describes the operation of ENS PD
algorithm. Section 6 presents the performance evaluation by
simulation and real testbed experiments. Finally, Section 7
concludes our work with future directions.

2 Related work

IoT refers to the concept of ubiquitous of the terminal
devices and facilities. The core technology in IoT is the
sensor network and computer information processing, for
building an advanced and powerful information acquisition
and processing platform. The growing interest in IoT tech-
nologies and applications is well demonstrated by a number
of research initiatives arising worldwide. Milenkovic et al.
[14] described some IoT implementation issues and pro-
posed a IoT prototype for health monitoring based on
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wireless sensor networks. Patterson et al. [15] have set an
IoT living environment where all objects are equipped with
RFID tags, and residents wearing a glove with an RFID
reader can sense and detect objects they have touched. Some
IoT-centric programs, such as CASAGRAS2 and Auto-ID
Lab, are greatly supported by international partners from
Europe, the USA, China, Japan and Korea, focusing on the
application of wireless sensor and RFID networks to enable
future pervasive services [16].

Most of the WSNs applications in IoT right now are
powered by battery which limits the lifetime of networks.
Although the state of art of manufacturing techniques can
improve capacity of battery and lower down the power con-
sumption of hardware, it is equally important to maximize
the energy efficiency on software level. Therefore, differ-
ent types of relay node selection and power control schemes
were proposed in the past few years for sensor networks and
WSN-based IoT.

Many studies suggest proper selection of relay node with
the concern of quality of communication [17, 19, 25]. The
key idea of these works is to make a trade-off between
energy consumption and desired SNR (signal to noise rate)
with the knowledge of game theory. However, these meth-
ods only improve the payoff of each sensor node, which
cannot guarantee the total energy saving in whole network
and could even cause extra energy loss. In practice, each
sensor node in WSN cannot only concern about optimizing
its own energy strategy, but should take the lifetime pro-
longation of the whole network as its priority. Hence the
non-cooperative game theoretic approach is not perfectly
suitable to solve this energy problem in WSN-based IoT.

The energy consumption in WSN-based IoT is related to
two factors. One is the transmission power of each com-
munication and the other is the working rate of each sensor
node. The energy consumption of a successful data trans-
mission from source to sink should include the consumption
of all the relay nodes on the selected routing path. There-
fore, a proper planning of hop-count provides a solution by
concerning about the two factors together to maximize the
efficiency of energy usage.

Some studies [20, 21, 24] provide theoretical analy-
sis and experiments to compare the consumed energy of
single-hop transmission versus multi-hop transmission, and
then calculate the suitable hop-count for the relay within
the constant distance. [30] suggests that multi-hop com-
munication can be more energy-efficient than single-hop
communication. And a utility function is derived to show
the advantage of N-hop transmission over single-hop trans-
mission within the same distance. However, this model is
somehow too simplified by its own placement of relay
nodes, leading to favoring the multi-hop scenario and pre-
senting it to be more energy-efficient. In reality, the position
of sensor node is generally predetermined based on specific

application. So these perfect energy strategies with oversim-
plified consumptions may not fit practical WSN-based IoT
applications.

Other work in [18, 23] use transmission range adjustment
to avoid overlapped sensing area but still maintain effective
coverage. Their main objective is to minimize energy con-
sumed by different sensing functions, which usually do not
consider the effect of data communication.

Different from previous work, in our paper, practical
models and algorithms are used to characterize multi-hop
relay behavior in WSN-based IoT. Total energy consump-
tion to transmit data from source to destination is analyzed.
Then we leverage the residual energy of relay nodes and the
connection of multi-hop network to design optimal energy
strategy for whole network.

3 Network models and assumptions

Data collection and dissemination in wireless sensor net-
works require stable multihop networking links from source
to sink. However, due to the limited energy capacity, relay
nodes that run out battery may cause disconnected links
and result in failed end-to-end data transmission in WSN-
based IoT. Therefore, besides saving energy on itself, each
sensor involved in the multi-hop transmission activity also
needs a reasonable strategy to select the relay nodes by
leveraging their residual energy and multi-hop network
connectivity.

Without loss of generality, the relay node selection for
multi-hop data transmission in WSN-based IoT is analyzed
by one-dimensional queue model, as shown in Fig. 2. This
model is quite common to relay sensory data in many IoT
scenarios, such as street lighting system, bridge structural
health, transmission line tower, and railway electrification
system, where the WSN is used to detect different events
to avoid infrastructural failure. Since WSN-assisted infras-
tructure maintenance is crucial to civil life and economic
development, we address efficient data dissemination, based
on following network models, to minimize energy consump-
tion of relay nodes and prolong the lifetime of WSN-based
IoT application.

3.1 Relay model

The one-dimensional queuing model is adopted to describe
the relay behaviors among nodes in WSN-based IoT. As

Fig. 2 The queuing model of relay with minimal transmission range
of dmin and maximum transmission range Ndmin
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shown in Fig. 2, any two one-hop neighbor nodes in this
model are with the equal distance dmin by WSN deploy-
ment, and the total number of nodes with sensing and
communication capability in this aligned network is M . The
maximum transmission range of each node is Ndmin. Each
node works under the same data collection rate β. With the
help of relay nodes, the direction of data collection is ori-
ented from data source and flowing towards sink node. Note
that, in comparison with other oversimplified sensor deploy-
ment, the assumption of equal distance dmin in our relay
model is practical for many WSN-based IoT applications
such as street lighting, product line, and electrified railway
system.

3.2 Energy model

According to [22, 26], when sensor node is working, the
energy consumption can be formulated as Eq. 1, where
� is the basic energy consumption of sensor board to
supply the running of MCU (micro-chip unit), a micro-
processor used to monitor tasks such as collection and
calculation. pi is the transmitted power strength of sig-
nal, with α as its correlation coefficient which is deter-
mined by electrical property of the RF (radio frequency)
chip and antenna. Pt denotes the energy consumption of
transmitter.

Pt = � + αpi (1)

Correspondingly, the energy consumption of receiver Pr

can be expressed as Eq. 2, where p∧ is a constant to indicate
the radio power of receiver.

Pr = � + p∧ (2)

3.3 Propagation model

The path-loss by distance can be modeled in wireless
communication as pl = K(d0/d)τ [27, 28], where τ

is the path-loss exponent that satisfies τ > 1. When
d > d0, K can be empirically approximated as K(dB) =
20 lg(λ/4πd0), where d0 is the reference distance, d is
the distance between transmitter and receiver, and λ is the
signal wavelength. According to this propagation model,
the received power strength of signal pr can be defined as
Eq. 3.

pr = Kpi(d0/d)τ (3)

The minimum power level of effective signal recep-
tion has been widely applied in energy conservation as a
threshold for QoS-based data transmission [28, 29]. In our
model, since the noise is viewed as a constant, the transmit-
ter should adjust its transmission power to make receiving
power on the receiver reach a minimum value. Here we

define this minimum power level by a constant threshold
value as PT H .

4 Equivalent node for energy consumption analysis

In WSN application for IoT, data are delivered to sink
through hop-by-hop connected relay nodes. A well chosen
strategy of power control for each relay node can achieve
per-node energy conservation for on-going and future trans-
mission, and therefore prolong the network lifetime. To
better analyze the transmission related energy consump-
tion of relay nodes, we propose the concept of “equivalent
node”, namely EEN, to analyze energy consumption in
WSN, and use it to select relay nodes.

Definition 1 Equivalent node is a calculated virtual node
that can equally function as selected one or several real
nodes. The energy consumption of equivalent node equals
to the energy consumption of these selected real nodes.

In WSN-based IoT, the equivalent nodes are com-
posed of transmitters and receivers. Inspired from the
probability-based opportunity routing approach, equiva-
lent node is formed by jointly considering the distribu-
tion of real nodes and their transmission probabilities.
Figure 3 presents a one-dimensional model to illustrate
the probabilistic data dissemination in multi-hop WSN
and corresponding formation scheme of the equivalent
node.

In this one-dimensional model, node A is the transmitter
and its transmission probabilities to node B and node C are η

and (1−η) respectively. If the distance from node A to node
B and node C are d1 and d2, respectively, and the received
signal power meets the lowest QoS requirement, the posi-
tion of equivalent node that represents B and C is given as
Eq. 4, where τ is path-loss exponent.

l = [d1
τ η + d2

τ (1 − η)]1/τ (4)

Fig. 3 The formation of energy equivalent node (EEN)
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Because the power threshold of effective signal recep-
tion is constant, we only concern about the energy strat-
egy of transmitter for data relay in our model. Figure 4
illustrates a multi-hop WSN to relay data using one-
dimensional queue model. For node h, there are h − 1
nodes available for data relay. These nodes have same dis-
tance dmin between neighbors. To find the optimal energy
strategy for node h to relay data to other nodes, we
converge real nodes to equivalent nodes and then mini-
mize the overall relay energy consumption according to
Theorem 1.

Theorem 1 In large-scale WSN where each node is equally
distanced in a one-dimensional queuing model, if the energy
consumption of transmitter is Pt = �+αpi , and the energy
consumption of receiver is Pr = � + p∧, and the opti-
mal equivalent energy strategy of sensor node(h(h � 1))
to relay data in the one-dimensional queue to sink is Pt =
[φ(hτ + 1) + p∧]/(hτ − 1).

Proof Define the duration of each transmission as a unit
interval. For the hth node in Fig. 3, the number of nodes
ahead to sink is h−1, and the number of hops that relay data
to sink is n. Therefore, the total energy consumption(Ch) it
takes to transmit the data to sink can be expressed as Eq. 5,
where pi is the transmission signal power of the ith node.

Ch =
∑n

i=1
(� + αpi) + (n − 1)(� + p∧) (5)

In order to save energy, each transmission only needs
to satisfy the lowest QoS requirement (minimal tolerable
SNR). Define the minimum power consumption of effec-
tive signal reception as Pr = PT H . According to Eq. 3, we
have

pi(d0/di)
τ = const (6)

We know that the distance between any two closest nodes
is same as dmin. For ith hop during data relay, suppose the
length of this one hop is di , we have

h =
∑n

i=1
(di/dmin) (7)

The number of hops from node h to sink is given in Eq. 8,
where di = ∑n

i=0 (di/n) represents the average length of

Fig. 4 Real nodes and EEN in one-dimensional queue model

each hop in the network.

n = h/(di/dmin) (8)

We denote pmin as the minimum transmission power
in terms of dmin. Accordingly, we have following relation
between hop number n and transmission power pi as shown

in Eq. 9, in which p
1/τ
i = ∑n

i=0 p
1/τ
i /n.

n = h(p
1/τ
min/p

1/τ
i ) (9)

pi can be transformed into Eq. 10, where ζi is a coeffi-
cient to reveal the connection between pi and pmin.

pi = ζipmin (10)

Combine Eqs. 5, 9 and 10 together, we reformulate the
energy consumption of node h as Eq. 11

Ch = (2� + αpminζi + p∧)h/ζ
(1/τ)
i − (� + p∧) (11)

Where ζi can be expressed as Eq. 12, according to Eqs. 8
and 9.

ζi = (di/dmin)
τ (12)

Based on Eq. 7 we know the distance between node h
and sink is determined, and for the given n we can derive di

in Eq. 8. Therefore, we can yield constant ζ
1/τ
i , and derive

(13), where ζ1 = ζ2 = · · · = ζn = ζ
1/τ
i

τ

= ζ .

Ch ≥ (2� + αpminζ + p∧)hζ (−1/τ) − (� + p∧) (13)

Accordingly, we can obtain the minimum value of Ch

with given ζ
1/τ
i as Eq. 14.

Ch
min(ζ ) = (2�+αpminζ +p∧)hζ (−1/τ) − (�+p∧) (14)

In order to optimize the overall energy consumption dur-
ing data relay, the first order derivative of Ch

min need to
satisfy following optimality condition as Eq. 16.

∂Cmin/∂ζ (15)

= αpmin(h − 1)ζ (−1/τ) − (1/τ)

(2� + αpminζ + p∧)ζ−(τ+1)/τ

= 0

Then we have result in Eq. 16 for either global maximum
or minimum.

ζ = (2� + p∧)/[(hτ − 1)αpmin] (16)
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In addition, the second derivative of Ch
min with respect

to ζ at the point of Eq. 16 reveals that

∂2Ch
min

∂ζ 2
|ζ=(2�+p∧)/[(hτ−1)αpmin]

= (2� + p∧)−(τ+1)/τ

τ [(hτ − 1)αpmin]−(2τ+1)/τ
> 0

(17)

Therefore, we can decide that (16) is the global minimum
with respect to the energy consumption of node h. And the
corresponding optimal distance to next node to relay data
can be expressed as Eq. 18.

dop = dmin{(2� + p∧)/[(hτ − 1)αpmin]}1/τ (18)

Since the distance hdminfrom node h to sink may not nec-
essarily be the sum of multiple integral value dop, (19) uses
an integral value n to describe their relation.

n(dop + ε) = hdmin (19)

When h � 1, we have ε → 0 and can use Eq. 18 to select
relay node for data transmission. Combine Eqs. 6 and 18, we
can derive the optimal energy strategy as Eq. 20, according
to the regulation in Eq. 1.

Pt = [�(hτ + 1) + p∧]/(hτ − 1) (20)

This completes the proof of the theorem. Theorem 1
depicts an ideal situation which is only applicable when
h � 1. The value n in Eq. 19 indicates the position of relay
node in our one-dimensional queue model. However, in real-
ity as shown in Fig. 3, n is unnecessarily equal to h, and the
position of selected relay node by Theorem 1 would always
end up to be somewhere between two real nodes. Accord-
ing to Eq. 4, equivalent node can reconcile this conflict for
optimal data relay. We will further address the use of
equivalent node for relay node selection and power control
in following section.

5 Energy strategy for small-scale network

Theorem 1 for relay node selection can only be valid in a
super large-scale queue model, which is not applicable in
many WSN-based IoT scenarios. Certain IoT queue models,
e.g. transmission line tower and electrified railway system,
may deploy approximately infinite number of sensors queu-
ing in a line. However, due to limited capacity of sink and
robust requirement of data management in WSN, in reality
for these applications, a large-scale queue model is usu-
ally divided into many small-scale queue models, and then
organized by multiple sinks for data collection and dis-
semination. In this section, we study the optimal energy

strategy for small-scale network. According to our theo-
retical results, an energy saving algorithm is specifically
designed to select relay node through probabilistic data
dissemination.

5.1 Condition of energy strategy

To save energy during data transmission in whole network,
there must be an optimal energy strategy for each node.
Unlike large-scale network where h � 1, the small-scale
network cannot satisfy the condition ε → 0 of Eq. 19
in most cases. In addition, the position of selected relay
node by Theorem 1 may be EEN in one-dimensional queue
model. Therefore, optimal energy strategy for small-scale
network needs to be readdressed from Theorem 1.

In order to find out the optimal strategy, we illustrate two
conditions needed to be satisfied in small-scale network.

Condition 1 For node h, the selected EENs for data relay
should have equal distance d

op
θ to their nearest neigh-

bors. The selected EENs also need to satisfy that hdmin is
divisible by d

op
θ .

From Condition 1, node h converts the selection of relay
node in small-scale network to be a similar problem in
Eq. 19, and therefore selected EENs can be used to optimize
energy consumption as the real node in Theorem 1.

Condition 2 The optimal energy strategy for node h,
according to Eq. 16, should satisfy (21) after selecting
EENs.

Ch
min(dθ

op) ≤ Ch
min(dj

op)|j �=θ (21)

Because ζi in Eq. 14 can be express by multiple ζi =
(di/dmin)

τ as Eq. 12, condition 2 presents possible EENs as
candidates to optimize energy consumption. Note that EENs
in condition 2 need to first satisfy condition 1. From Eq. 21,
node h can choose the candidate for the optimal strategy.
The corresponding power of dθ

op is thus the optimal strat-
egy of each sensor node in the small-scale network. The
specific algorithm to choose EEN is described in following
section.

5.2 Energy equivalent node for optimal energy strategy

The two conditions above provide guidance for the selection
of optimal energy strategy. However, since we need to calcu-
late energy consumption for every relay node, it will result
in large computing overhead. According to Theorem 1, we
know that the energy consumption function (14) is convex
with respect to distance variable d . We can achieve optimal
energy strategy by choosing optimal strategy to determine
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d. If the selected d is closer to estimated result in Eq. 18,
then the network can achieve better energy usage.

According to the definition of EEN in Eq. 4, each EEN is
determined by two close nodes: one before it and the other
after it. If we can find the optimal strategy of choosing d ,
then we can locate the virtual relay node at position with
distance d from node h. By one-dimensional queue model,
there will be two real nodes that closely locate before and
after the EEN. Since these two real nodes are close to the
optimal d , they can serve as desired relay nodes. The two
real nodes choose their own optimal energy strategy for data
relay, and then again each derives an EEN for next-hop data
relay. If we continue this process, there will be many EENs
generated after several hops. Therefore, here we propose
that comparison of two candidates is good enough to obtain
optimal energy strategy. That is, after the mentioned two
relay nodes generate their next-hop EENs, we compare the
two EENs and choose the one with better energy strategy as
next hop.

Given dop from Theorem 1, the definition of these two
candidates is expressed by d1

opand d2
op, respectively in

Eqs. 23 and 24, where �∗
 is to round off ∗ into integral.
Accordingly, dθ

op that meet Condition 1 and 2 is described
as Eq. 24.

d1
op = (hdmin)/[(hdmin + dop)/dop] (22)

dmin < dop < Ndmin

d2
op = (hdmin)/[(hdmin)/d

op] (23)

dmin < dop < Ndmin

dθ
op =

{
d1

op, Ch
min(d1

op) < Ch
min(d2

op)

d2
op, Ch

min(d2
op) ≤ Ch

min(d1
op)

(24)

In these definitions, there are mainly three relations
between dop and hdmin, and therefore generate three cases
to calculate different dop

θ in terms of d
op

1 and d
op

2 , as follows.

Case 1 dop > hdmin

In this case, we have Eq. 25, where Ndmin is the maxi-
mum transmission range

dθ
op =

{
hdmin, h < N

Ndmin, h ≥ N
(25)

Case 2 dop < dmin

In this situation the optimal strategy is dop = dmin,
because it is meaningless to set up the transmission range
smaller than dmin.

Case 3 dmin ≤ dop ≤ hdmin

Under this circumstance, dθ
op is calculated as Eq. 26.

dθ
op =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d1
op, h < N;

Ch
min(d1

op) < Ch
min(d2

op)

d2
op, dop < Ndmin; h ≥ N;

Ch
min(d2

op) ≤ Ch
min(d1

op)

Ndmin, dop ≥ Ndmin; h ≥ N

(26)

The three cases provide a fast calculation of the optimal
strategy for choosing d . Because of the relation between
energy consumption and distance as Eq. 14, we use above
optimal distance results to decide corresponding energy sav-
ing strategy, which is specifically achieved through follow-
ing probabilistic dissemination algorithm, called ENS PD.

5.3 ENS PD algorithm

In ENS PD, EEN is determined after formulation and calcu-
lation of dθ

op. E ach EEN functions by assigning different
probabilities for close real nodes to relay data. For any node
h, the transmitted data can be separated into two groups.
One group is the sensor data of its own, and the other group
is the relay data from other nodes.

From previous sections, we know that hdmin indicates
the distance from node h to sink. The optimal strategy
for choosing dθ

op is dependent on dh. In order to obtain
value h (source ID), when the data of second group arrive,
each EEN needs to trace the ID of source by checking
incoming data. And then it can calculate the optimal energy
strategy to relay the data by case analysis as illustrated in
Section III.

For a rapid selection of proper energy strategy accord-
ing the source ID of the arrived data, we introduce ENS PD
algorithm for energy saving through probabilistic dissemi-
nation of the data. The ENS PD algorithm for each EEN
includes following steps:

(1) Calculate the optiaml transmission range based on
Eq. 24, and get the optimal energy strategy of its own
by Eqs. 23 and 24.

(2) Collect the sensor data and waiting for the incoming
data.

(3) Check the source ID of the incoming data, and calcu-
late the optimal transmission power strategy, according
to the source ID.

(4) Update previous optimal transmission strategy,
according to the source ID of incoming data, and
probabilistically send out the data to two close-by
real nodes which are before and after the EEN,
respectively.
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In addition, though above steps are designed for one-
dimensional queue model, we can easily extend the
ENS PD algorithm for WSN with multiple sink and multi-
ple relay queues, by checking the source ID and sink ID in
each data. Since the two kinds of ID indicate unique infor-
mation of each data flow, ENS PD algorithm can direct the
data on the right queue to corresponding sink.

Note that in previous sections we mainly address the
strategy of EEN in the small-scale network. However, if
there is a real node exactly located on the position of
selected relay node by Theorem 1, we can simply replace
EEN by the real node and let it follow the same operations
to choose optimal energy strategy to relay data.

6 Performance evaluation

We have evaluated our relay models and algorithms through
extensive simulation results and real testbed experiments.
The performance of END PD algorithm has been verified
by comparison with other methods. The energy strategy has
been testified by data relay in multi-hop WSN-based IoT.

6.1 Simulation results

The simulation is implemented by Matlab in a scenario
of queuing model to evaluate the performance of ENS PD
algorithm for data delay. Each node has the same collecting
rate β=0.002, and firmware character φ, P∧, α in Eq. 1 is set
as 200 mw, 10 mw and 2 respectively. Path-loss exponent
of environment τ is 3.5. Considering (3), we set the lowest
transmission power for communication at distance 12.5 m as
10 mw, and use it as as a standard reference to meet the min-
imum QoS requirement of receiver. The longest distance of
a single hop is 50m and the stored energy is 3000mwh. Dur-
ing transmission, several offset channels are offered, thus
the interference among the generated signals of each node
is ignored.

6.1.1 Evaluation of energy strategy

Firstly, we evaluate the outcome of the network by the mea-
suring consumption of a single packet delivery from the last
node to sink at the distance of 100m with 10 nodes equally
distanced to their adjacent neighbors among them. During
relay, when the equivalent transmitters (ETs) of two differ-
ent equivalent links change their transmission distances, the
changed energy strategies of ETs will in turn affect the total
energy consumption.

From Fig. 5, we see that there is an equilibrium energy
strategy for both equivalent link X and link Y. According
to the strategy, the total energy consumption of delivery is
minimal. It can also infer that for each equivalent relay node

Fig. 5 Energy strategies of two EENs according to total consumption
spent on a successful delivery

the equilibrium is the same. Thus, the total consumption is
decreased when nodes are all with equilibrium energy. The
optimal energy strategy of each EEN, as shown in Fig. 5, is
51.8 mw with the transmission distance of about 22.5 m and
collecting rate of β=0.002.

According to Eq. 1, � reveals the unique characters of
MCU. Smaller � indicate slower consumption of MCU. Let
P∧ and α equal to 10mw and 2 respectively. The influence
of path-loss exponent τ and sensor’s firmware character �

on the perfect transmission power is illustrated by Fig. 6.
We can see that transmission power increases along with the
increase of MCU consumption, and smaller pass-loss expo-
nent results in sharper variation. So the transmission power
is maximum when � is on its largest value while path-loss
exponent is the lowest.

Fig. 6 Transmission power of single node according to path-loss
exponent and consumption of MCU
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6.1.2 Evaluation of relay algorithm

To fully analyze the performance of ENS PD, we com-
pared it with the methods MADT (Maximum Distance
Transmission) and SGHP (Single Hop Distance Transmis-
sion) [8], which represent the transmission power strategy
with maximum and minimum transmission power, respec-
tively, to satisfy QoS requirement of reception. The aver-
age power consumption of each node, the lifetime of the
whole system, and packet loss rate are taken as criteria of
evaluation.

Figure 7 shows the average power consumption of each
node with collecting rate, when β=0.002 system is fully
operation. The variables are total number of actual nodes
in queuing model and the distance between two immedi-
ate neighbors. As we can see, ENS PD can achieve the
lowest consumption and is obviously better than MADT
method.For MADT, when the minimum distance becomes
larger, the original connected node may be out of trans-
mission range, hence the transmitter has to decrease the
power and select the furthest node within its transmission
range. Therefore the energy consumption keeps changing
and causes the performance fluctuation of MADT. At the
distance more than 22.5 m, ENS PD and SGHP result
in similar energy consumption because both schemes can
achieve optimal transmission distance, as illustrated in
Fig. 5. For this case, both ENS PD and SGHP only allow
every node communicate to its nearest neighbor. No matter
larger or smaller than this distance, ENS PD always keeps
the energy consumption at the lowest level.

The lifetime of a network is relevant to the maximum
lifetime of relay nodes. Relay nodes should be capable to
reach sink through multi-hop connection, no matter how
much energy are left. And their energy indicate the trans-
mission range. In Fig. 8, the result shows ENS PD can have
the longest lifetime. The life time of SGHP is shorter, and

Fig. 7 The comparison of average consumption according to network
scale and minimum distance between two nearest nodes

Fig. 8 The comparison of lifetime referred to network scale and
minimum distance between two nearest nodes

that of MADT is the shortest compared to ENS PD. When
the distance between two nearest nodes is extended to be
more than 22.5 m, ENS PD and SGHP have the same trans-
mission distance, so they have the same lifetime as well.
Thus, ENS PD guarantees both the extensive lifetime and
the largest conservation of energy.

Suppose there is a constant packet loss rate for each link.
The final arrival rate of sensor data is relevant to the number
of hops. We set packet loss rate as 2 % for a single delivery.
The result in Fig. 9 reveals that for the furthest node in queu-
ing model, the packet loss rate is maximum if SGHP is used.
MADT is the best option if we only concern about decreas-
ing packet loss rate. The communication quality of ENS PD
is between SGHP and MADT. Consider that ENS PD can

Fig. 9 The comparison of packet loss rate according to network scale
and minimum distance between two nearest nodes
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extend network lifetime, it is still a fine option. Though min-
imal energy consumption, a promising packet loss rate can
be satisfied by ENS PD.

For the last group of simulation, we set the distance
between two adjacent neighbors as 10m, the network scale
is of 10 nodes and the rest parameters are the same in a
multi-hop WSN. If the longest distance of single hop is 50m,
the number of nodes that can directly access to sink is 5,
which is based on the standard reference mentioned above.
Without those 5 nodes, the network will be disconnected and
failed to transmit to sink. Thus, we look at the first 5 nodes
from sink, measure their energy consumption and evaluate
their performance.

Figure 10 shows the energy consumption of the 5 sensor
nodes which are capable of communicating to sink directly.
We again evaluate the three relay methods with collect-
ing rate β=0.002. As we can see, ENS PD can achieve
lower average energy consumption compared with MADT
and SGHP, because of its probabilistic dissemination and
small-scale network schemes. And due to the lower con-
sumption, a longer lifetime can be achieved as well by
ENS PD method.

From simulation results, we can conclude that ENS PD
scheme, based on equivalent node, is more robust than other
schemes on choosing next-hop data relay, by balancing
energy and lifetime from both per node and whole network
aspects.

6.2 Real testbed experiments

To analyze the performance of our models and algorithms
in real life, a SOC solution tailored for IEEE 802.15.4/Zig-
bee applications, called CC2530, is used to implement our
algorithm for real testbed experiments. Because the trans-
mission power in practice cannot be quantized into levels as

Fig. 10 Energy consumption of first 5 nodes from the sink by different
relay methods

Fig. 11 Network topology for real testbed experiments

many as the theoretic analysis does, we use 20 available lev-
els of transmission power in the RF front-end, CC2591, for
evaluation.

We choose an area that will be used for future street
lighting deployment, and set the WSN-based IoT for smart
street lighting application, as illustrated by the example of
one-dimensional lighting network in Fig. 1. The network is
composed of 10 sensor nodes with wireless communication
capability. These nodes are placed in a line, as shown in
Fig. 11. Any adjacent node is of 10m away from each other.
The maximum transmission power is 20 dbm, the minimum
interval of the transmission power is 1dbm, and the band-
width is 5 × 106 HZ . Each node is working in the same
channel, and message is delivered with three mechanisms:
one-hop, random-hop and equivalent-hop.

In each mechanism, we calculate the energy consump-
tion for one packet transmitted from the first node to
the sink in the line. The transmission power level can be
set through serial port. For one-hop mechanism, we let
each node only communicate with the next hop node, and
calculate the energy consumption by Eq. 1. For random-
hop mechanism, each node transmits the packet randomly

Fig. 12 Energy consumption per unit time of three different delivery
mechanisms
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to the node in the line. And when the sink gets the
packet, we calculate the overall energy consumption. For
equivalent-hop mechanism, we first use the equivalent
node for data relay according to Eq. 5. Then we line the
10 node with the distance same as the distance calcu-
lated by equivalent node, and let each node communicate
with the next hop node. When sink gets the packet, we
calculate the whole energy consumption of this mecha-
nism.Then, energy consumption per unit time is calculated
by dividing between whole energy consumption and time
consuming.

Figure 12 shows the average energy consumption per
unit time (ms) of the three different mechanisms. Ran-
dom hop mechanism has the highest energy consumption
per unit time as 0.040mw. However, there is a plunge
for one-hop and equivalent-hop mechanisms. The energy
consumption per unit time of equivalent-hop mechanism is
0.012 mw, which is the lowest value among the three mech-
anisms. The energy consumption of one-hop mechanism is
0.017 mw, which is much higher than equivalent-hop mech-
anism. These results meet our analysis in Theorem 1., which
is the basis of our scheme to present the optimal energy
strategy.

Through evaluation of smart street lighting as one appli-
cation of realistic one-dimensional IoT network, we can
verify that the equivalent-hop mechanism and correspond-
ing node relay scheme can present an efficient way to
save the energy and prolong network lifetime, for the
multi-hop WSN-based IoT both in simulation and real
testbed.

7 Conclusion

The energy consumption is a big concern in WSN because
of the limited energy supply per node. To achieve efficient
data relay and prolong network lifetime in multi-hop WSN-
based IoT, this paper focuses on the pursuit of optimal trans-
mission energy strategy. Theoretic results about calculation
of optimal energy strategy are given in ideal large-scale
WSN. After that, a modified calculation of this optimality
for practical small-scale network is demonstrated with the
help of equivalent nodes. Finally, the ENS PD algorithm is
designed to select relay node and choose optimal energy
strategy to prolong the lifetime of whole network. Extensive
simulation and real testbed results show that our models and
algorithms can minimize energy consumption while guaran-
tee the quality of communication in comparison with other
methods

This work mainly studies one-dimensional queuing
model for one kind of IoT applications, e.g. street lighting,
electrified railway, and product line. In the near future, we
will extend the concept of equivalent node to other more

universal and higher dimensional models. Corresponding
optimal energy strategies are also needed to be readdressed
for other practical queuing model of WSN-based IoT appli-
cations, such as inventory tracking, health care, home
appliances, smart grids, etc.
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