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Abstract We present the design, implementation and eval-
uation of MobiSens, a versatile mobile sensing platform for
a variety of real-life mobile sensing applications. MobiSens
addresses common requirements of mobile sensing applica-
tions on power optimization, activity segmentation, recog-
nition and annotation, interaction between mobile client
and server, motivating users to provide activity labels with
convenience and privacy concerns. After releasing three ver-
sions of MobiSens to the Android Market with evolving UI
and increased functionalities, we have collected 13,993 h
of data from 310 users over five months. We evaluate and
compare the user experience and the sensing efficiency in
each release. We show that the average number of activ-
ities annotated by a user increases from 0.6 to 6. This
result indicates the activity auto-segmentation/recognition
feature and certain UI design changes significantly improve
the user experience and motivate users to use MobiSens
more actively. Based on the MobiSens platform, we have
developed a range of mobile sensing applications includ-
ing Mobile Lifelogger, SensCare for assisted living, Ground
Reporting for soldiers to share their positions and actions
horizontally and vertically, and CMU SenSec, a behavior-
driven mobile Security system.
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1 Introduction

Today’s smart phones come equipped with a rich range of
sensors including GPS, accelerometers, WiFi, Bluetooth,
NFC, microphone etc. Combined, this contextual informa-
tion can tell us a great deal about a user’s current activity:
what is the user doing at which location and for how long.
When logged, this data can provide important information
about the user’s behavior patterns. Caregivers can design
effective and personalized plans to improve the user’s health
and well-beings. If we aggregate this kind of information
across thousands of volunteers in a city, it can also tell us
a great deal about that city, for example, average waiting
times for buses, commuting patterns using public trans-
portation systems, how public and private places are used,
and so on. This kind of data collection and analysis offers
a way to understand human behavior at large scale, which
can have positive impact in a number of domains, includ-
ing health care, traffic planning, urban design, and social
network analysis.

Smart phones are more affordable to most of the users
and are less intrusive compared to other sensing approaches
such as “Smart Home” [22, 26, 28] and wearable sensing
platforms [15, 20, 27]. They are easy to carry, free with sen-
sor deployment, and commonly accepted by many users.
Smart phones have built-in network connections for data
transmission and have large local storage to save sensor data
on-device. Smart phone operating systems such as iOS and
Android support device independent hardware/OS resource
abstraction which make it much easier for developers
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to write applications for different devices as compared to
developing applications for device-specific embedded sys-
tems. Given these merits of smart phones, we consider smart
phones ideal sensing platforms for human behavior/social
research.

In this paper, we present MobiSens, a full-blown mobile
sensing platform designed for a range of real-world mobile
sensing applications using novel algorithms and user inter-
face. MobiSens addresses common challenges in mobile
sensing including robust sensor data sampling, power opti-
mization, indexing and understanding the sensor time-series
and interaction with users.

After releasing MobiSens on Android Market for five
months, we have collected 13,993 h of sensor data submitted
from 310 users for the mobile lifelogger project. Several
other research projects have been using MobiSens platform
to collect users’ data to develop behavior-based anomaly de-
tection [33], future activity prediction [19] and remote elderly
care [30] and behavior-driven passive authentication [32].

The rest of the paper is organized as below. In Section 2,
we describe several mobile sensing applications of different
kind and discuss their common requirements. We analyze
the challenges in mobile sensing (Section 3) and present the
design of the MobiSens platform in Section 4. In Section 6,
key features of the MobiSens platform are evaluated. We
conclude the paper in Section 8 after reviewing related work
in Section 7.

2 Mobile sensing applications

Table 1 shows a list of mobile sensing applications we
have developed based on the MobiSens platform. These
applications differ in their functions yet share common
requirements.

2.1 Lifelogger

CMU’s mobile lifelogging system [5] constantly records
sensor readings from the mobile phone users carry at all time

to “log” a user’s daily life. Sensor data is uploaded to
the lifelogger server, where information is indexed and
processed so that the user can browse, search and summa-
rize his/her daily activities from the web. On the mobile
side, activities are automatically segmented so that users
can annotate the segmented activities. We also developed a
lightweight adaptive activity recognition algorithm running
on the mobile device to label segmented activities.

A key challenge in developing a real-world mobile lifel-
ogging system is that we can not foresee activities users
need to log their lives. Instead of several predefined low-
level activities such “sitting”, “walking” and “running”,
users have a wild range of activities that they may find use-
ful to their lifelogs. For example, a user might want to find
information from his/her lifelog such as “How much time
did I spend on grocery shopping last month?” and “Where
did I park my car in the garage 5 days ago at the airport?”
To answer these questions, lifelogging systems need to be
able to learn and recognize user-defined activities based on
(usually) very few labeled instances as training data. We
developed a novel adaptive activity recognition algorithm in
MobiSens to incrementally train activity recognition models
through online learning.

On the server side, sensor data is further processed with
computationally intense algorithms including the hierarchi-
cal activity segmentation and hierarchical activity recogni-
tion. Figure 1 shows an example of a user’s lifelog. For that
particular day, this user drove from home to a small airport
and took a 30 min discovery flying lesson and then drove to
work. The Lifelogger service applies the hierarchical seg-
mentation on the time-series sensor data and creates a nested
calendar view. The activity labels are either from automatic
activity recognition such as “driving”, or annotated by the
user, such as “Flying”.

When the user clicks on the sub-event of “Flying”
(10:37–11:08, marked as ∗ in the figure), the map displays
the corresponding GPS-trace. The “Flying” event is fur-
ther segmented into 1: “taxing”, 2: “ascending leg” and 3:
“descending leg” which the user can click on to review
(Fig. 2).

Table 1 Characteristics of different mobile sensing applications

Application Server Storing raw Activity Activity Msg. from

connection sensor data annot./recog. sharing server

Lifelogger Yes Yes Yes No No

Senior care Yes Yes Yes Yes Yes

Mental health Yes No Yes No Yes

Ground reporting Yes Yes Yes Yes No

Behavior-driven security No No No No No

Social sensing Yes No Yes No No
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Fig. 1 The web interface of the CMU lifelogger system. Shown here
is an example of a user’s one day event of “driving from home to
a small airport and taking discovery flying lesson and then drive to
work.” The whole event is segmented by an unsupervised activity seg-
mentation algorithm into a nested calendar tree shown in the right.

Annotations of the segmented activities are added by the automatic
activity recognizer trained from user’s previous annotated activities.
Users can correct the automatic activity recognition label and provide
labels to those unknown to the system. Figure 2 shows three examples
when the user clicks on one of the sub-activities in the event

2.2 Senior care through mobile sensing

In 2008, the first wave of baby-boomers have reached their
retirement age. Increasing number of seniors choose to
age-in-place by living in their own homes with caregivers
visiting them on a regular basis. The SensCare system [30]
uses smart phones carried by the elderly to sense their
activities and (1) to detect anomaly such as accidental falls
or getting lost due to Alzheimer disease. When such an
anomaly is detected, the system will notify the caregivers
or family members for prompt response; (2) to display the
current and past activities of the elderly so that authorized
users such as caregivers and remote family members are
informed on what the elderly is doing; and (3) to generate
activity summary of the elderly for doctors to diagnosis the
health/well-being issues.

2.3 Mental health monitor and intervention

The 2005 National Co-morbidity Survey-Replication study
reports that lifetime prevalence estimates for mood disorders

is around 20.8 % in the population aged 18 or older; includ-
ing, but not limited to, major depression and dysthymia
[14]. In particular, an estimated 300,000 veterans among the
nearly 1.7 million who have served in Iraq and Afghanistan
are battling depression or post-traumatic stress disorder.
More than half of these people, are slipping through the
cracks in the bureaucratic system, going without necessary
treatment according to the study by RAND [1]. One of the
main drawbacks in the current psychiatric clinic practice is
that doctors’ diagnoses are based on the interview during the
patient’s office visit. Mental issues, however, require con-
stantly monitoring to understand their causes and to predict
potential high risk of episodes. With the constant sensing
capabilities provided by mobile phones, we are developing
a mobile system that constantly monitors the user’s activi-
ties and his/her behavior to predict the risk of psychological
disorder. Working with the doctors, the system can also
intervene the user’s behavior by sending messages to user’s
mobile device with suggestions such as “please consider go
take a walk with your family instead of going to the bar
tonight.”
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Fig. 2 When the user clicks on
the subevent “Flying[10:37–
11:08]” (*) which corresponds
to the activity when the user got
on the airplane, the geo-trace is
updated on the map. The
“flying” event is further
segmented into three sub-events:
(1) “Taxing to take off [10:37]”.
(2) “Ascending leg [10:45]”; and
(3) “Descending leg [10:56]”
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2.4 Ground reporting

In battle fields and similarly fire fighting scenes, police
raids and disaster response efforts, soldiers, firefighters,
policemen and rescuers more or less battle in the fog
without knowing their colleagues’ locations and activities.
Though modern communication and collaboration tech-
nologies allow the team members to talk to each other and
even collaborate on a common operating map, the cogni-
tive load required for them to concentrate on their tasks
usually prohibits them to report their positions and current
activities. The ground reporting system uses mobile sensing
techniques to detect the user’s current position and activity
and share the information horizontally to his team members
and vertically to the commander. Logged information of the
mission can later be used for debriefing after the mission is
over and for work-related knowledge extraction to transfer
field experience to others.

2.5 Behavior-driven mobile security

Most users carry their mobile phones at all time. With
mobile phones sensing their locations and activities, we can
build the user’s behavior model which captures the regular-
ity of a user’s behavior. Similar to biometrics, such behavior
model is user-dependent and can be used as a passive
authentication method. In our past work, we build a user’s
mobility model from her outdoor GPS-trace [4], indoor Wi-
Fi trace [33] or gripping pattern [32]. We investigated and
evaluated a number of inexpensive and easily acquired pas-
sive factors, rigorously examined how well these factors
differentiate between people including for example motion,
location, running applications, etc. We developed methods
for fusing these passive factors and model people’s behavior

in a manner that is effective, robust, and reliable. Our exper-
iments show that this mobile security system can archive
70∼80 % accuracy in user identification using the pas-
sive sensors on the mobile device with only a few days of
training data.

We also observed that different applications on a mobile
device may have different sensitivities towards the threats
due to loss or being stolen. One-thing-for-all approach in
authentication schemes may be either too loose for some
applications, which expose them to risks, or too tight for
others, which causes usability problems. Using the sen-
sory data collected on the mobile device, we can build
user behavior models to reflect the contexts under which
the mobile device is used, including motion, location, run-
ning applications, etc. From these contexts, the device can
calculate certainty score that the system is at risk. A secu-
rity application on the mobile device constantly monitors
the certainty score and compares it with the sensitivity
levels for different mobile applications. Once the system
is deemed “uncertain” for the mobile application’s “sen-
sitivity”, SenSec activates different active authentication
mechanisms such as password verification, face recogni-
tion, voice recognition or finger print scanning to verify
user’s identity before an application is executed.

2.6 Social sensing

If we can aggregate the mobile sensing information across
thousands of participants in a city, we can infer the behav-
ior of that city, for example, where do people live and work,
how they commute from home to work, average time spent
waiting for buses, how public and private places are used,
what residents typically do, and so on. This kind of data
collection and analysis offers ways to understand human

Fig. 3 The aggregated check-in “heat map” of Silicon Valley. The left
hand side figure shows the population of southern bay area in working
hours while the right hand side figure shows the population of the same

area after work. Red circles highlighted the residential regions (places
with small population during working hours but larger population after
working hours)
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behavior at large scale, which can have positive impact in a
number of domains, including health care, traffic planning,
urban design, and social network analysis.

For social sensing, we do not need the raw sensor infor-
mation from each individual user. The aggregated infor-
mation (e.g., Fig. 3) such as the accumulated geo-trace
n-gram frequency suffices as sufficient statistics to infer
people’s social behavior. Activity recognitions and annota-
tions provided by users are also helpful to the social sensing
application because it is impossible for system developers
to foresee all activities that would be of interest to the user
and the social sensing problem such as “shopping at Target”
and “take kid to baseball practice.”

3 Challenges in mobile sensing

Though collecting sensor information may sound trivial,
developing a reliable mobile sensing platform that can be
used for various mobile sensing applications in real world
settings is challenging:

– Low-level activity recognition vs. high-level activity
understanding. The majority of the existing activity
recognition work is to train classifiers to recognize
primitive human activities such as “walking”, “run-
ning” or “sleeping” whereas in social sensing we are
more interested in high-level activities such as “grocery
shopping” or “pick up kids from school”.

– Ad-hoc vs. generalized approaches. Training a classi-
fier to recognize predefined activities from pre-selected
sensors in an ad-hoc fashion limits the flexibility of the
sensing platform. The fundamental problem with the
ad-hoc approach is that data representation of the sen-
sor data and processing algorithms are entangled. We
envision that by separating the data representation from
processing algorithms, mobile sensing can become a
more generalized framework on top of which sensing
applications can be developed.

– Lacking of labeled data. For some mobile applications
such as anomaly detection, there is no need to annotate
the recognized activities with meaningful labels such
as “walk in the park” or “shopping”. For many other
applications such as mental health monitoring, however,
we do need meaningful labels to interpret the sensed
results. These applications do require training data with
annotation. Annotating sensory data is time consum-
ing and tedious and humans are not good at recalling
what happened to them if no other contextual informa-
tion is provided in parallel. Certain incentives need to be
provided to motivate users to annotate their activities.

– Sensibility of mobile sensors. The sensors available
on smart phones may not have enough information to

differentiate activities such as “driving” vs. “in a car
as passenger”. The sensibility of mobile sensors also
depend on the positions where phones are stowed, e.g.,
phones in hand bags vs. in pockets or mounted on arms
show different sensitivities to human activities.

– Uncontrolled data collection process. When
deployed, we have very limited control on how the
system is used by real users. One such example is the
mounting position of the mobile device. In controlled
environment like laboratories, we can ask all partici-
pants to stow mobile phones in their pockets where as in
real life a mobile phone can be placed at any positions:
pocket, handbag, held in hand or laid on table.

– Privacy. As mobile sensing collects a lot of data from
the user, privacy is a legitimate concern. In some situ-
ations such as in senior care, users may sacrifice some
degree of privacy for the benefits of being monitored
constantly. To general public, however, a mobile sens-
ing system without convincing privacy protection will
not be popular among users.

– Power consumption. If all sensors are turned on, the
battery of a typical smart phone can be drained in just
a few hours, mainly due to the high frequency of CPU
being activated to sample sensors. Such short battery
life will drive all users away from using the mobile sens-
ing applications. Due to our experience, we can reduce
the sampling rate of certain sensors to achieve power
saving when they are not a significant data modality
for the current activity. For example, if we found a user
staying in one location for a certain period of time, we
can slow down the GPS sampling rate or even turn GPS
off. We can rely on other more power efficient sen-
sors like accelerometer and WIFI to detect the possible
activity change and reboot the GPS sampling.

– Non-disturbance and robustness. The mobile sensing
application should run quietly in the background and
does not affect users’ normal usage of the phone function.
It should also be robust to handle different situations such
as no data connection, low storage space, phone rebooting
etc. without affecting phone’s normal operation.

4 MobiSens platform

The MobiSens platform is a client/server system consisting
of two major components: an Android mobile Application
and a two-tier back-end system. Figure 4 illustrates the
system architecture.

4.1 Mobile client framework

The MobiSens mobile client has four components: Data
Widgets, Data Aggregator, Device Controller and Activity
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Fig. 4 MobiSens mobile application and back-end system architec-
ture. MobiSens is a client/server system with Android App as client
and two-tier server systems. Mobile client collects various sensor data
from users’ phones, apply activity segmentation, lightweight adaptive
activity recognition and directly interacts with the user. Sensor data

is uploaded to the MobiSens server to index and process the sen-
sor data using heavy-weight algorithms. Second-tier (application and
service) servers use information processed by MobiSens server to pro-
vide application specific services such as lifelogging, senior care and
ground reporting etc

Recognition Module. The client is designed as data-centric
and message-driven, i.e., components are both message
receivers and broadcasters. They register as listeners of a
certain set of messages and then process data passed with
these messages and broadcast the processing result as new
messages.

4.1.1 Data widgets

In MobiSens, we consider all information sources as
“sensors”. Sensors include “hardware sensors” such as
accelerometers and GPS, and “soft sensors” such as time,
date, calendar, phone charging status, ringtone settings etc.
Data Widgets are collectors of sensory data. Data Wid-
gets collect raw sensor readings (Table 2) and broadcast the
information to data consumer components using Android’s
inter process communication mechanism (IPC) if the sensor
sampling rate is low or using RAM directly for high-
frequency sensors such as the accelerometer, magnetometer
and gyroscope.

4.1.2 Data aggregator

Mobile devices are not always connected to the Internet. We
can not stream the sampled sensor data to the MobiSens
Backend at all time. MobiSens first stores all the data locally
and upload them once the network connection is available

Table 2 Examples of sensor data collected by MobiSens client

Sensors Information sensed

3-axis accelerometer Motion

Magnetometer Azimuth value of heading direction

GPS coordinates Outdoor locations and trace

Rotation matrix Orientation of the phone

Ambient light level Lighting level

Shuffled sound recording Environmental acoustic features

Charging state Whether the phone is being charged or not

Temperature sensor Environment temperature

WiFi RSS Indoor location and WiFi provider

Nearby bluetooth IDs Whether the user is in a crowded place

Battery level Power consumption of the device

Process list Which application/service is running

Network stats Network traffic to/from applications

All these sensory data are recorded with time-stamps. For rotation
matrix, we used Motorola Droids which do not have gyroscope
sensors. The orientation of the phone is estimated by the Android
SDK based on the accelerometer readings and the gravity g-value

and the phone is being charged. Two components on the
client side manage the data storage and upload process:

– Data Aggregator: a local data storage manager. Data
Aggregator receives all raw readings from different
Data Widgets and saves them to multiple files. It also
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pushes the raw data file queue to Data Uploader and noti-
fies the Uploader which files are ready to be uploaded.

– Data Uploader uploads and removes the uploaded file
to free local storage space for incoming sensor data.

4.1.3 Sensing profile pulling

There are hundreds of parameters controlling the mobile
client’s behavior. For example, the sampling interval and
sampling rates of each sensor impact the sensitivity of
the activity recognition and the battery life of the whole
system. Different mobile sensing applications and differ-
ent mobile devices require different sensing profile. For
instance, mobile lifelogging systems need to run at least
12 h without charging for users who leave home in the morn-
ing and come back from work in the late afternoon. For
behavior-driven security system (Section 2.5) using user’s
gripping pattern, the sensing only needs to be activated for
a few seconds after the screen is unlocked.

On the other hand, different Android devices have differ-
ent CPU frequencies (which significantly impact the power
consumption rates) and battery capacities, MobiSens clients
need to adjust their sampling profiles to ensure the desired
battery life on different devices. To avoid publishing new
versions of MobiSens on Android Market each time when
we want to adjust the client’s parameter settings, MobiSens
mobile client has a feature called profile pulling which
dynamically updates its configurations from the backend
server. As the core component of this functionality, Device
Controller periodically pulls configuration profile from the
backend MobiSens server, including list of sensors need to
be sampled, sensor sampling rate and sampling strategy,
data push interval, etc.

Client profile can be customized for individual devices
by specifying different configuration files. This allows the
system to adjust the sensing configuration for each user or
each type of devices if needed.

4.1.4 Activity recognition module

Activity Recognition Module monitors process events from
Data Aggregator and performs simple activity modeling
task, such as motion-based activity segmentation and recog-
nition. The recognized activities are shown on the mobile
client for the user to view and annotate. Details of activity
recognition is discussed in Section 5.

4.2 MobiSens backend and mobile sensing application
servers

The two-tier back-end server contains the first-tier MobiSens
Backend and the second-tier Mobile Sensing Application
servers. MobiSens Backend communicates with mobile

devices directly and provides three key functions: device
control, data storage and data access management.

MobiSens Backend receives the sensor feature data
pushed/uploaded from mobile devices and stores them in a
file system. The data can then be fed via MobiSens Data
Exchange API to Mobile Sensing Application servers to
derive and infer meanings for sensing applications, such
as lifelogger activity summarization and social behavior
aggregation. Results are pushed back to MobiSens Back-
end which can be accessed by mobile devices such as
for users to check their activity summary on their smart
phones.

Mobile Sensing Application Servers access data pro-
cessed by MobiSens Backend and provide high-level ser-
vices with new analytical components. The actual func-
tionalities of lifelogger service and social sensing etc. are
provided by these servers.

5 Activity segmentation, recognition & annotation

During the past half decade, much efforts have been devoted
to sensor-based human activity understanding. The majority
of activity understanding work is based on supervised learn-
ing [2, 6]. Supervised learning builds statistical models from
a large amount of labeled data and apply the model to clas-
sify unseen activities. In reality, labels for real-life human
activities are very difficult to obtain. Very few users have the
motivation to label their daily life at fine granularities with
starting/ending time and descriptions.

Most past research is done in lab-settings by recruiting
participants to “perform” some predefined activities such
as “walking”, “sitting” in order to create the labeled train-
ing data set. Such lab-setting supervised activity recognition
systems is not practical for real-life applications:

1. It is impossible to enumerate all possible activities that
are of interest to end users.

2. Supervised activity recognition can not answer struc-
tured questions such as “What costs me most of the time
this morning” or “How many hours did I spend on the
road to grocery stores last month?”

3. Activities are personal to users. One user’s activity of
“going to work” means “ driving 2 h from home to
work” while for another user it means “taking bus then
subway for 30 min” to office.

Observing all the problems described above, we propose
a different framework of learning, training and recognizing
users’ activities called adaptive activity recognition to make
activity recognition practical for real mobile sensing appli-
cations. Adaptive activity recognition builds activity models
through online learning and incorporates users’ input and
feedback to adapt the model over time.
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As shown in Fig. 5, adaptive activity recognition works
as the following:

1. Heterogeneous sensors data are sampled from mobile
sensors.

2. Applying the unsupervised activity segmentation algo-
rithm on the sensor streams to chop the data into activity
segments.

3. Users see their activities segmented and recognized on
the mobile device. They can correct activity labels if
they are wrongly recognized by the system.

4. Newly labeled activities from user are used by the sys-
tem to (1) update the known activity database and (2)
adjust the modality weights for each activity type for
more effective sensor fusion in the future.

The following subsections describe the unsupervised
activity segmentation algorithm and the adaptive activity
recognition based on our early work [30].

5.1 Unsupervised activity segmentation based on motion

Activity segments are the basis units to train activity recog-
nition models. MobiSens first segment the sensor time-
series into a sequence of activities in a unsupervised manner
without any prior knowledge of users’ activities, The auto-
matically generated activity segments reduce the cognitive
load of users as it is very challenging for a user to remem-
ber the start and end time of an activity but relatively easy
to recall what they did during a time interval.

MobiSens uses motion information for activity seg-
mentation. Intuitively, when one changes his/her activities,
motion usually changes [16]. Motion is also the most distin-
guishing modality for most of the human activities. Table 3
shows the activity recognition accuracies using single-
modality. Using motion-only information, we can achieve
72 %, much higher than other modalities such as location
(GPS) (Table 4).

MobiSens’ activity segmentation algorithm operates on
the motion sensor (accelerometers) time-series.

Fig. 5 The input–output flow of adaptive activity recognition. The
system starts with no training data and learning everything incremen-
tally based on users’ annotation and feedback

Table 3 Sensors and their sampling rate used for the single-sensor
classification experiment

Sensor Sampling rate

Accelerometer, ambient light 20 Hz

GPS, speed Every 2 min

5.2 Behavior text representation

Similar to the approach used by Bao et al. [2], we apply a
sliding window (width = 24 samples, step size = 6 sam-
ples) over the accelerometer time-series and extract motion
features from each window to represent the motion char-
acteristics at each time. With the sampling rate at 4 Hz,
each window corresponds to 6 seconds. We extract 6 fea-
tures from each window including the mean and standard
deviation of each of the three axises of accelerometers.
During the offline training process, motion feature vectors
from many users’ data are clustered into V classes using K-
Means clustering. During the runtime, we map an incoming
motion feature vector to its closest class and use the class
label to represent this motion feature vector for the follow
up process. The input accelerometer reading stream is thus
converted to a sequence of cluster labels which we refer as
“behavior text” in later sections.

Needless to say, such clustering and quantization pro-
cess loses information and precision compared to using the
raw motion feature vectors. The benefit of discretizing fea-
ture vectors to a symbol is the convenience to model the
sequential and structural patterns in the motion time-series.

Number of clusters V is the vocabulary size of the
behavior text. The selection of V affects the overall system
performance. If V is too small, quantization loses too much
information which decreases the segmentation accuracy. If
V is too large, the symbolic representation loses generaliza-
tion and it is difficult to capture the patterns in activities.
Also, the quantization process needs more computation to
calculate the distance between the input feature vector with
each of the V centroids and drains the battery fast. In a work-
ing system, V needs to be manually optimized based on the

Table 4 Activity classification accuracy using single sensor modality

Data modality Accuracy

Accelerometer (motion) 0.72

GPS (location) 0.41

Speed 0.32

Light 0.17

J48 decision tree is used in this example. Motion is the most
informative single sensor in this experiment
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system requirements, i.e. the minimum granularity of activ-
ity and battery life. In our experiments, we set V = 200
which can balance the power consumption and segmenta-
tion accuracy. The detail of parameter selection is discussed
in Section 6.3.

5.3 Change of activities

When a user changes his/her activity at time t, there should
be a significant change from behavior text string [t −w, t −
1] to string [t, t + w]. Here w is the window size that con-
trols the granularity of detected activities. We refer w as
segmentation window size.

To compare the similarity between two behavior strings,
we use the classic Vector Space Model (VSM) [24]. Each
behavior string is represented by a vector over the whole
vocabulary b = (b1, b2, . . . , bi, . . . , bV ) where bi is the
weight of word i (term-weight) in documents. Here we want
to partially model the temporal patterns between symbols.
In addition to words, we also consider consecutive words (n-
grams) in the string. Each behavior string is then represented
as a vector in the n-gram space and bi is the normalized
frequency over 1-gram, 2-gram and up to N-gram.

The similarity of two behavior text vectors b, q is calcu-
lated by their cosine distance:

S(b, q) = b · q
||b||||q|| (1)

where S(b, q) (Eq. 1) is the n-gram similarity between
string B and Q. The lower the value of S(b, q), the more
likely the user changes his/her activity in [t − w, t + w]. A
threshold � was defined to determine the activity change.
For single level segmentation on the smartphone, we empir-
ically set � = 0.8.

5.4 Hierarchical activity segmentation

An advantage of using this activity segmentation framework
is that the window size w can be used to control the granu-
larity of segmented activities. Since the length of activities
varies in real life, we can use different window sizes to
generate hierarchical activity segmentation: After getting
the segmentations in level one with a large segmentation
window size, a smaller window will be used to identify fine-
grain activities recursively on each of the generated segment
(Fig. 6). The hierarchical activity segmentation will enable
the user to view and annotate activities in different granular-
ities, he/she can “zoom” in or out to change the granularity
of activities.

In our experiment, we implemented a four level hier-
archical activity segmentation using segmentation window
sizes of 30, 20, 10 and 5 min.

Level 1 }
Level 2 }
Level 3 }
Fig. 6 An example of 3-level top-down hierarchical activity segmen-
tation with w1 = 20 min, w1 = 10 min and w1 = 5 min

We discover that the activity change “peaks” (similar-
ity lower than average) identified by larger segmentation
windows are also peaks identified by smaller segmentation
windows but not vice versa; and activity changes over larger
windows are smoother than smaller windows so setting one
threshold for all levels is not a good approach. Instead of
setting a hard threshold, we obtain threshold Tl for level l
dynamically using the following equation:

�l = 0.9 · (max({S}) − min({S})) + min({S}) (2)

where {S} are the similarities obtain from two neighboring
segmentation windows of level l.

5.5 User activity annotation

One of the key challenges with smartphone-based mobile
sensing is how to motivate the user to provide annotations of
their activities. The traditional experiment method utilizes
video and audio to help subjects or researchers recall the
captured activities and label event boundaries. This method
not only requires extra devices and power to store the
video/audio and also relies heavily on human effort which
raises many practical issues when sensing applications are
targeted at real world users.

In our study, we found that besides incentives such
as micro payment, cognitive load and user-interfaces are
critical to users’ involvement and participation. We have
explored different approaches and will discuss them in the
following sections.

5.5.1 Activity annotation through self-report

Our first attempt for scalable activity annotation is based
on a naive self-report approach (Fig. 7). In the self-report
experiment, MobiSens App pops up a text box for user to
input activity name, and a time picker to select the starting
and ending time of the activity. There is also menu to record
a short video, in case the user choose to annotate the activity
in the future and will use video/audio to help them to recall
what has happened then.
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Fig. 7 UI and design evolution. From left to right: (1) The self-report interface of release I. (2) Activity detection & summarize in Release II. (3)
Activity annotation, the map was used to help users to recall the activity

We had hoped the self-reporting scheme can scale to
make MobiSens a practical mobile sensing platform. After
the release on Android Market, 6 people installed the appli-
cation and uploaded data in the first week. Five of them
provided 21 labels in total, which is 0.6 labels per-person-
per-day. None of these users provided any short video for
their captured activity which indicates that using video and
audio recording as a way to provide annotation or annotation
reminder is not practical for large-scale social sensing.

We analyzed the boundaries and the submitting time of
each annotation. Although the data set is small with only
21 labeled activities, the result still shows some interesting
trends. We found that 71 % (15 out of 21) of the annotations
were done while the labeled event was actually happening,
such as “Working before computer”, “Meeting with boss”,
“Shopping at Target” etc. 29 % of the activities (6 out of
21) were labeled shortly after they had ended, for exam-
ple, “Driving”, “Having lunch with friends”. Some activities
were always annotated later, like “Driving”. To our surprise,
none of the activities were labeled before the user actually
started executing the activity.

We also studied the nature of annotated activities. All
of the labels contain verbs, e.g., “Walking”, “Meeting”.
Four labels (19 %) mentioned the activities’ location as
well as the action: “Walking around house”, “Shopping at

Target”, “Shopping at grocery store” and “Driving to
office”. Though we though there would be location-only
labels such as “at home”, none of the submitted annotations
are location-only.

Another interesting finding is that users seldom annotate
the same activity more than once. Only 4 out of 21 labels
are duplicate labels. Most of them were activities that last
for more than 30 min, like “Meeting” and “Working before
computer”. We hypothesize that users have the perception
that the system should be intelligent enough to learn from
the first annotation. One user’s feedback is that: “I have
told the system already when I was walking, why do I have
to teach the system again? Isn’t it suppose to learn that
already?”

Based on the analysis from the self-report experiment,
we believe that people are good at reporting what they are
doing rather than recalling what they did. On the other hand,
location information was used by people to describe some
activities which means the social sensing systems do need
to incorporate the location information for automatic activ-
ity recognition. The third information delivered is that our
data collection platform should be “smart” enough to recog-
nize similar activities. Users will lose their interests in the
application if it keeps asking them to label the same thing
again.
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5.5.2 Activity annotation after motion-based automatic
activity segmentation

Learning from the previous experiment, we designed a
motion-based activity segmentation on the mobile client.
Activity segmentation first segments the incoming data to
activities based on the change of motion and tries to recog-
nize the segmented activity based on learned activity model.
Users can choose to annotate the unlabeled activities on the
mobile device. Since segmented activities already contain
the starting/ending time and the corresponding geo-trace
displayed on a map, users’ cognitive load is much lower
compared to the pure self-report approach described in the
previous section.

Based on our previous work in [5], we develop an online
unsupervised activity segmentation and activity recognition
system on MobiSens App. Through unsupervised activity
segmentation, MobiSens detects the boundaries of activities
automatically based on the value of “activity change” esti-
mated at all times. For each identified activities, MobiSens
uses k-Nearest-Neighbor algorithm to check if it is “simi-
lar” to one of the annotated activities and label it with the
proper activity name. If the activity is not similar to any
known activities that have been annotated by the user so far,
it will be labeled as “unknown activity”. If the user is inter-
ested in providing a label to this activity, she can do so by
replacing the label with a meaningful name. In addition with
providing the chronicle boundary of activities as reference,
we also provide the user a UI with GPS trajectory. When the
user selects an activity segmentation, the map will show the
locations that the user have been to in that period.

After the sensor stream is segmented automatically,
the average number of activity labels provided by a user
increases from 0.6 (self-reporting system) to 5 per day. This
supports the intuition that once the activity is segmented, it
is much easier for users to recall what they did during a time
interval as compared to asking a user to recall both starting
and ending time and their activities.

Figure 7(2) illustrates the UI of Release II of activity
annotation based on segmentation.

5.6 Activity-aware power consumption optimization

We studied the power consumption by applying flat sam-
pling rates on different sensors. We examined the battery
life under three sensing configurations. All these settings
are tested on a phone that doesn’t have a phone/data plan
to minimize the power consumed by other phone and appli-
cation usage. The first configuration has only accelerom-
eter sensors turned on; the second configuration has both
accelerometer and WiFi scanning turned on; the third con-
figuration turns on all sensors including GPS, WiFi and
accelerometer.

Fig. 8 Sampling intervals of dynamic sampling algorithm vs. flat rate
algorithm. Numbers on horizontal axe are the index of collected GPS
data points. The area under the curve is the total time corresponding to
the number of GPS data points recorded

Experiments show that the phone can only work for
roughly 25 h without charging if all sensors were turned on.
After turning off GPS scanning, the battery can last for 60 h.
If the WiFi scan is turned off as well (WiFi scans at the same
rate as GPS in our experiment), the battery can last for more
than 80 h1.

Power consumption is particularly critical for GPS sen-
sors on mobile sensing platform. Using a high flat request
rate for GPS will drain the battery fast. However, if we lower
the GPS sampling rate to too low, we might lose user’s loca-
tion change information between the gap of two samples.
If the user goes out and back to the original place within a
sampling cycle, the location change won’t be recorded. We
call this “Sampling Gap”.

We developed an activity-aware dynamic GPS sampling
scheme based on two major observations: (1) When the user
is not moving, we should reduce the sampling rate or even
turn the GPS off. (2) When the user transits from stable to
moving, his/her motion usually changes. For example, it’s
impossible to switch from activity “Working in Office” to
“Driving Home” without any motion changes. So we can
leverage the activity change detection feature to reboot the
GPS sampling cycle.

The GPS sampling scheme works as follows: The algo-
rithm starts with a sampling seed interval (2 min in our
experiment). If the system detects the user is not moving,
the sampling interval will be doubled in each cycle until it
reaching a predefined ceiling, then the GPS will be turned
off.

When the Activity Detection Widget discovered an
motion change and the sampling rate is smaller than the
seed value, MobiSens will reset the GPS sampling rate to
its initial value. Figure 8 illustrates the dynamic sampling
scheme.

1The data reported are based on the average performance of three
Motorola Droid “Milestone” used in our experiment, the performance
may vary between phones from different manufacturers.
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The experiment result shows that dynamic GPS sam-
pling rate saves 25–40 % power comparing to the flat rate
solution.

6 Experiments and evaluation

6.1 Experiments setup

The MobiSens mobile client runs on a Motorola Droid.
Table 5 shows sensors used and their sampling rates.
Although video and audio data could help, we decided not
to use them in MobiSens for three reasons. First of all, the
media stream will create a large data storage and trans-
mission overhead, which greatly reduces the battery life.
Another reason is privacy concerns, especially for record-
ing video. In addition, we realized that capturing video on
Android requires the application stays on foreground, which
will prevent the user using other functionalities of the phone.

We collected 36 h of real life data in 5 continue weekdays
from two graduate students to verify and analyze the system.
The data collection process lasts about 7 h each day. Table 6
summarizes activities done by the user.

Users carried two phones during the data collection stage
(Fig. 9). One was tied to the user’s right arm and another
phone was used in the normal way: most of the time the
phone was in user’s pocket and from time to time the user
took it out to make phone calls or check emails.

By the end of each day, the user will use the web interface
to annotate his activities during the day in two settings:

– Without looking at the unsupervised segmentation, the
user listens to the recorded audio and creates from
scratch his daily activity summary on the calendar. This
segmentation/annotation is used as the ground truth in
our experiments.

– Based on the unsupervised segmentation (start-
ing/ending time information) and activity clustering
(cluster similar activities and visualize using the same
color) label segmented activities.

The goal of the experiments is to evaluate (1) whether the
automatic activity segmentation matches the ground truth,

Table 5 Sensors on the mobile client and their sampling rate

Sensor Sampling rate

Accelerometer, magnetometer

Ambient light, temperature 20 Hz (every 50 ms)

Microphone 8 KHz

Camera

GPS, WiFi Every 2 min

Table 6 Activity instance count and their average time

Activity Instance Avg. time per instance

count (minutes)

Walk 7 50.29

Working on computer 15 66.07

Cooking 4 19.75

Eating 9 20.78

Washing dishes 2 4.5

Cycling 2 21.5

Video gaming 2 47.5

Presentation 2 29

Having class 2 79

Meeting 2 69.5

Talking to somebody 5 15

Driving 3 8.67

Printing paperwork 1 44

and (2) whether the similar activity coloring helps the user
to recall what has happened before.

The power consumption tests are conducted by running
real time activity segmentation algorithm on a phone mul-
tiple times with different configurations. To isolate power
consumption from other factors, the phone functions are
turned off (i.e., no connections to cell towers) and the user
does not use any other applications on the phone (no web
browsing, no emails etc). At the beginning of each test-
ing run, the phone is fully charged. Each test runs lasts for
24 h and we report the percentage of power consumed by
MobiSens.

6.2 Evaluation metric

We evaluate the accuracy of the activity segmentation and
recognition by calculating the F1-Score of user’s annotation
with the ground truth (Fig. 10).

Each identified activity in system’s annotation A is a
triple of < s, e, l > where s is the starting time of the activ-
ity, e is the ending time and l is the label of the activity such
as “walking”. Similarly, we can represent each activity in
the ground truth G also as a triple of < s, e, l >.

For each activity A in the system’s annotation, if there
exists a ground truth activity G such that Al = Gl , i.e.,
the two activities have the same label, and As = Gs ± �,
Ae = Ge ± � where two activities have roughly the same
starting time and ending time within the allowed margin
�, then we consider A matches the ground truth activity
G and is a true positive (Fig. 11). With the precision and
recall value calculated for each activity type, we can esti-
mate the harmonic mean and report the F1 score. High F1
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Fig. 9 Two mounting positions
of phones in experiments:
stowed in pocket (left) and
mounted on upper arm (right)

scores indicate the system’s segmentation/label matches the
ground truth.

6.3 Impact of vocabulary size V and N-gram size

Table 7 shows the system performance with different vocab-
ulary size.

Overall, recognition accuracies increase when V
increases. It reaches the max when V is 200 and then drops
slightly when V = 300. It could be that when V is too large,
the system loses generalization and the trained activity
recognition model over fits the training data.

The power consumption increases significantly when V
increases. Because larger V requires more computation and
CPU is one of the major sources that consumes power.

By fixing V = 200, we test different size of N (1, 2,
3, 4) for n-grams. Table 8 shows that when N reaches 3,
activity recognition performance do not improve any more.
The power consumption doesn’t seem to have very sig-
nificant change because the additional computation needed
with larger N is trivial compared to the increase of V.

6.4 Impact of phone position in activity recognition

We run experiments to study whether the mounting position
of the phone has any impact on the activity recognition accu-
racy. As shown in Fig. 9, participants carry two phones at the
same time, one in the pants pocket and another one mounted
on the upper arm. Figure 10 shows the recognition accuracy
of different activities with two mounting positions. Overall,
that system performs better when the phone is attached to
users upper arm. For activities where motion comes mainly

from hand movements, l(e.g., “cooking” and “working on
computer”), the upper-arm setting performances better. For
activities where motion comes mainly from legs, such as
“cycling” and “walking”, pocket position performs better
than the upper-arm setting. It makes sense because arms
are relatively stable while riding a bike yet legs are mov-
ing more frequently and regularly. For activity “walking”,
the motion patterns of upper arm are more similar to other
activities whereas as the motion patterns of legs (pockets)
are more distinguishable.

6.5 Hierarchical activity segmentation vs. smoothed HMM

Hidden Markov Models (HMM) have been widely used
to model sequential data that have inherent structure as
state transitions. We compare activity segmentation using
the proposed hierarchical activity segmentation approach
in MobiSens with a smoothed single-layer Hidden Markov
Model (HMM). After training a single-layer HMM using the
EM algorithm over the unlabeled motion label sequence, we
apply the learned HMM on the testing data (also a sequence
of motion labels). During the decoding time, HMM finds the
state sequence that best explains the observed sensor stream.
For each input motion label, its corresponding HMM state
becomes an “activity label”. We apply a sliding window
over the activity label sequence and use the majority label
in window [t − w/2, t + w/2] as the label for position
t to smooth out noises. Segmentation is then done over
the “smoothed” activity label sequence to identify positions
where activities change.

The best configuration of HMM in our experiment has
10 states and the smoothing window size w = 800 which
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Fig. 10 F1 scores of activity
recognition accuracies for two
phone mounting positions: pants
pocket and upper arm. Activity
recognition uses only
accelerometers data. For pocket
settings, the average F1 score is
0.57. For upper-arm setting,
F1 = 0.56

corresponds to 6 min in time. Averaged over all activity
types, HMM performs worse than the hierarchical segmen-
tation approach (Fig. 12). In particular, HMM performs
badly on high-level activities such like “Having Class”,
“Meeting”, “Working on Computer” and “Presentation”.

These activities are usually composed by multiple low-level
activities and have multiple motion patterns. Single-layer
HMM models the lowest-level sensor readings and doesn’t
have the capability to merge these similar patterns to higher
level activities.
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Fig. 11 Ground truth labeled as G1 with three true annotations (A1–
A3) and four false annotations (A4–A7)

6.6 Data size and power consumption

With a polling rate of 4 Hz, MobiSens collects 2 MB sensor
data per hour, which is the major storage and power over-
head. The following chart shows the power consumed by
sensor (accelerometers, gyroscope and magnetometers) data
collection (includes writing to SD card), GPS (using activ-
ity aware power optimization algorithm) and wireless sensor
data upload (using WIFI). The experiment was done on a
Motorola Droid running Android 2.3.

As we can see, sensor data collection (includes writ-
ing SD card) and WIFI transmission makes up 65 % of
the MobiSens’ power consumption. After leveraging the
activity aware GPS sampling scheme, the power consumes
by GPS only takes 10 % of the total power consumed by
MobiSens. If we use a constant rate of 3 min per GPS
request, this number will grow to more than 50 %. The

Table 7 The impact of V to the system, in terms of power consump-
tion, overall recognition performance

V = 50 100 200 300

Recognition F1 0.33 0.45 0.57 0.49

Power (%) 41 45 51 63

N is set to 3 in these experiments

Table 8 The impact of n-gram size N to on power consumption and
activity recognition accuracy

N = 1 2 3 4

Recognition F1 0.51 0.51 0.57 0.55

Power (%) 48 48 49 51

computation overhead brought by activity segmentation and
recognition, as well as other system-wise power consump-
tion also make up 17 % of MobiSens’ power consumption
(Fig. 13).

This experiment indicates that we should reduce the wire-
less data transmission via the mobile device to lower power
consumption. For MobiSens, we transmit raw sensor data
to the server in order to keep all information for research
purposes. For real-world applications though, it is more
desireable to compress the sensor data before uploading or
only upload sufficient statistics to the server side.

6.7 User adoption

MobiSens is designed to actively involve real-life users to
participate in the sensing process. It provides not only an
interactive interface for them to label their activities, but
also an incentive system to motivate them doing so. There-
fore, the usability of such a system becomes an important
factor, which should be understood in order to guide system
design and evaluation.

We have released three versions of MobiSens to Android
Market. Each version contains one or two major aforemen-
tioned design improvements. Using data from randomly
selected MobiSens users, we evaluate how the changes
of UI design and activity segmentation/recognition algo-
rithm affects the average number of activities annotated and
shared by these users.

Our goal is to learn how the design and our activity
segmentation/recognition algorithm change the amount of
annotation shared by users. Instead of recruiting volunteers
for this testing. We decide to evaluate our system based
on those “random” users who download our application
from Android Market. We believe this can be a better
approximation of the real usage scenario of social sensing
platforms.

During the five months’ period, 310 users have down-
loaded and activated MobiSens. 13,993 h of data were
collected. There are 68 valid users who provided data in
more than two data upload cycles2, and 22 of them have
annotated and shared more than one activity.

2The upload cycle varies from 1 to 3 h during the whole experiment



76 Mobile Netw Appl (2013) 18:60–80

Fig. 12 The F-Score of user
annotation on hierarchical
activity segmentation result vs.
HMM, on right arm dataset,
motion only

Figure 14 shows the distribution of users by their data
contribution amount. There are 4 users who had contributed
more than 1,000 h of data. The number of users who con-
tributed data >100 h and ≤1,000 h, >10 h and ≤100 h, >1 h
and ≤10 h are 8, 26 and 30 respectively.

The average numbers of labels shared by each active user
per day are shown in Fig. 15. It is clear that the average num-
ber of annotated activities from users increases significantly
after the activity segmentation algorithm was integrated to
MobiSens.
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Fig. 13 The power consumed
by different
module/functionalities of
MobiSens mobile client.
“Sensor” are physical sensors
including accelerometers,
gyroscope and magnetometers
(digital compass). “System
Scan” is the scanning of running
applications in the system,
which consumes very little
power

Fig. 14 The user distribution by
their total data contribution time,
the number is not accumulated

Fig. 15 The average number of
activities shared by a user in one
day between three MobiSens
releases: (1) The naive self-
report approach; (2) Integrated
automatic activity segmentation
and recognition to MobiSens;
(3) After adding a map UI to
help users recall their activities



78 Mobile Netw Appl (2013) 18:60–80

7 Related work

7.1 Context-aware mobile systems

Several systems have been developed to collect informa-
tion leveraging viral mobile platforms and build models to
identify user activity, social patterns [8] and mobility [12].
Nathan and Pentland [8] used 100 Nokia 6600, Bluetooth-
enabled smart phones, to help to collect proximity, time
and location data from 75 users. Mobile user model is built
in this context application. This system identifies social
patterns in daily user activity, infers relationships, and mod-
els individual and collective behavior. They also developed
Funf [18], an open source mobile data collection/sensing
platform for context aware mobile sensing research.

The context-aware mobile systems are also widely stud-
ied under the Wireless Health scenario. Woodbridge et al.
[29] studied five best selling Smart Phones in terms of
their applicability to Wireless Health. In the surveyed sys-
tems, which include SmartCane [31] and SmartShoes [29],
use smart phones as central controlling units that provide
temporary storage, wireless transmission and data sinking
functionalities. In these systems, sensing is done by exter-
nal sensors that built in customized object like cane and
shoes.

SystemSens [3] logs users’ interactions with application
and system parameters, such as battery life, screen status,
OS traces and sensor network data to identify unexpected
user behavior. It provides valuable insights to analyze and
optimize energy consumption on the device caused by
different activities [9]. It also provides a uniform and con-
sistent method for publishing and sharing data.

CenceMe [17] is a personal sensing system that enables
members of social networks to share their sensing presence
with their buddies in a secure manner. Relying on a two-
tier split-level activity classification, it can capture a limit
set of user status in terms of activity, disposition, habits and
surroundings. It also injects sensing presence into popular
social networking applications such as Facebook, MySpace,
and IM, allowing new levels of “connection” and implicit
communication between friends in social networks. It rep-
resents the first system that combines the inference of the
presence of individuals using off-the-shelf, sensor-enabled
mobile phones with sharing of this information through
social networking applications.

7.2 Activity detection and classification

In the past decades, different methods have been applied to
a variety of sensors to address the activity recognition prob-
lem. For example, the computer vision based approaches [7,
21], Context-Free Grammar [23] and some other sequential
language models [10, 11].

The most successful and exhaustive work in this area is
made by Bao et al. [2]. In their experiments, subjects wore
5 biaxial accelerometers on different body positions as they
performed a variety of activities like walking, sitting, stand-
ing still, watching TV, running, bicycling, eating, reading
etc. Decision tree classifiers showed the best performance
among other classifiers, which the overall recognition accu-
racy is 84 %.

The sequential and temporal characteristic of activity
makes dynamic models such as the variants of Hidden
Markov Model (HMM) are widely used in activity recog-
nition, [25] uses Hierarchical Hidden Semi-Markov Model
to detect activity patterns in the daily life of assisted living
community residents. The method requires a training stage
and works on data coming from simple state-change sen-
sors which are massively installed in the environment. The
presented method is supervised in the sense that a human
expert must predefine activities and determines the sensors
corresponding to each activity.

7.3 Power optimization

In terms of GPS power optimization, [13] proposed a model
combined learning from both GPS/WIFI and cell tower pat-
tern for significant place detection. The system will first use
GPS and WIFI access points for location discovery as well
as learning the cell tower change patterns. The system will
map the GPS locations to corresponding cell tower pattern
once the learning procedure has been done and do not need
GPS thereafter .

7.4 Contribution of MobiSens

MobiSens differs from the aforementioned efforts in six-
fold. (1) Instead of merely act as the central controlling
device, Smart phone is used as a combination of sensing
and controlling units in the MobiSens system. (2) In addi-
tion to sensory data collection, we build an unsupervised
online activity segmentation on device, which automatically
segments the incoming sensor stream to a sequence of activ-
ities. Users can choose to annotate activities that they are
interested in and the system learns to recognize those activ-
ities in the future. (3) We introduce a bi-directional data
exchange API between the mobile device and back-server.
This information from the server to the mobile client enables
functionalities such as dynamic sensing profile configura-
tion, mobile process offload and incentive-based annotation
and sharing. (4) To protect users’ privacy, we only per-
form activity recognition on those segments that user has
explicitly annotated or shared. “Unknown Activities” are
not touched by the system. (5) We implement an incentive
scheme to motivate users to participate in the sensing pro-
cess by annotating their activities and share them among
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friends. (6) Instead of only relying on the location infor-
mation to optimize GPS power consumption, MobiSens
leverage other sensor information to achieve an activity
change aware GPS sampling scheme.

8 Conclusion

We present the design, implementation and evaluation of
MobiSens, a mobile sensing system that offers dynamic
inference and summarization of users’ behavior through
their participation and interactions. We introduce a bi-
directional data exchange API between the mobile device
and back-end servers which enables functionalities such as
dynamic sensing profile configuration, mobile processing
offload and incentive-based annotation and sharing. We dis-
cuss the limits for current activity recognition algorithms
on mobile sensing platforms and introduce an unsupervised
hierarchical activity segmentation algorithm and a adaptive
activity recognition algorithm to tackle challenges in mobile
activity recognition. To protect users’ privacy, we only per-
form activity recognition on those segments that user has
explicitly annotated or shared. We also implement an incen-
tive scheme to motivate users to participate in the sensing
process by annotating their activities and share them among
friends.

After releasing MobiSens on Android Market for five
months, we have collected 13,993 h of data from 310 users.
We evaluate the effectiveness of all design changes based on
the average number of activities shared by per active user in
each day. Experiments show that our effort has significantly
increased the user acceptance of MobiSens platform.

We have developed several applications based on the
MobiSens framework including the CMU SenSec App, a
behavior-driven passive authentication system and mental
health monitoring system. We believe this versatile mobile
sensing platform will serve as a foundation to many exciting
and promising real-world applications.
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