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Abstract Equipment of mobile phones with various kinds of
sensors is transforming these devices frommere capabilities of
voice and internet access to devices capable of sensing a
number of phenomena pertaining to their users. In this paper
we make use of these capabilities of phones to detect social
interactions between people and analyze social context by
using embedded sensors found in typical smart phones. Work
carried out in this area has typically used dedicated hardware
to establish social interactions, and we contend on the suit-
ability of mobile phone, since additional devices that user is
not familiar with influence natural user behavior and thus their
social interaction patterns. Our work shows that two parame-
ters that can be detected through mobile phone sensing, name-
ly interpersonal distance and relative body orientation,
provide a solid basis for inferring social interactions. We
describe how these factors are acquired using smart phones
and describe our analysis. The experiments demonstrate that
we can recognize not only whether a social interaction is
taking place, but also the type of social interaction, distin-
guishing between formal and informal social settings.

Keywords social interaction analysis . nonverbal behavior .

small group interactions . proximity detection . informal and
formal communication

1 Introduction

Smart phones are becoming smarter, not just from the point
of view of the increasingly complex services they can offer,

but also from the aspects of information they provide about
their users. Recent off-the-shelf phones come equipped with
an array of sensors that have enabled an “awareness” of our
daily routines. With respect to social interactions, mobile
phones can track precise logs of our phone calls, short
massages, emails and activities in virtual networks. Howev-
er, when it comes to face-to-face social interactions, mobile
phones still have a limited awareness.

The work carried out in detecting social interactions
typically has relied on having a dedicated device, equipped
with sensing modalities designed to allow monitoring of
user behavior. However, having dedicated hardware and
asking subjects to wear it, introduces its own set of issues
including subject stigmatization, resulting in behavior
change. This occurs because wearing unfamiliar and visible
sensing hardware increases the awareness of being moni-
tored, thus affecting the natural behavior of the subjects. On
the other hand, mobile phones are already ubiquitous devi-
ces that have been adopted faster than any technology in
human history [1]. Therefore, the monitoring behavior pro-
cess through mobile phones fades into the background,
having a minimal effect on the users’ behavior and conse-
quently their social interaction patterns. However, the chal-
lenge is how to address monitoring of specific activities
relying on existing sensing technologies that are embedded
in mobile phones, which is the issue not encountered when
using purpose-manufactured devices which already have
dedicated sensors incorporated.

Monitoring of social interactions using mobile phones is
typically based on sensing proximity or on detecting speech
activity. A frequently applied approach for inferring social
activity through the detection of proximity relies on the use
of Bluetooth [2], [3]. Since the Bluetooth communications
range is in the order of ten meters, this approach provides
only a coarse spatial granularity in recognizing interpersonal
distances; therefore, the knowledge about proximity
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between individuals is used to model the dynamics of social
interactions at large scale rather than detecting each single
social encounter which takes place at small spatio-temporal
scale. As an alternative, Wyatt et. al [4] proposed the meth-
od of extracting audio data features using microphones from
a pair of co-located mobile phones, in order to detect who
was speaking and when thus detecting face-to-face inter-
actions. The algorithm does not capture raw audio data
but a set of features which does not contain verbal
information. However, the microphone-based approaches
are sensitive to false positives as nearby conversations
can be unintentionally picked up. In addition, activating
microphone typically entails compromising privacy and
ethical issues – in a number of situations (for example,
in public spaces) audio data cannot be obtained due to
legal or ethical norms [5].

This paper provides a solution that uses non-auditory
sensors embedded in the current smart phones to detect the
occurrence of social interactions which occur on a small
spatio-temporal scale. Our work shows that two parameters
that can be inferred through mobile phone sensing, namely
interpersonal distance and relative body orientation, provide
a solid basis for monitoring social interactions. Furthermore,
we demonstrate high predictive power of spatial parameters
to detect social context of face-to-face interactions, that is
formal or informal as perceived by the subjects.Therefore,
the system proposed in this paper has the potential to gen-
erate rich and large-scale data considering the ubiquitous
nature of mobile phones while not relying on sensitive data.
The fact that people habitually carry the mobile phone
makes this device an ideal tool for unobtrusive and contin-
uous monitoring of individuals’ behavior. The goal is to
provide a tool for acquiring a better insight into social
activity of subjects and the contexts of individual social
interactions thus to potentially support the research in social
networks analysis and the investigation of formal/informal
structures.

The paper is organized as follows. Section 2 provides a
review of the current work on mobile phone-based sensing
of social interactions. In Section 3 we present our system
that can be widely deployed as a mobile phone application
in order to infer interpersonal spatial settings. Then, in
Section 4 and Section 5 we demonstrate how the system
can be used to detect the occurrence of social interactions
and the social context. Finally, we provide a summary in
Section 6.

2 Related work

Smart-phones have been proposed as an alternative to using
dedicated hardware or external infrastructure for gathering
social interaction data. Monitoring of social interactions

through smart phones typically rely on detecting proximity
and on audio analysis.

Using Bluetooth as a proximity sensor to reconstruct
social dynamics at large scale has been extensively investi-
gated under the umbrella of reality mining initiative [6, 7,
1]. MIT Media Lab’s Reality Mining project launched in
2004 with the goal of sensing complex social systems which
included inferring patterns in daily user activity, relation-
ships, socially meaningful locations, and organizational
structures [6]. Along the same line, Raento et al. [8] were
one of the first who proposed mobile phone data collection
for large-scale context sensing. More recent algorithm for
identifying social groups and inferring frequency/duration
of meetings within each group was proposed by Mardenfeld
et al. [9] who tested their approach on the Reality Mining
dataset. In addition to modeling the patterns of person-to-
person interactions, Do and Gatica-Perez [10] showed that it
is possible to infer different interaction types using a prob-
abilistic model applied on longitudinal Bluetooth data.
However, Bluetooth scans indicate the presence of nearby
devices in a radius of 10 m, which does not provide suffi-
cient information to detect an ongoing social interaction
which takes place on a small spatio-temporal scale; rather,
such an approach is used to model the longitudinal dynam-
ics of social interactions.

In order to address the limitation of Bluetooth scan to
detect actual face-to-face proximity between subjects, the
Virtual Compass project [11] estimates interpersonal distan-
ces using RSSI analysis of Bluetooth and Wi-Fi signals. By
applying empirical propagation models, the approach
achieves the median accuracy between 0.9 m and 1.9 m
while also detecting position of subjects in 2D plane. How-
ever, the lack of subjects’ orientation information might not
be sufficient for modeling the occurrence of face-to-face
social interactions.

The fact that co-location of subjects does not always
imply their interaction [4] raises the requirement for alter-
native methods to detect voice conversation using micro-
phone embedded in mobile phones. A number of
approaches associated the level of detected ambient noise
to social interactions [12], while more advanced methods
included analysis of voice segments for each pair of micro-
phones thus identifying conversations among two or more
subjects [4]. However, the limitations of microphone-based
approaches include: 1) sensitivity to false positives since the
conversations occurring in close proximity of the monitored
subjects in which they are not involved, can be incorrectly
classified, 2) activating microphone can face ethical issues
and can negatively affect the perception of privacy in
subject.

In contrast to previous studies, we propose the mobile
phone-based solution for monitoring social interactions
which occur on small spatio-temporal scale, without relying
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on sensitive data. Our work demonstrates that by using
sensing capabilities available in mobile phone it is possible
to detect not only whether a social interaction is taking
place, but also the type of social interaction, distinguishing
between formal and informal social settings.

3 Estimating interpersonal distance and relative body
orientation

3.1 Distance estimation

3.1.1 Overviewof our approach

Our concept for estimating distance between two mobile
phones is based on the RSSI analysis which has been
already shown to be a promising solution. In contrast to
the Virtual Compass [11] (which is, to our knowledge, the
only similar approach), our method of building a generic
empirical model to map RSSI values to distance regardless
of the phone used, relies on supervised learning thus
trading-off the user effort in signal fingerprint collection
for the accuracy in distance estimation. The reason for
using a more costly method in terms of the end user effort
is the fact that one of the pre-dominant factors affecting
RSSI patterns is the receiver’s characteristics [13] whose
capturing can lead to a higher system’s accuracy. This
hypothesis was tested in the experiments that follow, dem-
onstrating that environmental factors have less prevailing
impact on RSSI patterns than receiver’s characteristics due
to relatively short distances and no obstacles between
receiver and transmitter. Unlike time-consuming measure-
ments typically required for fingerprinting methods, the
user effort will be decreased to only a couple of minutes
to calibrate the phone signal, while achieving a comparable
accuracy to full fingerprinting method. The concept for
estimating distance is tested using Wi-Fi signals. Never-
theless, other radio transmitting/receiving mechanisms
with accessible RSSI values (such as FM or Bluetooth)
available on mobile phones could be used for the same
purpose or in combination with Wi-Fi.

3.1.2 Estimating distance between two mobile phones
using Wi-Fi RSSI

Similar to indoor positioning systems that use fingerprinting
technique, our method for distance estimation is based on
analyzing RSSI values, observed on an unknown distance
from the phone which transmits Wi-Fi signal (colloquially
known as Wi-Fi Hotspot or Personal Hotspot). The distance
is estimated by applying the model built using a database
that matches RSSI values (fingerprints) with the actual
distances.

To acquire the training set we used two smart phones, one
in transmitting (tethering) mode, the other in receiving
(client) mode, to carry out Wi-Fi signal measurements. We
used different distances following a grid of 0.5 m thus
collecting patterns of RSSI in the database that was used
as training set. The transmitting power of 0 dBm provided
the smoothest and the most monotone RSSI to distance
dependency thus proving to be the best fit for short distance
estimation (Fig. 1). However, it can be seen that the RSSI
demonstrates the instability and fluctuations of the Wi-Fi
signal, typically due to environmental factors. Therefore, the
distance estimation approach based on a simple RSSI
threshold analysis (assigning ranges of RSSI values to
corresponding distances) did not suffice which led to apply-
ing machine-learning techniques for distance estimation

Our testbed consisted of six smart phones (with Android
operating system) including three different models, namely
HTC Desire, Samsung Nexus S and HTC Nexus One that
used a modified firmware to allow adjustment of transmit-
ting power. Different phone units were distinguished by
MAC addresses. Measurements were taken in three offices
with dimensions of 12×8 m, 6×5 m and 6×3 m, a balcony
of 12×2.5 m and a meeting room of 10×8 m. For testing the
system’s accuracy we used a pair of phones – one in trans-
mitting and the other one in receiving mode.

Figure 2 shows the system’s accuracy when using the
same phone (i.e. same model) acting as a receiver in both
training and test phase. The results correspond to Naïve
Bayes classifier with Kernel Density Estimation (KDE)
and Gaussian Process (GP) regression, however several
other techniques were tested performing similarly (including
linear classification and SVM). The median estimation error
(50th percentile) of approximately 0.5 m was achieved using

Fig. 1 Dependence RSSI on the distance (different power levels)
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both machine learning techniques. Naive Bayes with KDE
showed a slightly better overall performance, providing
distance estimation with a 50 % percentile error of 0.5 m
and 95th percentile error of approximately 2 m.

3.1.3 Fast calibration method

When different phone models were used for training and test
phase, the system’s accuracy significantly degraded (Fig. 3).
This is due to the fact that RSSI patterns highly depend on

the receiver characteristics [13] which are likely to be dif-
ferent across different phone models. In order to tackle this
problem while avoiding the repetition of RSSI measure-
ments which would be laborious and time-consuming, we
“calibrated” only one point by measuring RSSI for a couple
of minutes on a fixed distance of, for instance, 1 m. Once the
RSSI is captured, the training set is estimated applying the
following propagation model [14]:

PðdÞ½dBm� ¼ PðdoÞ½dBm� � 10n log
d

d0

� �
½dBm� � X ½dBm�

ð1Þ
where n is the path loss exponent, P(d0) is the signal power
at the reference distance d0 from the transmitter phone (in
our case 1 m) and d is the distance in which RSSI is
estimated by applying the model. X is a component that
reflects the sum of losses induced by each wall between
the transmitter and receiver. We have found empirically that
the best suited value for the coefficient n is 1.5, while for X
is zero (there are no walls or other obstacles between
points). Figure 4 shows a cumulative distribution function
of distance estimation errors (for each of the phone model
that we tested applying cross-validation method across dif-
ferent environments), showing again 50th percentile error of
0.5 m and 95th percentile error between 2 m and 2.5 m (for
each of the phone model that we tested applying cross-
validation method across different environments). Gaussian
processes regression achieved also median error of 0.5 m
while 95th percentile of 2.5 m but for brevity reasons we
presented only classification method (Bayesian with KDE).
Therefore, by investing a minimal effort of performing the
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Fig. 2 Distance estimation accuracy (same receiving phone for train-
ing and test phases)
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Fig. 3 Distance estimation accuracy (different receiving phone for
training and test phases)
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calibration for a few minutes at a single distance, we dem-
onstrated that it is possible to achieve similar performance
as in the case of acquiring a full training set (Figs. 2 and 4).

Calibrating the phone and testing in the same environ-
ment provided similar accuracy as in the case of performing
calibration and testing in different environments (which was
evidenced across all six environments). This may be indic-
ative that of the pre-dominant factor that influences RSSI
pattern lies in receiver’s characteristics. Less prevailing
impact of environmental conditions may be explained by
relatively short distances and no obstacles between receiver
and transmitter which could affect the signal propagation.
This was further evidenced in the experiments of real-life
settings conducted in a wide array of environments and
phone models which will be presented in Section 4 and
Section 5.

To recap, in comparison to the existing solutions based
on mobile phone sensing, our system provides a higher
accuracy in estimating distance between phones, does not
require communication between devices and broadcasting
the distance to each of peers, while the training phase is
facilitated with a fast calibration method which makes the
approach adaptive to different applications, environments
and phone models.

3.2 Estimating relative body orientation

Relative body orientation refers to the angle between the
orientations of torsos [15] considering two subjects that are
facing each other. To recognize the relative body orientation
of subjects carrying mobile phones, we use the embedded
orientation sensor that provides the following values
(expressed in degrees): Azimuth – the angle between the
magnetic north direction and the y-axis, around the z-axis
(0° to 359°); Pitch – the rotation around x-axis (−180° to
180°) with positive values when the z-axis moves towards
the y-axis; and Roll – the rotation around y-axis (−90° to
90°) with positive values when the x-axis moves towards the
z-axis. Knowing the relative position between the body and
the phone orientation is a fundamental condition in order to
recognize the individual’s body orientation and the relative
body orientation between subjects. Once this relationship is
determined, calculating relative body orientation would re-
quire relative processing of azimuth, pitch and roll values. In
our experiments, we were always aware of the exact posi-
tion where participants carried the phone. However, in their
recent study, Shi et al. [16] demonstrated that it is possible to
automatically detect on-body position of the mobile phone
by utilizing the fusion of accelerometer and gyroscope.

In this section, we evaluate the proposed concept for
estimating the distance between mobile phones and de-
scribed the use of compass for extracting relative body
orientation between subjects. Distance estimation accuracy

results were consistent for three tested phone models across
six environments; evaluating performance for other phone
models is out of the scope of this paper, however we do not
expect large disparities based on the phone models already
tested. In the sections that follow we assess whether the
extracted parameters are sufficiently accurate for detecting
social encounters.

4 Detecting social interaction occurences

Interpersonal distances, typically held in social interactions,
are investigated through the study of proxemics [17]
According to this study, interpersonal distances include the
following metrics: intimate distance (close: 0–0.15 m, far:
0.15–0.45 m), personal distance (close: 0.45–0.76 m, far:
0.76–1.2 m), social distance (close: 1.2–2.1 m, far: 2.1–
3.6 m) and public distance (close: 3.6–7.6 m, far: 7.6 and
more). These four categories of interpersonal distance are
typically used for the following activities: intimate distance
for embracing, touching or whispering; personal distance
for interactions among good friends or family members;
social distance for interactions among acquaintances; and,
public distance used for public speaking. When it comes to
the relative body orientation, two people may hold any of
the relative orientations between 0° and 180° during social
interaction. The relative body orientation is often used in
studies to describe the immediacy of interaction, subject’s
attitude or similar phenomena in social interactions rather
than to recognize whether the interaction exists or not [15].
However, Groh et al. [15] demonstrated that interpersonal
distance and relative body orientation together provide suf-
ficient evidence to infer the occurrence of social interac-
tions. The authors recognized the two parameters relying on
a highly precise commercial camera system (with the accu-
racy of <1 mm and <1°) installed in a room of 3×3 m, and
the reported accuracy in detecting the occurrence of social
interactions was approximately 80 %. In this work we
analyze the potentials of mobile phone sensing to recognize
social interactions based on the two parameters, interperson-
al distance (denoted with d) and the relative body orientation
(denoted with α), detected in an unobtrusive way while not
confining the experimental settings to one room.

Detection of social interactions that will be presented in
this section is based on analyzing spatial parameters be-
tween a pair of subjects that carry mobile phones. If more
than two subjects are involved in the same conversation, our
method recognizes other participants by examining infor-
mation for each pair of individuals involved in the social
interaction. On the other hand, as the number of participants
increases, interpersonal distances expand and the angles
become wider, thus putting constraints on developing a
single model of social interactions, regardless of the number
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of participants. However, these effects (such as changes in
angles) are typically neglected in the literature since practi-
cal experience suggests that when there are more than four
or five individuals, they frequently split up into sub-groups
[15] [18]. Therefore, the experiments that follow were con-
ducted under the assumption that in real-life setting, the
number of individuals which actively participate social in-
teraction is limited to four of five (usually referred to as a
“small-group” interaction) [15] [18].

We chose time frame of 10 s to process data as suggested
by [19] in order to capture dynamic changes in social
interactions while at the same time to discriminate between
existing and non-existing social interactions. Therefore, in-
terpersonal distances were estimated using a sequence of
Wi-Fi RSSI values for every 10-second frame while body
orientation is averaged for every 10 s (i.e. 10 samples).
Relative body orientation of subjects was considered only
if the standard deviation of the samples was less than or
equal to 10° for each subject (regarding the 10-second time
frame), otherwise the current frame of samples was left out.
This was done in order to analyze situations in which sub-
jects held stable relative orientation, such that random body
movements are removed as a source of orientation uncer-
tainty. The threshold of 10° was confirmed to be a trade-off
between decreasing the standard deviation of the estimated
relative body orientation (proportional to decreasing thresh-
old) and decreasing the amount of discarded data (propor-
tional to increasing threshold). Overall, approximately
20 %–25 % of unstable orientation data was discarded. We
installed the application in five phones, two HTC Desire,
two HTC Desire S and one Samsung Galaxy S with syn-
chronized clocks to ensure correct data aligning which was
important, considering a short time frame of 10 s for data
analysis. Focusing on small-group of co-located face-to-face
social interactions, we performed the experiments in four
types of scenarios:

4.1 Experiments

4.1.1 Controlled experiments

Participants, that partially knew each other, were asked to
communicate for an amount of time of their choice, while
carrying the mobile at a known place. The first trial involved 6
participants (4 males, 2 females, age: 31±4 years) that were
talking to each other, maximum four at a time, at 14 randomly
selected locations, including 12 indoor and 2 outdoor environ-
ments. The duration of these interactions was 5.6±3.8 min.
The second trial was conducted in a meeting room and it
consisted of two 15-minute sessions in each involving 4
people (6 males, 2 females, age: 29±4 years) who were let
to communicate freely as they wanted. This experimental trial
resulted in 1300 pairs of relative body orientation and

interpersonal distance (α, d) with a time frame window of
10 s for processing and averaging data.

4.1.2 Break room settings

The break room is the place where employees in our re-
search center typically socialize. This created the opportu-
nity to monitor social interaction in a natural setting. When
people were coming to the break room, we asked them to
place the phone in a case attached on the right hip and to
continue their interaction. Overall, we recorded 15 interac-
tions of duration 6.2±3.5 min that included 24 different
people. This experimental trial resulted in 1300 (α, d) pairs.

4.1.3 Continous monitoring

Aiming to analyze social interactions in continuous settings,
the third trial of experiments was performed during working
time for one week i.e. 5 working days, involving 5 col-
leagues that share the same office. They were asked to
provide a label whenever social interactions occurred out-
side of the office, through a button press on the phone.
Overall, during one week of measurements there were 9
standing social interactions labeled which involved either
all of 5 participants or their subset. The locations were
random in the building with duration of 6.4±8.1 min, result-
ing in 900 (α, d) pairs. However, the fact that one week of
measurements resulted in 9 labeled standing conversations
was questioning and it turned out that the participants did
not label several social encounters which they clarified at
the end of experiments.

The results shown in Fig. 5 indicate that social interac-
tions between two subjects were centralized around 180° –
the relative body orientation that corresponds to a perfect
face-to-face position. Wider range of relative orientations
was perceived in the cases of break room and continuous
monitoring settings (both with SD of 45°) in comparison to
the controlled experiments (with SD of 25°). This may
reflect the fact that participants were more relaxed and held
less steady orientation when they were participating in break
room social interactions, in comparison to social interac-
tions where participants were instructed to communicate. It
can be seen that participants were mostly having shorter
interpersonal distances in the break room and continuous
monitoring, which were both natural setting.

4.1.4 Non-existing social interaction

In order to assess the potential of using spatial (α, d) param-
eters to distinguish existing and non-existing social interac-
tions, it was necessary to create also a solid corpus of the pairs
that do not correspond to social interactions. Four subjects that
attended a fair called “Researchers Night” were monitored
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while being asked to report any social encounter among them.
Measurements from one-hour period in which they reported
no social interactions was extracted as a suitable data set
containing overall 1400 (α, d) pairs for creating non-existing
social interaction corpus; being at the stand implied their
constant proximity and random relative body orientations
(while sitting/standing/moving) – Fig. 6. In addition, there
were added measurements from previously described con-
trolled experiments which included subjects that were in con-
current social interactions and in a close proximity (all social
encounters occurred within 5×5m space).

4.2 Results

Table 1 presents the results of distinguishing occurrence
of social interactions (denoted as SI) and situations
when no social interaction occurs (denoted as NonSI)
represented with a feature-vector (α, d) by applying
Linear Classification and Naïve Bayes with KDE tech-
niques. The classification performance was evaluated
using 10-fold cross validation.

The results demonstrate the accuracy of 74 % in
detecting social interactions based on interpersonal dis-
tance and relative body orientation. Naïve Bayes with
KDE performed slightly better in identifying social inter-
action pairs while Linear Classifier provided lower rate
of false positives. A contributing factor to this perfor-
mance is also a simple method of taking out of the
consideration (α, d) pairs corresponding to the situations
in which subjects did not hold a stable relative body
orientation, thus eliminating the source of uncertainty
created in most cases by random body movements.
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Fig. 5 Analyzing social interactions through the relative body orien-
tation (α) and the interpersonal distance (d)
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Fig. 6 (α, d) pairs corresponding to situations without social interac-
tions taking place
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However, instead of using the standard deviation (SD) of
relative body orientation for identifying “unstable” (α, d)
pairs, we attempted to use it also as a classification
feature that can be considered as an index of holding
stable relative position of participants in a social interac-
tion. SD of relative body orientation (denoted with σ)
was also calculated for each 10-second frame (i.e. for 10
samples) and combined with distance d and averaged
relative body orientation α, constituting 2-feature vector
(σ, d) and 3-feature vector (σ, α, d). Table 2 shows the
results of 10-fold cross validation.

The combination of interpersonal distance and SD of rela-
tive body orientation provided higher accuracy in comparison
to the previous case of using relative body orientation angle
(Table 2). This may be due to the fact that feature-vector (σ, d)
does not discriminate classes based on the absolute angle
between body orientations in social interactions thus allowing
for more situations to be included in the model in comparison
to feature-vector (α, d). As expected, this resulted in a higher
rate of false positives that occurred mostly when subjects were
in a close proximity, having a stable body orientations but not
interacting (for instance, sitting or being in concurrent social
interactions). The highest accuracy was achieved using 3-
feature vector (σ, α, d) that resulted in 89 % of successfully
classified vectors corresponding to social interactions and
26 % of false positives.

The results demonstrate that the accuracy of estimat-
ing interpersonal distances and relative body orientations
achieved with mobile phone sensing was sufficiently
discriminative to identify social interactions. Note that
the position of the phone does not affect the standard
deviation (SD) of relative body orientation, thus the
model based on 2-feature vector (σ, d) does not require
users to carry the phone on a pre-defined/known posi-
tion on the body.

5 Analysis of type of social interactions

5.1 Background

Monitoring of social interactions has a particular application
in workplace, where socialization patterns can be used to
influence workplace policies towards a more efficient work
environment, since high complexity information is mostly
exchanged through face to face interaction [20]. Various stud-
ies investigated methods of improving communication chan-
nels to enable more efficient knowledge transfer between
employees. While most of the outcomes suggested the pro-
motion of informal type of communications [21, 22], several
investigations claim the opposite, arguing that formal interac-
tions are an efficient knowledge transfer strategy [23]. How-
ever, there is a general consensus that improving
communication channels used by knowledge workers requires
a deeper understanding of both formal and informal types of
interactions [21, 23, 24]. The difficulty in monitoring and
measuring informal/formal networks was identified to be a
key challenge towards making substantial steps in the efficient
information transfer and consequently for increasing produc-
tivity in knowledge-driven communities [24]. Therefore, this
section evaluates the potential of using our system to indicate
the type of social interaction once its occurrence is already
detected on small spatio-temporal scale, as elaborated in the
previous section. Although the term type of social interaction
may include various connotations (such as competitive, coop-
erative, decisionmaking, and other types of conversation), it is
used here to denote formal or informal context. Interpersonal
distances and relative body orientations that can be extracted
using the proposed system are evaluated regarding the predic-
tive power in classifying between formal and informal type of
interaction.

The main postulates of the proxemics study [17] suggest
that people unconsciously organize the space around them,
corresponding to different degrees of intimacy. It is even
intuitively known that having a chat with a close friend,
talking to the boss or talking to the queen differ in spatial
settings conventions i.e. interpersonal distances are affected
by level of formality in social interaction. Furthermore,
according to social psychology, the formality is bound by
roles and hierarchies among participants [21] which is fur-
ther mirrored in spatial arrangements. The matching

Table 1 Classification results (orientation, distance)

Naïve Bayes (KDE) Linear Classifier

SI/ NonSI SI/ NonSI

SI 74 % 26 % 72 % 28 %

NonSI 24 % 76 % 22 % 78 %

Table 2 Classification results
(2-feature and 3 feature vectors) (σ, d) (σ, α, d)

Naïve Bayes (KDE) Linear Classifier Naïve Bayes (KDE) Linear Classifier

SI/ NonSI SI/ NonSI SI/ NonSI SI/ NonSI

SI 79 % 21 % 74 % 26 % 89 % 11 % 87 % 13 %

NonSI 31 % 69 % 28 % 72 % 26 % 74 % 21 % 79 %
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between social relations and the spatial formations in social
interactions was recently investigated using computer vision
system for estimating distances among subjects, confirming
strong positive correlation [17]. Therefore, we opted for
interpersonal distance in the attempt to classify between
formal and informal social context.

Regarding spatial settings detection, the proposed sys-
tem allows measures of relative body orientation and its
standard deviation (as an index of stable relative body
position between participants) that demonstrated high
predictive power of detecting social encounter occur-
rence. Social psychology literature does not directly
associate body orientations and the degree of formality
in conversations. However, the relative body orientation
is often used in studies to describe the immediacy of
interaction, subject’s attitude or similar phenomena in
social interactions [31]. Therefore, it is hypothesized that
the body orientation related cues (namely relative body
orientation and its standard deviation) might also corre-
late with the level of formality thus being selected as
suitable parameters aiming to formal versus informal
interaction classification.

5.2 Description of experiments

Experiments in analysis of type of social interactions
were conducted in a number of locations, including
three meeting rooms, three offices, three coffee rooms,
two balconies and an entrance hall with dimensions that
did not physically confine subjects (the dimensions of
the smallest room were 5×4 m) thus not affecting
interpersonal distances. We interrupted face to face com-
munications that were about to occur or were already in
progress and for subjects that accepted the participation
in experiments, we provided smart phones that were
broadcasting/receiving Wi-Fi signal (to estimate interper-
sonal distance) and sampling orientation. Subjects were
given a case to carry the phone and in this manner we
were aware of the position of the phone with respect to
the body, in order to calculate relative body orientation.
Once the social interactions ended (during which we
were not present) participants were asked to fill out a
short check-box questionnaire that requested a descrip-
tion of the interaction. In order to infer whether the
conversation was formal or informal we used a ques-
tionnaire similar to the one used in the study of func-
tion of informal interactions in companies [21]. Overall,
we collected 33 face-to-face communications, 21 infor-
mal (duration of 9±5 min) and 12 formal (duration 21±
10 min), which included participation of 50 subjects (33
males/17 females, with an age of 32.7±6.6 years) result-
ing in approx. 12 h of sensor data. Wi-Fi and orienta-
tion were sampled with 1 Hz and we estimated

interpersonal distance and the relative body orientation
for each time frame of 10 s.

5.3 Differences between formal and informal social context
across monitored parameters

5.3.1 Interpersonal distances

Figure 7 shows the histogram of interpersonal distances, plot-
ted for each time frame of 10 s recorded during formal and
informal communications. According to the study of proxe-
mics [15], interpersonal distances detected in informal com-
munications mostly belong to the Personal Space having the
mean value of 0.8 m. In formal communications, the results
show distances that correspond to both Personal and Social
Space, with the mean value on the border of these two zones,
at 1.3 m. These absolute measures should be taken only
illustratively considering the distance estimation precision
(provided in Section 3). However, both distributions in
Fig. 7 were acquired using the same system thus embedding
the same median error in estimated distances. Therefore,
whereas the absolute measures cannot be reliably claimed
with a precision less than 50 cm due to the system’s accuracy,
the relative difference between interpersonal distances may
provide more reliable estimate of the actual phenomenon.
Furthermore, the results demonstrate that the distinction be-
tween formal and informal social interactions is reflected in
interpersonal distances that are estimated using mobile phone
sensing despite the median accuracy of 50 cm. Due to the
considerable intersection of values related to interpersonal
distances in formal and informal social interactions, relying
solely on this temporal cue to distinguish the two types of
social interactions would not suffice. Rather, it will be inves-
tigated if interpersonal distance can be combined with other
parameters to distinguish different social contexts.
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Fig. 7 Interpersonal distances in formal/informal social interactions

816 Mobile Netw Appl (2012) 17:808–819



5.3.2 Relative body orientation

Relative body orientations in formal and informal social
interactions were analyzed after discarding all 10-seconds
frames with the standard deviation greater than 10° as pre-
viously described. The results are presented in Fig. 8.

In both formal and informal communications the mean
value of relative body orientation was between 140° and
150° (180° corresponds to a direct face-to-face orientation)
thus not demonstrating major differences between the two
types of communication. It cannot be concluded if such
results pertain to the phenomenon of formal/informal com-
munications or it was due to the limited accuracy in esti-
mating relative body orientation using the compass sensor
embedded in phones and approximating the angle between
the body and the phone orientation. However, when recog-
nized with mobile phone, relative body orientation did not

mirror the difference between formal and informal conver-
sational context.

5.3.3 Standard deviation of relative body orientation

Figure 9 shows the histograms of standard deviation for
each 10-second frame during formal/informal social inter-
actions. The results demonstrate that subjects were more
flexible in holding their relative body orientation during
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Fig. 9 Standard deviation of relative body orientations (calculated
each 10 seconds)
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Table 3 Classification
results (formal vs.
informal)

Feature vector Naïve Bayes
(KDE)

SVM

(d, α) 64 % 66 %

(d, α, σ) 75 % 75 %

(d, σ) 77 % 81 %
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informal communications than in the case of formal inter-
actions. In formal interactions relative body orientation of
subjects had a tendency to remain stable for longer periods
(in contrast to informal social context), which may be due to
maintaining eye contact for example, or some other external
factor such as a video beam or a monitor that focused
subjects’ attention. Therefore, we attempted to classify for-
mal versus informal communications on the basis of two
parameters, namely interpersonal distance and the standard
deviation of relative body orientation.

5.4 Classification of formal / informal interactions

The pairs of interpersonal distance and standard deviation of
relative body orientation calculated for each 10-second time
frame are plotted in Fig. 10 separately for formal and infor-
mal social context. The visualization of the data shows the
differences between formal and informal interactions, which
further prompted us to investigate the classification between
these two types of social interactions. Please note that inter-
personal distances were estimated applying GP regression
for a more precise illustration (unlike in Section 4) of the
differences between the two types of social interactions.

Table 3 presents the results for Naïve Bayes classification
with Kernel Density Estimation and SVM. The performance
was evaluated using 10-fold cross validation. These results
demonstrate that interpersonal distance and standard devia-
tion of relative body orientation are well suited features to
discover the type of face-to-face communication. Further-
more, the accuracy of detecting these two parameters
achieved with mobile phone sensing sufficed for this pur-
pose, which may be the substantial basis for a number of
context-aware mobile computing applications. Computing
both parameters does not require the phone to be at a known
place on the body thus affording an unobtrusive monitoring
of subjects that habitually carry mobile phone.

6 Conclusions

Understanding social interactions is important for a number
of disciplines, including social psychology, epidemiology,
medicine, economics and anthropology. The solutions for
continuous (mobile) monitoring of social interactions are
typically based on the use of dedicated devices which intro-
duces a set of issues including subjects’ stigmatization and
consequently their behavioral change. This occurs because
wearing unfamiliar and visible sensing hardware increases
the awareness of being monitored. One way to address this
issue is to utilize the sensing capabilities available in one of
the most widely adopted devices – mobile phone. However,
current research on mobile phone sensing to monitor social
interactions remains limited: it either includes audio analysis

which often raises privacy concerns and ethical issues or it
focuses on quantifying dynamics of social activity over time
while being limited in analyzing social interactions which
occur on spatial scales of meters and time scales of minutes.

This paper presented the design and evaluation of the
system able to infer social interactions which take place on
small spatio-temporal scale relying on non-auditory sensing
modalities found in typical mobile phones. We have de-
scribed the challenges faced when using only mobile phone
sensing as a substrate for analysis of social interactions and
inference of the type of social interactions. Our results show
that we can accurately detect interpersonal distance with me-
dian error of 0.5 m, even when using different mobile phone
models, which combined with relative body orientation pro-
vides a reliable inference of social interactions. We have also
found that stability of relative body orientation is a suitable
parameter to detect occurrence of social interactions since it
does not constrain subjects to wear the phone on a known
place on body. Furthermore, the combination of interpersonal
distance and standard deviation of relative body orientation
showed a high predictive power in classifying the type of
social interaction - formal or informal. We envision that our
system for social interaction analysis can provide an instru-
ment for gathering rich and large-scale social interaction data
thus supporting the research in social networks and the inves-
tigation of formal/informal structures.
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