
A Novel Approach to Analyzing for Detecting Malicious
Network Activity Using a Cloud Computing Testbed

Junwon Lee & Jaeik Cho & Jungtaek Seo & Taeshik Shon &

Dongho Won

Published online: 9 May 2012
Springer Science+Business Media, LLC 2012

Abstract Recent developments have caused the expansion
of various cloud computing environments and services. Cloud
computing environments have led to research in the areas of
data processing, virtual environments, and access control.
Information security is the most important research area for
these environments security. In this study, we analyzed typical
example of network testbeds, which have been used for ma-
licious activity data collection and its subsequent analysis.
Further, we propose an effective malicious network applica-
tion testbed, which is based on a cloud system. We also
verified the performance of our new testbed by comparing
real malicious activity with the cloud-based testbed results.

Keywords mobile cloud . cloud test bed . cloud network
anomaly

1 Introduction

The advent of cloud computing means that PC environ-
ments are changing to cloud computing environments,
where a large set of computers(or virtual environment,
cloud) can connect to applications, storage, OS, and the
requisite IT resources over the Internet at any time they
are needed. Thus, the IT services paradigm has been
changed [1]. The advantage of cloud computing is that
users have the ability to store information and manage it
cost effectively at any place or time via a network that
uses a free program, which requires no professional
knowledge of specific software or hardware. There are
several ways of analyzing and checking whether mali-
cious code is present in an existing network. A diffused
experiment can be conducted inside a network after it has been
shut down. In such experiments, the test bed and physical
network are formed and a malicious application spreads while
networkpacketdataarecollected.However, themassivescaleof
this experimental method means that vast amounts of time and
space are consumed [2]. In this study, aneffective cloudnetwork
testbed was used in experiments to analyzing for detecting
malicious code with lower time and space requirements.

This paper contains the following sections: section 2 pro-
vides an explanation of the cloud system structure; section 3
summarizes the existing physical testbed; section 4 describes
the basic cloud system malicious code testbed; section 5
analyzes the test results; and section 6 states our conclusions.

2 The cloud computing service

Cloud computing provides virtualized IT resources via
Internet technology where users can borrow IT resources
(software, storage, servers, and networks) as required,
which support real-time scalability depending on the
services available, such as pay-as-you-go computing.

J. Lee :D. Won
School of Information and Communication Engineering,
Sungkyunkwan University,
Suwon, Republic of Korea

J. Lee
e-mail: junwo1lee@gmail.com

D. Won
e-mail: dhwon@security.re.kr

J. Cho
Graduate School of Information Security, Korea University,
Suwon, Republic of Korea
e-mail: chojaeik@korea.ac.kr

J. Seo
The Attached Institute of ETRI,
Suwon, Republic of Korea
e-mail: seojt@ensec.re.kr

T. Shon (*)
Division of Information Computer Engineering, Ajou University,
Suwon, Republic of Korea
e-mail: tsshon@ajou.ac.kr

Mobile Netw Appl (2013) 18:122–128
DOI 10.1007/s11036-012-0375-1

Compared with traditional computing environments,
cloud computing is based on IDC connections between
multiple users, which provides a greater amount of
resources [3].

‘Highly scalability ‘and’ abstract computer resources’
are two main features of cloud computing IT resources.
‘High scalability’ refers to the processing capacity
where computing resources can be increased or de-
creased to ensure that transactions are processed rapidly
and flexibly. ‘Abstract computer resources’ means that
users do not need to consider where the computer that
processes the calculations is located [4].

2.1 Global cloud computing

Amazon EC2 (Elastic Compute Cloud) and S3 (Simple
Storage Service) provided by IaaS (Infrastructure as a Ser-
vice), and Google AppEngine and Apps provided by PaaS
(Platform as a Service), are the major business models [5].
Google has extended into Android over recent years because
it is aimed at mobile devices. Microsoft Azure platform,
Live Services, and Win Mo are major mobile terminal
solutions. Salesforce.com is focused on SaaS trading as
Salesforce. Sun, IBM, and HP are hardware companies that
have also produced cloud computing solutions.

Venture capital companies in Wuxi, China, have been
developed to spur the innovation of technology to support
the industrialization of cloud computing and to ensure that
computing resources are available for development and
testing. This is part of the Chinese Government’s strategy
of converting the Chinese economy into a service-led econ-
omy based on IDC with IBM solutions, rather than produc-
ing technology. To support the future growth of software
companies in China, 11 regional development agencies have
been formed to ensure software development across China.
Wuxi provides virtualized infrastructure and development
platforms, while it also produces service management tech-
nology to supports the developer.

The Japanese government also announced the ‘Kasumi-
gaseki cloud’ project in 2015, in which government IT
systems will develop a single cloud infrastructure. The
Japanese Secretary launched a public-private joint initiative,
‘Cloud Computing Research,’ during June 2009 to enhance
Japanese owned technology and regulations, which will
provide support for companies [6]. Nippon Telegraph and
Telephone Corporation (NTT) have also announced a cloud
computing-related R & D investment plan, which will de-
velop a next generation cloud platform. NTT plans to pro-
vide cloud-computing services nationwide, in conjunction
with 18 IDC Centers.

NTT has entered the SaaS, PaaS, and IaaS markets as NTT
Communications and NTT Data, where it aims to drive this
venture by attracting application business to the cloud

platform. In addition, NTT has developed a common capabil-
ity platform for SaaS providers, where SaaS providers can
leverage their capabilities via common authentication and fee
collection systems without developing their own
environments.

The NTT group aims to solve the problem of security by
coupling networks (VPN) and cloud services, thereby
strengthening the reliability of the platform [7].

3 Previous malicious network testbeds

The basic network testbed contains dozens to hundreds of
physical networks and systems. There are many nodes and
virtualized nodes; hence, the virtual environment can in-
clude additional dozens or hundreds of nodes. This section
introduces the standard testbed used by DARPA for Intru-
sion Detection Evaluation research, which is comprised of a
testbed and the physical network [8, 9]. We also describe the
testbed used for studying the spread of general malicious
worms at Korea University

3.1 DARPA intrusion detection evaluation

MIT Lincoln Laboratory (MIT/LL) developed a normal and
attack dataset for the evaluation of intrusion detection algo-
rithms. Air Force network data were collected and recon-
structed to form the MIT/LL’s network dataset [10]. MIT/
LL’s data collection and reconstruction was supported by
DARPA from 1998 to 2005. MIT/LL is still researching the
development of network data for other uses, which is avail-
able to the public. A large network area data was collected
from the Air Force network for the generation of network
data set. This network dataset is used to evaluate intrusion
detection algorithms. The datagram portion of network data
packets has been erased to prevent the leakage of confiden-
tial information [11].

Fig. 1 The experimental network structure used by MIT Lincoln Lab

Mobile Netw Appl (2013) 18:122–128 123

The total experimental process involved in MIT/LL data-
set is summarized as follows.

(1). Environmental analysis of the original network: the
behavior of the system and users that form the original
network.

(2). Collection of network data packets: collection of for-
warding data from a specific network and receiving
data from another network.

(3). Design of an isolated network testbed: design of an
isolated network testbed to resend the collected net-
work data and transform the datagram portion of the
data.

(4). An experimental attack on the isolated network
testbed: several types of test attacks.

(5). Packet reconstruction (presumption): a random mix of
normal and attack data to derive sample data.

The first step was to analyze the original network environ-
ment in detail. A system’s operating system and other varia-
bles had to be confirmed when analyzing the environment.
The behavior of users must also be recorded and analyzed.
The second step was to capture the packet data from the real
network. Complex methods must be used to prevent data loss
and collect real network packet data from a huge network in
real time. However, MIT/LL’s report contained no references
to any data loss. Sent and received data related to a user’s
behavior was also included in the collection. The third step
was the reconstruction of the packet data. Datagram

transformation was performed after collecting the network
packet data, as described above. The fourth step was the
collection of attack network packets. Attack data was separat-
ed from the Air Force network packets. A further attack
experiment was performed after the initial attack and the
packets were compared and analyzed.

Thus, we separated the normal data and the attack data from
the reconstructed data in our experiments. The normal data was
used for transfer and transformation in the testbed while attacks
were performed with attack automata, which were made by
analyzing the attack data. The last step was the presumption

Fig. 2 Small network area data collection

Fig. 4 Virtual isolated malicious software Testbed

Fig. 3 The data collection system architecture for huge area network Fig. 5 Open virtual Testbed structure

124 Mobile Netw Appl (2013) 18:122–128

stage of this research. The network packet data that is available
to the public contains several types of data including: 10 %
sampled data, and 10 %:90 % or 30 %:70 % attack to normal
data ratios. The algorithm used to achieve this is not available
to the public but there must be an appropriate way of mixing
the packet data that is provided to the public.

3.2 Reconstruction of the data collected from the air force
network

The data collected from the Air Force network was recon-
structed using the experimental network shown in Fig. 1.

In this experiment, the data was composed to resemble
the hundreds of personal computers and thousands of work-
stations that actually produced the data. The collection of
network packet data was conducted at the front and back
layer of routers. The collected network data was classified
into sent network data and received network data. The

composition of the data set had a mixture of normal and
abnormal behavior. Normal behavior and abnormal behav-
ior of the Air Force network was automatically executed
according to the personal profile of the user. Furthermore,
the automatic execution used the profiles of automata to
generate packets for behavior expression.

3.3 Worm propagation testbed at Korea University

Networks can be divided into two categories, i.e., small
networks and huge networks area network. This research
defines small networks as those containing 100 hosts or less,
whereas huge networks contain 1,000 hosts or more. The
type of network data also differs at the collection point. In
the first method, data is collected the end host. In the second
method, data is collected by a router in the middle area.
Finally, a Wide Area Network (WAN) gateway has an edge
network router. The source network path also divides each
collection pointer. The research experiment on network data
analysis used a small network and a huge network without
specifying the network data collection method.

3.3.1 Collection of small network area data

Small network area data was collected using an edge node
router for collection, as mentioned above. The data was
collected from a small network below the router. The data
was composed of data generated by the small network,
response packet data from the small network, and all non-
intentional data.

The network structure of the small network area used for
data collection was as shown in Fig. 2.

Data collection used Tcpdump, which is open source
software that uses a standard Pcaplib.

3.3.2 Collection of huge network area data

Huge network area data was collected using a WAN gate-
way as the edge network router. Network data was collected

Fig. 6 Open virtual Testbed structure with a specific victim system

Table 1 Packet collection
results from the first experiment Packet Count First packet Last packet

Mirror 903,661 2011-07-22 15:41:32 2011-07-26 14:33:43

1st DNS(192.168.1.3) 633,170 2011-07-22 14:47:11 2011-07-26 14:29:42

2nd DNS(192.168.1.4) 303,839 2011-07-22 14:47:11 2011-07-25 16:59:15

Time server(192.168.1.2) 242,706 2011-07-22 14:53:19 2011-07-26 14:32:27

Client13(192.168.1.13) 264,150 2011-07-22 14:46:16 2011-07-26 14:35:23

Client14(192.168.1.14) 334,134 2011-07-22 14:44:44 2011-07-26 14:32:21

Client23(192.168.1.23) 263,911 2011-07-22 14:49:01 2011-07-26 14:36:08

Client52(192.168.1.52) 239,423 2011-07-22 15:35:43 2011-07-26 14:38:35

Client53(192.168.1.53) 239,452 2011-07-22 15:34:27 2011-07-26 14:38:02

Client54(192.168.1.54) 239,597 2011-07-22 15:32:56 2011-07-26 14:38:53

Mobile Netw Appl (2013) 18:122–128 125

by recording 1998 host computer behaviors (Fig. 1), which
was different from the method used in the ‘Collection of
Small Network Area Data.’

A large capacity router was used for huge network data
collection on the WAN gateway. The system contained a fast
packet mirroring switch to facilitate that collection of a huge
amount of data. Huge storage middleware was used as a
buffer when the collection of data was faster than recording
allowed, while a large capacity processing system was used
for final storage as shown in Fig. 3.

The amount of data collected averaged 2 GB per minute.
The total collection time was 2 weeks and the total amount
of data collected was 1.5 TB. The header of the network
packet was the final recorded data in this research.

4 Cloud-based testbed

Physical resources found at the lowest level are the
most difficult to share among multiple users. The vari-
ous hardware specifications do not need to be visible to
users; hence, we need a level of abstraction. These
physical resources are actually abstracted first. The
function of the Resource Abstraction and Virtualization
layer is to convert physical resources into virtual resour-
ces. Virtual resources are contained in a resource pool.
Resources can be allocated to users from the resource

pool, and then released back into the resource pool
when they are no longer needed [12].

In this study, we set up a cloud computing environment using
the open source-based Xen [13] 4.1.0 and Linux 2.6.18 to
collect a packet in the cloud virtual environment Windows XP
sp1 was installed on each guest OS. Each of the 40 guest OSs
infected a Bot, which a Bot master controlled. A packet was also
collected from each guest OS zombie PC using a tcpdump on
Dom-0, which generated and controlled a guest OS.

4.1 Virtual testbed capacity

We created virtual environment that could use each comput-
ing node. The virtual computing node has to be similar to
the real Microsoft Windows XP sp1 environment; hence, it
could be infected with the malicious application, which was
Zeus and modified version.

The virtual network should also be similar to the real
environment; hence, a 1 GB network was simulated in the
cloud with 1 router and 1 switchmodule. The switch and route
module model were based on the Cisco Catalyst 3,000 series.

Other virtual nodes were a primary domain name server
and a secondary domain name server. Malicious software
such as Bots usually try to connect to a C&C server while
waiting for a secondary attack order, as with a distributed
denial of service attack. To produce these DNS nodes, we
used the Microsoft Windows XP sp1 system for all nodes

Table 2 Packet collection result
from the second experiment Packet Count First Packet Last Packet

Mirror 1,561,462 2011-07-26 17:28:28 2011-07-28 18:19:23

1st DNS(X.X.217.192) 839,718 2011-07-26 17:07:14 2011-07-28 18:45:34

2nd DNS(X.X.217.193) 41,623 2011-07-26 17:04:36 2011-07-28 19:09:10

Time server (X.X.217.191) 784,318 2011-07-26 17:08:57 2011-07-28 18:50:32

Client13 (X.X.217.198) 892,881 2011-07-26 17:32:37 2011-07-28 18:22:37

Client14 (X.X.217.199) 881,972 2011-07-26 17:31:32 2011-07-28 18:21:12

Client23 (X.X.217.204) 884,145 2011-07-26 17:34:05 2011-07-28 18:23:46

Client52(X.X.217.221) 771,807 2011-07-26 17:40:53 2011-07-28 18:23:26

Client53(X.X.217.222) 811,034 2011-07-26 17:40:21 2011-07-28 18:23:12

Client54(X.X.217.223) 771,616 2011-07-26 17:39:17 2011-07-28 18:22:47

Table 3 Packet collection
results from the third experiment Packet count First packet Last packet

Mirror 387,619,316 2011-07-29 11:00:03 2011-08-01 11:08:11

1st DNS (X.X.217.192) 2,421,275 2011-07-29 10:59:44 2011-08-01 11:15:34

2nd DNS(X.X.217.193) 2,398,922 2011-07-29 11:00:22 2011-08-01 11:16:46

Bot server (X.X.217.204) 3,685,171 2011-07-29 11:01:39 2011-08-01 06:39:11

Client21 (X.X.217.198) 3,351,240 2011-07-29 11:01:36 2011-08-01 06:07:57

Client22 (X.X.217.199) 28,873,821 2011-07-29 11:01:38 2011-08-01 11:02:18

Client24 (X.X.217.204) 19,444,043 2011-07-29 11:01:38 2011-08-01 11:00:59

126 Mobile Netw Appl (2013) 18:122–128

except the domain name server nodes. These DNS nodes
used an Ubuntu Linux-based kernel 2.6.34.

4.2 Framework

Our basic virtual isolated testbed structure is shown in
Fig. 4.

Malicious code infection in the primary system was
assumed to be a zombie because it infected 40 nodes
and the client distribution with malicious code, i.e., one
of the Zeus variant programs that are directed at the
Microsoft Windows system. Input and output packet
data in the virtual environment were compressed and
saved in the pcaplib format. The timeserver was config-
ured to synchronize the virtual node time using a cloud
system’s standard time. Each node was also assigned a
private IP address that was similar to the actual network
configuration. The routing module was assigned like an
actual network to accept an input, while output sequen-
ces changed packets according to the routing module
when packet collision occurred in a large network. The
switch module mirrored all inputs, output data for the
entire network, and provided a node to guarantee a data
transfer rate.

4.3 Malicious bot testing steps

The effectiveness of the malicious code when collecting a
network’s configuration was divided into three steps.

The first is the basic closed network architecture, which
is shown in Fig. 5. We collected the actions of a Zeus Bot
when trying to connect to C&C during this study.

The second step is organized as shown in Fig. 5.
Second configuration allowed a network to respond when

a connection attempt outside C&C was made by infected
zombies. An open network allows a DNS node to respond to
collected data that differs from the first configuration and it
collects C&C communication actions.

The third step is organized as shown in Fig. 6.
The third step collected data using a modified Zeus Bot

until it attacked a specific system. It was configured to
perform a DDoS attack against a victim system using mod-
ified version of the malicious codes from the second stage.

The third step collected all of the zombie’s actions while it
attempted to connect, link, or command C&C, which were
different from the previous steps

5 Comparing binary activities and network activity

5.1 Result of the experiments

Collected data from the different experiments based on
attacks were configured to a general pcap library format,
which was the same as the packet data.

In the first example, the data was collected from a virtual
closed network, as shown in Table 1.

The second experiment used an open network, which
recorded communications by the zombie client outside the
Bot C&C. The results were as shown in Table 2.

In the third experiment (results shown in Table 3), the
Victim system was set up on a Linux server that was ser-
viced on an actual network. This included a DDoS attack on
the open network.

5.2 Packet analysis results

The results were assembled by reverse engineering the
technology to determine whether the network packet
data collected on the actual network was similar to
the virtual experiment network set up on the cloud
network.

We confirmed that the same domain name came out on
the packet and binary at the same time during binary anal-
ysis, to ensure that the domain name was from the actual

Table 4 Abnormal DNS query from a zombie client

No. Time Source Destination Protocol Info

239 2079.385807 163.152.217.201 163.152.217.192 DNS Standard query A s21.cnzz.com

240 2079.396578 163.152.217.193 163.152.217.192 DNS Standard query response CNAME cache.cnzz.com CNAME
a.cnzz.com.lxdns.com CNAME a.cnzz.z.

243 2088.539236 163.152.217.201 163.152.217.192 DNS Standard query A zs21.cnzz.com

244 2088.638373 163.152.217.193 163.152.217.192 DNS Standard query response A 219.232.243.104 A 219.232.241.176

Fig. 7 Fixed domain addresses in the reversed binary code

Mobile Netw Appl (2013) 18:122–128 127

packet data. The code producer had already configured this
correctly. Domain s21.cnzz.com was recorded in the second
experiment, which was a known malware distribution do-
main [14]. The domains shown in Table 4 were identified in
the packet collection.

If the binary code contained a configuration with a mali-
cious feature, we confirm this domain based on the memory
contents at the time of infection. We verified the memory
contents as shown in Fig. 7.

6 Conclusion

In this study, we used a cloud system in a malicious
code-spreading experiment. Current network experiments
that are used to analyze the spread of malicious code
require considerable time and computational resources.
The proposed cloud system can make significant sav-
ings in terms of time and resource costs, while it allows
data collection and analysis muck like an actual net-
work. In the future, we aim to configure a more optimal
method of packet generation, check packet occurrences
in a time sequence, and we will compare an actual
network’s packet distribution with a virtual network’s
packet distribution using the virtual network environ-
ment presented in this paper. This will facilitate more
effective analysis of malicious code distribution.

Acknowledgments This paper is extended research based on an
already published MCCTA 2011 conference paper. This version of
the extended paper includes further experiments and updated sections,
which were the most significant issues.

References

1. Armbrust M, Fox A et al (2009) Above the clouds: a Berkeley view
of cloud computing. Tech Report No. UCB/EECS-2009-28, http://
www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

2. Sharif M, Yegneswaran V et al (2008) Eureka: a framework for
enabling static malware analysis, LNCS Volume 5283

3. Mell P, Grance T (2009) The NIST definition of cloud computing.
Nat Instit Stand Technol 53:50, http://csrc.nist.gov/groups/SNS/
cloud-computing/cloud-def-v15.doc

4. Moreno-Vozmediano R, Montero RS and Llorente IM (2009)
Elastic management of cluster-based services in the cloud, In
Proceedings of the 1st workshop on Automated control for data-
centers and clouds (ACDC ’09) ACM

5. Vaquero LM, Rodero-Merino L, Caceres J and Lindner M (2008)
A break in the clouds: towards a cloud definition. SIGCOMM
Comput Commun Rev 39

6. The Kasumigaseki Cloud Concept. http://www.cloudbook.net/
japancloud-gov.

7. Hiroaki H, Kamizuru Y, Honda A et al (2010) Dynamic IP-VPN
architecture for cloud computing, Information and Telecommuni-
cation Technologies (APSITT)

8. Lippmann RP, Fried DJ, Graf I et al (2000) Evaluating intrusion
detection systems: the 1998 DARPA off-line intrusion detection eval-
uation, DARPA Information Survivability Conference and Exposition

9. Lee W, Stolfo SJ (2000) A framework for constructing features and
models for intrusion detection systems. ACM Trans. Inf Syst Secur 3

10. McHugh J (2000) Testing intrusion detection systems: a critique of
the 1998 and 1999 DARPA intrusion detection system evaluations
as performed by Lincoln Laboratory. ACM Trans Inf Syst Secur

11. Mahoney MV, Chan PK (2003) An analysis of the 1999 DARPA/
Lincoln laboratory evaluation data for network anomaly detection,
LNCS

12. Sotomayor B, Montero RS, Llorente IM, Foster I (2009) Virtual
infrastructure management in private and hybrid clouds. IEEE
Internet Comput vol.13, no.5

13. Xen Cloud platform. http://xen.org
14. ThreatExpert. http://www.threatexpert.com/report.aspx.

128 Mobile Netw Appl (2013) 18:122–128

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://www.cloudbook.net/japancloud-gov
http://www.cloudbook.net/japancloud-gov
http://xen.org
http://www.threatexpert.com/report.aspx

	A Novel Approach to Analyzing for Detecting Malicious Network Activity Using a Cloud Computing Testbed
	Abstract
	Introduction
	The cloud computing service
	Global cloud computing

	Previous malicious network testbeds
	DARPA intrusion detection evaluation
	Reconstruction of the data collected from the air force network
	Worm propagation testbed at Korea University
	Collection of small network area data
	Collection of huge network area data

	Cloud-based testbed
	Virtual testbed capacity
	Framework
	Malicious bot testing steps

	Comparing binary activities and network activity
	Result of the experiments
	Packet analysis results

	Conclusion
	References

