
Mobile Netw Appl (2012) 17:281–297
DOI 10.1007/s11036-011-0335-1

Energy- and Delay-Efficient Routing
in Mobile Ad Hoc Networks

Nicola Costagliola · Pedro Garçia López ·
Francesco Oliviero · Simon Pietro Romano

Published online: 23 July 2011
© Springer Science+Business Media, LLC 2011

Abstract In this paper we discuss how we improved the
MChannel group communication middleware for Mo-
bile Ad-hoc Networks (MANETs) in order to let it be-
come both delay- and energy-aware. MChannel makes
use of the Optimized Link State Routing (OLSR) pro-
tocol, which is natively based on a simple hop-count
metric for the route selection process. Based on such
metric, OLSR exploits Dijkstra’s algorithm to find opti-
mal paths across the network. We added a new module
to MChannel, enabling unicast routing based on two
alternative metrics, namely end-to-end delay and over-
all network lifetime. With such new module, we prove
that network lifetime and average end-to-end delay
improve, compared to the original OLSR protocol im-
plementation included in the mentioned middleware.
Thanks to MChannel’s approach, which implements
routing in the user’s space, the improvements achieved
in the unicast jOLSR routing protocol are transparently
applied to the upstanding MChannel overlay multicast

N. Costagliola · F. Oliviero · S. P. Romano (B)
Computer Science Department, University of Napoli
“Federico II”, Via Claudio 21, 80125 Napoli, Italy
e-mail: spromano@unina.it

N. Costagliola
e-mail: n.costagliola@studenti.unina.it

F. Oliviero
e-mail: folivier@unina.it

P. G. López
Department of Computer Engineering and Maths,
Universitat Rovira i Virgili, Av. Paisos Catalans 26,
43007 Tarragona, Spain
e-mail: pedro.garcia@urv.cat

OMOLSR protocol. We also discuss how the proposed
new module actually represents a general framework
which can be used by programmers to introduce in
MChannel novel metrics and path selection algorithms.

Keywords green networking · mobile Ad-hoc
Networks · delay-and energy-aware routing ·
context-aware optimization

1 Introduction

Mobile Ad hoc Networks (MANETs) are the subject of
many research works in the field of computer networks.
Such an interest is due to the fact that they enable the
creation of infrastructure-less wireless networks, e. g. in
environments in which the infrastructure itself is either
unavailable from the beginning or damaged because of
calamities. On the other side of the coin, ad hoc net-
works introduce new issues, like auto-configuration and
auto-adaptation to changes, while emphasizing well-
known problems of other kinds of wireless networks,
like dynamism, communication interferences and lim-
itation of resources. Other open challenges comprise
scalability, minimum consumption of power resources,
Quality of Service (QoS) and security provisioning [1].
To allow these networks to work, the different layers of
the IP stack and the way in which they exchange infor-
mation between each other, have to be modified. With
regard to the latter point, it has been recognized that
cross layer optimization represents a mechanism which
can bring several benefits in terms of performance [2].
Cross-layer optimization is an approach consisting in
breaking the inter-layer communication approach of



282 Mobile Netw Appl (2012) 17:281–297

the Open System Interconnection (OSI) model, and
allowing protocols at the different levels to share in-
formation. The strict layering approach of the OSI
model allows information exchanging just between two
adjacent levels. Most researchers recognize that strict
layering enables controlled interaction among layers,
because each of them is developed and maintained
independently. On the other hand, cross-layer solu-
tions generate highly coupled code that is impossible
to maintain effectively. A cross-layer solution enabling
user-space applications to access network layer (and
typically kernel space) information, can definitely im-
prove the performance of a MANET. Though, with
such approach we lose the aforementioned advantages
of strict layering, to the detriment of applications porta-
bility. MChannel [3] is a group communication mid-
dleware for ad hoc networks which overcomes this
obstacle by moving the routing protocol to the user
space. With such approach, middleware and applica-
tions can benefit from the knowledge of the underlying
network topology, at the same time avoiding cross-layer
interactions with the network layer. The aim of this
paper is to improve the routing protocol implemented
in MChannel, in order to consider both battery level of
the nodes and delay of the links in the path selection
process. MChannel makes use of the Optimized Link
State Routing (OLSR) protocol, currently based on
a simple hop-count metric and relying on an imple-
mentation of the Dijkstra’s algorithm to find the best
path based on such metric. The mentioned approach
is not sufficient in case we want to take into account
specific performance parameters which are specific to a
MANET. In this work we discuss how we added a new
module to the MChannel middleware, enabling uni-
cast routing based on two alternative metrics, namely
end-to-end delay and overall energy efficiency of the
MANET. We show that network lifetime and aver-
age end-to-end delay improve, compared to the OLSR
protocol implementation natively included in MChan-
nel. Thanks to MChannel’s user-space routing, all the
routing improvements achieved in the unicast MANET
protocol are transparently applied to the overlay mul-
ticast protocol. We also discuss how the new module
can be considered as a general framework made avail-
able to programmers willing to experiment with new
metrics and path selection algorithms. The paper is
organized as follows. Section 2 provides information
about the paper’s rationale and motivation, by present-
ing a brief survey on MANET routing protocols, as well
as discussing the MChannel approach as opposed to
cross-layer optimization. Section 3 is devoted to delay-
and energy-efficient routing and presents state-of-the-
art proposals which can be found in the literature,

with special regard to variants of the OLSR protocol.
The same sections analyzes multi-objective routing, in
which the routing protocol looks for paths which jointly
improve packet latency and network lifetime. Section 4
presents our proposal for a new routing module based
on both energy and delay metrics, which we integrated
in the MChannel middleware. Experimental results are
presented in Section 5, which shows the performance
improvements achievable thanks to the exploitation
of the mentioned new metrics. The same section also
introduces a couple of simulation scenarios in which a
balance has to be struck between minimizing delay and
maximizing the network’s lifetime. The work ends with
Section 6, which provides conclusions and highlights
some directions of future work.

2 Background and motivation

Mobile ad hoc networks are built on top of the IP
stack of traditional networks. Though, because of their
peculiarities, each level of such stack has to be prop-
erly modified in order to optimize the performance
of a MANET. This certainly holds for the network
layer, and to routing in particular, whose criticality has
since long attracted the attention of many researchers.
Among the numerous proposals which can be found
in the literature, cross-layer optimization has gained
significant momentum [4]. Such approach brings in a
critical switch of perspective in the networking com-
munication paradigm, since it envisages that informa-
tion held by a certain layer of the IP stack can be
shared with another layer, even if not adjacent. Many
cross-layer solutions have been actually characterized
by an interaction between the application layer and
the network layer. As an example, the direct knowl-
edge of the underlying network topology has allowed
applications to become location-aware (or even more
generally, context-aware). On the other side of the coin,
it stands clear that cross-layer interactions violate the
general principle of separation of concerns, which is the
key success factor of the strict layering approach and
provides it with desirable functionality like the intrinsic
ease of maintenance. Based on these assumptions, the
work presented in [3] tries to take the best out of
the two mentioned approaches, by leveraging network-
layer information at the application level, at the same
time avoiding to violate the principle of separation of
concerns. Similarly to cross-layer approaches, in fact,
the MChannel middleware enables an application to
be aware of the network topology. Though, unlike
cross-layer solutions, MChannel does not interact with
kernel components running at layer three of the stack,



Mobile Netw Appl (2012) 17:281–297 283

since it moves network layer functionality, namely the
routing protocol, to the user space. The implemented
network layer includes the Optimized Link State Rout-
ing (OLSR) protocol, which enables each node in a
MANET to build the topology of the whole network.
In this section we briefly recall routing approaches in
MANETs. Then, we delve into the most relevant details
of the MChannel solution, which paves the ground
to the main contribution of the paper concerning the
introduction of energy- and delay-aware criteria in
MChannel’s routing process.

2.1 Routing in MANETs

At network level, the routing protocol has to guarantee
that a node can be reached from any other node in the
network. This objective is difficult to achieve because
of the presence of both wireless links and mobile nodes,
which call for dynamic reconfiguration of the the rout-
ing strategy as soon as network connectivity changes.
The classical link-state and distance vector routing pro-
tocols are not suitable in such case, since they have not
been designed for mobile devices with limited resources
and which communicate through wireless links. For
this reason, a number of routing protocols specifically
devised for MANETs have been proposed in the last
years, and some of them have been standardized by the
Internet Engineering Task Force (IETF). Such proto-
cols can be roughly classified in three categories [5]:
proactive, reactive and hybrid.

With proactive protocols (also named table-based)
each node maintains information enabling it to decide
how to route messages towards any other node in the
network. Such information is usually stored in a certain
number of tables (updated over time) providing each
node with a view of the network topology. Differences
among these protocols reside in the way the topology
information is detected and updated, as well as in the
type of information that is stored in each such table.
Protocols falling in this category do not work efficiently
when the topology changes quickly and the number of
nodes is high. In fact, network changes require time
to be spread among the nodes, and the amount of
information to store and update grows linearly with
the size of the network. On the other hand, proactive
protocols guarantee to find the forwarding path in a
very short time, because all the necessary information
is already available when data have to be transmit-
ted. Moreover, they allow to find, in a simple way, a
path based on specific QoS requirements. Destination-
Sequenced Distance Vector (DSDV) and Optimized
Link State Routing (OLSR) are probably the most well
known proactive protocols available nowadays.

With reactive protocols (also named on demand pro-
tocols) a path discovery process is started from a source
which wants to transmit a packet towards a specific
destination. The name ‘on demand’ is due to the fact
that the search of a suitable forwarding path takes place
only when data transmission is needed. Once a node
determines a route, it will maintain this route for the
entire duration of the transmission. In the discovery
process of a route towards a destination, the source
sends route request messages through flooding. Nodes
which know how to reach the required destination,
send back route reply messages; this message exchange
phase goes on until the entire route is defined. The
basic principle of reactive protocols enables a smaller
overhead, because nodes only maintain information
about active routes, instead of keeping in memory an
updated view of the overall network. For this reason,
they are suitable for highly dynamic networks. Their
major drawback clearly resides in the transmission de-
lay incurred when new data have to be transmitted. Ad-
hoc On-demand Distance Vector routing (AODV) and
Dynamic Source Routing (DSR) currently represent
the most widely spread reactive protocols available for
MANETs.

Hybrid protocols try to jointly take advantage of
both the proactive and the reactive approach. Close-
by nodes communicate with each other proactively,
while nodes which are deemed to be too far away
from the source are reached through routes discovered
using a reactive approach. To give an idea of this hy-
brid approach, we briefly introduce the so-called Zone
Routing Protocol (ZRP). ZRP defines, for each node, a
zone that is the set of nodes which are r hops away from
it, where r (radius) is a parameter of the protocol. A
node computes its routing table by means of a proactive
protocol, if the destination node belongs to its zone; a
reactive protocol is otherwise exploited. In the latter
case, when a node has to send data to a destination
node external to the zone to which it belongs, it sends a
route request to its peripheral nodes (nodes reachable
in exactly r hops). If these latter nodes belong to a zone
including the destination, they will route the message
to it, otherwise to their peripheral nodes. The process
iterates until the destination is discovered. Protocols
like ZRP reduce both the typical delays of the reactive
protocols and the communication overhead introduced
by the proactive protocols. Though, fine tuning of the
radius r becomes critical in such case.

2.2 The MChannel approach

MChannel [3] is a middleware designed to support
collaborative applications for MANETs. The basic idea



284 Mobile Netw Appl (2012) 17:281–297

of this middleware is to make applications aware of
the underlying topology, by moving the network pro-
tocol to the user space. MChannel is built on top of a
modified version of JGroups.1 JGroups is a set of soft-
ware libraries allowing an easy development of reliable
multicast applications. It basically consists of a channel,
an abstraction of a multicast communication channel,
and a stack of protocols which carry out actual commu-
nication through the network. MChannel modifies the
JGroups channel and protocol stack, in order to make
them usable from mobile ad hoc network applications.
Two new protocols have been added to it, namely
jOLSR and OMOLSR. The former is an implementa-
tion of the OLSR unicast protocol; the latter is a new
multicast protocol which uses the underlying jOLSR
protocol to improve group communication efficiency.

In addition to jOLSR and OMOLSR, there are two
further protocols (without considering UDP). One is an
adaptation of the JGroups Flow Control (FC) protocol,
which offers flow control thanks to a credit system
based on the knowledge of the topology obtained by
jOLSR. Notice that flow control is not provided by
the native UDP transport-layer protocol, usually used
both in multicast applications and in MANETs. The
other protocol (Reliability) looks after reliable com-
munication, by means of an acknowledgment scheme.
Finally, the MChannel API is a Java Interface which
enables the transmission of messages either to a specific
multicast group or to one of its members. N instances
of MChannel can be created to communicate with N
groups.

The contribution of this paper stems from the men-
tioned work done with MChannel and resides in the
introduction of extended QoS metrics in the path selec-
tion mechanism of the OLSR protocol. In particular, we
herein focus on two metrics to be alternatively chosen
for the routing table computation phase, namely end-
to-end delay and network lifetime. The latter is the time
that can still elapse before exhaustion of the nodes’
battery. At the moment, only a simple hop-count metric
is considered in MChannel. Starting from the graph
provided by OLSR, the Dijkstra’s algorithm computes
the shortest path by solving a Shortest Path Problem
(SPP) characterized by all equal arc costs. In the routing
table, the next-hop to reach a specific destination will
be the downstream node along the computed shortest
path towards it. In the case of the delay metric, the
problem to solve is again the SPP, but this time each arc
cost will depend on the delay experienced by packets
while crossing the arc itself. On the other hand, in the

1http://www.jgroups.org/

case of the energy metric, the problem becomes a Max-
Min Problem (MMP) and costs are associated with the
nodes instead of the arcs. In both cases, two new algo-
rithms are used for the resolution phase. We will show
in the paper how the solutions we devised can be easily
generalized. What we realized is indeed a quite general
framework for the MChannel middleware, enabling the
formulation (and subsequent validation through actual
experimentation) of new optimization problems for the
routing table computation, based on predefined QoS
metrics dependent on ad-hoc computed weights asso-
ciated with either nodes or arcs. The presented imple-
mentations of routing strategies aimed at optimizing
end-to-end delay or network lifetime actually represent
two specific use cases of such general framework. We
will show in the paper that thanks to the application of
the novel routing strategies proposed, average end-to-
end delay and network lifetime improve compared to
the basic jOLSR implementation.

3 Energy- and delay-efficient routing for MANETs

One of the most challenging issues related to MANETs
is by no doubt represented by QoS support [6]. Two
important QoS parameters for a MANET are network
lifetime and average end-to-end delay. With regard
to network lifetime, bear in mind that most nodes in
a MANET are battery powered. For this reason, it
is important to maximize the time before the nodes
fail because of battery exhaustion, in order to avoid
network partitioning and consequent loss of communi-
cation. With regard to end-to-delay, many applications
(e.g. real-time) are characterized by time-sensitive data.
Routing table computation performed by a routing
protocol based on energy or delay measures can ob-
viously improve the two aforementioned parameters.
In this regard, a great amount of energy- and delay-
aware routing protocols for ad hoc networks have been
proposed in the last years [7–15, 21, 22].

In this section we present some of the latter works,
by analyzing their main features and drawbacks. Since
this work is specifically concerned with the OLSR
protocol, we cover in more detail extensions of this
protocol designed to optimize either delay or nodes
lifetime.

3.1 Energy-aware routing protocols

Power consumption in MANETs is an important issue
because all or most of the nodes are battery supplied,
and the communication infrastructure is composed of
the same nodes which are using it. In such context,

http://www.jgroups.org/


Mobile Netw Appl (2012) 17:281–297 285

optimizing energy consumption also means maximizing
the overall usability of the network. Power is required
for both processing (e.g. protocols operations and ap-
plications execution) and communication (e.g. control
and data messages transmission). To reduce the amount
of required power, we can adopt techniques at the
several layers of the protocols stack, paying attention
to the fact that protocol layers are closely coupled
from the power consumption perspective [7]. Research
works about these techniques involve, in particular,
physical, data link and network layers. At the phys-
ical layer, a mechanism for the auto-adjustment of
transmission power is an example [8]. At the network
level, since a significant amount of energy is spent by a
node to transmit packets, the routing algorithm’s path
selection criteria can affect a MANET’s lifetime. The
most relevant energy-aware routing protocols proposed
in the literature can be distinguished by the number of
paths used for the transmissions: there are multi-path
and single-path energy-aware protocols. The solutions
are further classified based on the objective to achieve.
They can try to: (i) minimize the total power needed
to transmit packets; (ii) maximize the lifetime of every
single node; (iii) minimize the total power needed to
transmit packets at the same time maximizing the life-
time of every single node. Some interesting energy-
efficient route selection schemes, falling in one of the
previous categories, are presented in [7] and briefly
described in the following.

Minimum Total Transmission Power Routing
(MTPR) is a routing protocol aimed at minimizing
overall power consumption in MANETs. Given a
source s and a destination d, we denote with Pr the
total transmission power for a generic route r from
s to d. Pr is the sum of the power consumed for the
transmission between each pair of adjacent nodes
belonging to r. MTPR selects the route r∗ such that
r∗ = minr∈R Pr, where R is the set containing all
possible routes from s to d. A simple shortest path
algorithm can be used to find this route. A drawback
of this schema is that a route with a great number of
hops can be selected, with a consequent increase in
both delay and path instability (the latter, due to the
dynamic nature of the MANETs). A more significant
drawback is that, while the total transmission power
is reduced, residual energy of every node is not
considered and the nodes can fail quickly.

Minimum Battery Cost Routing (MBCR) associates
each node ni in the network with a weight fi(ci(t)) =
1/ci(t), where ci(t) is the battery capacity level of ni

at time t. Given a source s and a destination d, if
we say Er the sum of the nodes weights of a generic
route r from s to d, MBCR selects the route r∗ such

that r∗ = minr∈R Er, where R is the set containing all
possible routes from s to d. Such a scheme will always
choose routes with maximum total residual energy.
Nevertheless, this metric does not consider the residual
energy of a single node. For instance, if a route includes
a node characterized by a very low energy together with
others with high energy, such route might be chosen.
Indeed, in this case it would be better to choose a path
in which all the nodes have comparable energy levels,
even though not so high.

With Min-Max Battery Cost Routing (MMBCR),
starting from the above definition of fi(ci(t)), for each
route r from a source s to a destination d, a cost
is defined as Cr(t) = maxi∈r fi(ci(t)). The chosen route
r∗ verifies the relation Cr∗(t) = minr∈R Cr(t). MMBCR
safeguards nodes with low energy level because it se-
lects the route in which the node with minimum energy
has more energy, compared to the nodes with minimum
energies of the other routes. Nevertheless, it does not
take into account explicitly the transmission power con-
sumption, hence resulting in a possible reduction of the
overall network lifetime.

Conditional Max-Min Battery Capacity Routing
(CMMBCR) proposes an approach based on both
MTPR and MMBCR. Let us consider the node of a
generic route r from a source s to a destination d, with
lowest energy. Let also mr(t) be its energy, and R the
set of all the routes from s to d. If some paths with
mr(t) over a specific threshold exist in R, one of these
will be chosen using the MTPR scheme. Otherwise, the
route r∗ satisfying the relation mr∗(t) = maxr∈R mr(t)
will be selected. This scheme suffers from an unfair
increment of the forwarding traffic towards nodes with
more energy [9].

Minimum Drain Rate (MDR [10]) proposes a mecha-
nism which takes into account node energy dissipation
rate, thus avoiding the above problem. MDR defines
for each node ni a weight Ci = RBPi/DRi, where
RBPi is the residual battery power and DRi the drain
rate of ni. Intuitively, DRi represents the consumed
energy per second in a specified time interval. To confer
more precision to this energy dissipation rate estima-
tion, this parameter is computed by each node every
T seconds as: DRi = DRiold + (1 − α)DRisample . DRiold

is the previous computed value of DRi and DRisample

the new one. The parameter α reflects the relative
importance to be given to the past with respect to the
current values of DRi. Obviously, T has to be tuned
appropriately in order to avoid frequent updates. Now,
let Cr be the minimum weight of a generic route r from
a source s to a destination d. MDR selects the route r∗
such that Cr∗ = maxr∈R Cr. In this way, residual energy
level, as well as the energy consumption rate due to the



286 Mobile Netw Appl (2012) 17:281–297

incoming traffic to be forwarded, are jointly taken into
account.

3.2 Delay-aware routing protocols

A routing strategy which allows to reduce the average
end-to-end delay is desirable for all real-time applica-
tions (e.g. video/audio streaming, multi-party games,
real-time control systems), whose utilization is becom-
ing widely spread, even in wireless scenarios. End-to-
end delay is the time elapsing from message generation,
at the source, until message reception, at the destina-
tion. It is composed of the delays experienced between
each pair of adjacent nodes along the path from source
to destination and actually comprises several different
contributions: processing delay (at each stack layer),
queuing delay, transmission delay and propagation de-
lay. In the literature, there are not so many routing
protocols designed to optimize the end-to-end delay,
compared to energy-aware routing protocols like those
mentioned in the previous section. In the following, we
introduce some of them, by just focusing on proposed
extensions to reactive protocols. A separate section is
then devoted to the proposed extensions to OLSR,
which is of special interest for us, since the solution we
propose is built on top of it.

Seminal work on QoS-enabled routing in MANETs
can be found in [11]. The Quality of Service for Ad
hoc On-Demand Distance Vector Routing protocol is
an extension of AODV specifically conceived for QoS.
Authors of [12] have proposed the Split Multipath Rout-
ing (SMR) protocol. With such protocol, the source
node floods an RREQ message in order to find a route
to the destination node. All the nodes involved in the
discovery process insert in the RREQ the address of
the node from which they have received the message
(like in DSR). Since these nodes do not discard the
duplicated RREQ, the destination node will learn sev-
eral alternative routes, so it can select multiple dis-
joint routes and send an RREP to the source node
along them. In the mentioned work, the authors have
decided to consider the case in which the destination
node selects only two disjoint paths. The first chosen
path is the one discovered first, i.e. the path with the
potentially shortest end-to-end delay; the second path is
the path maximally disjoint from the first one. Once the
first route is available for the source, data transmission
via this route will start. When the second route is also
known, both paths will be used by using a per-packet al-
location algorithm. Clearly, the usage of two (or more)
paths can reduce the overhead caused by the discovery
process of a new route, in case of route failures.

3.3 Power and delay in the OLSR protocol

Several works have focused on extending the OLSR
protocol in order to offer QoS guarantees. This is
mainly due to the fact that OLSR is a link state pro-
tocol, and at the same time it introduces a limited
overhead thanks to a controlled flooding. Link state
protocols have the advantage of offering a complete
view of the network topology, and potentially of its
quality level. In fact, the control messages used to carry
topology information might also carry information like
links stability, links delays, nodes energy level, etc.. A
recent work about the introduction of QoS features in
OLSR is described in [13]. The same work also provides
a critical overview of the most well known extensions
of OLSR for QoS provisioning. In the following, we
focus on the mechanisms devised to take into account in
OLSR two QoS parameters, namely energy and delay.

Quality of Service-OLSR (QOLSR) represents one
of the first projects aimed to provide OLSR with QoS
capabilities. In QOLSR the HELLO and TC messages
carry, for each advertised link, a set of related QoS
metrics (by default, bandwidth and point-to-point delay
estimations made by each node). In this way, each node
can build a weighted graph where link weights reflect
the QoS metrics associated with each link. Based on
this graph, different strategies can be used for path
computation. In [14], the point-to-point delay between
two neighbors is computed as follows. The HELLO
message contains its creation time. When a node re-
ceives it, it subtracts the creation time from the current
time in order to obtain a delay estimation. To take
into account also the previous estimations, the actual
point-to-point delay is computed as: averageDelay =
averageDelay + (1 − α) · measuredDelay. This simple
mechanism assumes that a synchronized network is
available, so that all the nodes can refer to a global
clock. The route from source s to destination d is se-
lected by a modified version of the Dijkstra’s algorithm,
which finds the path with maximum bandwidth (where
the bandwidth of a path is equal to the minimum band-
width of a link in the path). If the algorithm determines
more paths with maximum bandwidth, the path with
minimum delay is selected. In [15], the mechanism for
evaluating delay becomes more complex. The end-to-
end delay referred to a single hop is expressed as a
function of parameters specific of the IEEE 802.11
Medium Access Control (MAC) protocol, combined
with interference measures.

The Constrained Minimum Drain Rate (CMDR) [9]
protocol computes routing paths which reduce energy
consumption, thus increasing the nodes lifetime. Let us



Mobile Netw Appl (2012) 17:281–297 287

consider the node of a generic route r from a source
s to a destination d, with lowest energy. Let mr(t) be
its energy, and R the set of all the routes from s to d.
If some paths with mr(t) over a threshold exist in R, a
route among them will be chosen using the Maximum
Transmission Power Routing (MTPR) scheme we al-
ready mentioned in the paper. Otherwise, CMDR se-
lects the route r∗ by means of the Minimum Drain Rate
scheme, also mentioned above. With this approach,
both energy consumption and residual energy of the
nodes are considered when choosing the next-hop. In
fact, as far as the nodes in the network have sufficient
energy, we can optimize the power consumption caused
by the transmission of a message. Instead, when most of
the nodes in the several paths towards the destination
have a low battery level, MDR optimizes their energy
expenditure.

The work in [13] has been specifically conceived to
improve the performance of voice applications. Net-
work information is associated with all the network
links and consists of estimations of point-to-point delay,
delivery probability and data-rate, computed between
two adjacent nodes. With regard to point-to-point de-
lay, this is estimated by means of a Global Positioning
System (GPS) module (which offers a sort of a global
clock to all the nodes in the network), in conjunc-
tion with send-time information included in HELLO
messages. In practice, this approach is similar to the
one described in [14], with the difference that in this
case a GPS module is used for nodes synchronization.
Each node computes the three aforementioned link
parameters for all its outgoing/incoming links, and it
spreads such information across the network through
the OLSR control messages.

Minet et al. [16] propose some alternative solutions
to make OLSR energy-aware with respect to the rout-
ing table computation. In one of them, the route selec-
tion algorithm chooses as next-hop the node belonging
to the path which causes the lowest energy consump-
tion. To identify such node, the Dijkstra’s algorithm
is applied to the network graph of the forwarder. All
the links i → j in this graph have a cost equal to the
energy spent to transmit a packet across them. This
energy is given by: eij = etrans + n · erecv, where etrans and
erecv represent the energy for a single transmission and
reception respectively, and n is the number of non-
sleeping nodes placed in the interference zone of the
transmitter i. A different solution uses the multipath
source routing: the source determines two different
paths, switching from one to the other for each packet
to transmit. The chosen path is also included in the
data packet, so that each forwarder selects the next

hop according to the path computed by the source. The
source computes the paths in two different ways:

1. one path by Dijkstra’s algorithm, in order to
minimize the energy consumption resultant from
packet transmission (as with the first mechanism
described); the other path is determined in the
same way, after deleting all the links composing the
previous path;

2. one path is computed by Dijkstra’s algorithm, as
above; the other path is determined in the same
way, after deleting all the nodes belonging to the
previously selected path.

Simulations show that the solution which adopts a
single path source routing performs the best, both with
regard to the network lifetime and with regard to the
percentage of user data delivered.

3.4 Multi-objective routing in Ad Hoc Networks

An original way to solve the path selection issue, at
the same time offering QoS guarantees, is to consider
it as a multi-objective (MO) optimization problem.
Given a source and a destination, we move the focus
from the research of the path that minimizes a scalar
function (e.g. the number of hops) to the research
of the path that optimizes a vectorial function. Each
component of this function represents a performance
facet, like throughput, delay, energy, robustness, etc.
The different objectives take into account the several
application requirements. The characteristics of the
environment are included both in the expression of
the objective function and in the mathematical rela-
tions representing the constraints of the optimization
problem. In this kind of problems we have to find a
Pareto solution, in the so-called Pareto set. For this
purpose, a lot of techniques exist, some of which are
exact while others based on heuristics. Since MO mod-
eling is usually applied to complex systems, heuristics
are preferred. Among them, Evolutionary Algorithms
(EA), and in particular Genetic Algorithms (GA) play
a major role. Several works have proposed MO ap-
proaches to routing optimization in MANETs. In [17], a
probabilistic network model comprising link and node
probabilities is defined. The optimization problem’s
variables are the throughputs of the network nodes,
on which the value of a node presence probability de-
pends. The latter value is used to discriminate whether
or not a node belongs to the routing path. A Pareto
solution is found through exhaustive search because of
the limited size of the network used for the simulations,
but authors propose also meta-heuristic algorithms for



288 Mobile Netw Appl (2012) 17:281–297

the model they have created. The parameters of the
model are related to the different layers of the protocol
stack (e.g. path loss attenuation factor for the physical
layer) and they characterize both the network and the
communication pattern. Delay, robustness and energy
are the performance figures to be optimized. The au-
thors of [18] have proposed to solve the route selection
problem by means of the so called Evolutionary Ad hoc
On-demand Fuzzy Routing (E-AOFR). Such module
has been implemented on top of a reactive routing pro-
tocol, but it can also be adapted to a proactive protocol.
The cost of a route is a function of four metrics: (i)
remaining battery capacity at a node; (ii) buffer length
at an intermediate node; (iii) link stability between two
intermediate nodes along the route; (iv) number of
intermediate hops along the route. Each node, during
path discovery, computes a part of this cost by using
fuzzy logic, and the destination node selects the path
with minimum cost. The selected route should minimize
the end-to-end delay, while maximizing both packet
delivery and lifetime of the batteries.

MO analysis is widely used to improve the perfor-
mance of MANETs, and not only for the computation
of the best route. For example, in [19] a methodological
approach to the selection of the parameters of a generic
routing protocol is proposed. The set of parameters is
seen as a solution of a MO problem (whose objectives
are the minimization of both dropped packets and
transmission delay) which is solved through a genetic
algorithm. In the following, we mention some works
which do not consider explicitly the MO analysis, but
nonetheless define a routing mechanism which finds
paths considering more metrics at a time. With regard
to delay and energy guarantees two distinct approaches
can be found in the literature: (i) routing based on delay
and energy constraints (typically through extensions to
reactive protocols [21, 22]); (ii) routing based on the
discovery of paths which jointly optimize average end-
to-end delay and energy depletion. An interesting ex-
ample of the latter approach is represented by the Op-
timized Energy-Delay Routing Protocol (OEDR) [20],
which is a variant of OLSR considering energy and
delay both in the MPRs selection and the routing table
computation phases. Every time a node receives a HE-
LLO message, it estimates end-end-delay and transmis-
sion energy towards all its neighbors. Since the way to
estimate the delay is similar to [14], OEDR assumes
the presence of a synchronized network. Thanks to
HELLO and TC messages, this information is spread
through the network so that all nodes can build a
weighted graph with link costs equal to the mathemat-
ical product between energy and point-to-point delay.
Unlike OLSR, OEDR determines a minimum spanning

tree for routing packets, instead of a shortest path for
each destination.

4 Introducing energy- and delay-efficient
routing in MChannel

After analyzing both the background and the related
work, we eventually arrive at the core contribution of
this paper. We herein propose a new module we de-
signed and implemented in the MChannel middleware
so as to enable it to perform either delay-aware or
energy-aware routing. The former case requires esti-
mations of point-to-point delays, considered as costs
associated with network links; the latter, calls for ad-
equate estimations of nodes’ energy levels, which are
used as costs associated with network nodes. Such costs
represent the input of the algorithm which computes
the routing table. In this section, we first define the
requirements of the new module; then, we describe the
design and the implementation of our solution.

4.1 Problem statement

The routing algorithm’s goal is to define a next-hop for
data transmission from a source node s to a specific
destination node d, by finding a path which meets a
requirement related to a certain metric. In the simplest
case, the number of hops of the path has to be minimum
between s and d; the native OLSR is an example. In
general, metrics different from the hop-count or also
more QoS metrics at the same time, can be considered.
We can formulate the routing problem in this way. Let
Psd be the set of all the possible paths between s and d.
The path p∗ to choose, has to optimize a vector function
of the following type:

−→z (p) = (z1(p), z2(p), . . . , zn(p)) (1)

where p is a generic element of Psd and {zi(p)}i=1,...,n,
the set of considered metrics. In practice, {zi(p)}i=1,...,n

are cost functions which, for a given path, return a real
number. Equation 1 defines the objective function of a
multi-objective problem. The solution we usually have
to find for this kind of problems is a Pareto solution.
For this purpose, a lot of techniques exist, some of
which are exact while others heuristic. In most of the
cases, heuristics are preferred because they find a good
enough solution in a reasonable time.

The first issue we had to face was the design and
implementation in MChannel of a general framework
enabling programmers to implement a specific path
selection strategy based on the routing problem defined
above. In other words, jOLSR should be able to route



Mobile Netw Appl (2012) 17:281–297 289

requests based also on metrics different from the simple
hop-count. The values {zi}i=1,...,n to be associated with a
generic path p, depend on a set of weights (or costs)
related to both the nodes and the arcs belonging to
p. The weights to consider, the function in Eq. 1 and
the resolution algorithm employed are all decided and
implemented by the programmer.

Once done with this phase, we also focused on the
design of an example of use of the framework. We
chose to consider two different weights, associated, re-
spectively, with arcs and nodes. Arc weights depend on
the point-to-point packet latency of a link; node weights
represent values depending on each node’s residual
energy. An application programmer can choose a path
selection strategy (in jOLSR), which either minimizes
the average end-to-end delay or maximizes the overall
network lifetime. To the purpose, we consider two
different kinds of functions, named ze and zd, respec-
tively.

Let us consider the following notations, in addition
to those used above:

– ei: node’s weight, depending on the node’s battery
level;

– ep: weight of a generic path p ∈ Psd, depending on
ei;

– dij: arc’s weight, depending on the point-to-point
packet latency;

– dp: weight of a generic path p ∈ Psd, depending on
dij.

The functions ze and zd to be optimized are:

ze(p) = ep (2)

zd(p) = dp (3)

This second problem requires to: (i) define the above
costs and find a way to compute them; (ii) define the
relations in Eqs. 2 and 3; (iii) choose two suitable
algorithms to solve the corresponding problems; (iv)
implement the cost computation mechanisms, as well
as the identified algorithms in MChannel, by exploiting
the novel framework.

4.2 Design

Currently, routing in MChannel is executed by jOLSR.
The routing table is computed based on the well-
known data structures employed in the standard OLSR
protocol: Link Set (LS), Topology Set (TS), Neighbor
Set (NS) and 2-hop Neighbor Set (NNS). In general,
a node updates these tables upon arrival of either a
HELLO or a TC message (which indicate changes

concerning either the network topology or the status
of a specified link). As soon as a change occurs in
one of the aforementioned tables, the routing table is
recomputed by means of a route computation process
based on Dijkstra’s algorithm.

We have introduced in jOLSR a new table called
QoS Costs Set (QCS) and we have changed the for-
mat of the above mentioned control messages, as well
as their respective elaboration. The QCS table stores
the costs associated with both links and nodes. The
HELLO message has been modified in order to let it
carry, for each neighbor it includes, the estimated costs
related to the link between the advertised neighbor
and the message sender, as well as the node cost of
the advertised neighbor. The TC message includes the
same additional information, but this time referred to
the advertised destinations.

In Fig. 1 we depict the structure of the QCS for a
generic node n (in this case we report a single cost for
each node and a single cost for each link).

When a node n receives a HELLO message, it deter-
mines the costs of each link towards all its neighbors.
Such costs are then inserted in the HELLO messages

Fig. 1 The QoS costs set table



290 Mobile Netw Appl (2012) 17:281–297

sent by node n. In this way, each neighbor of n can learn
the costs of the links between n and its neighbors (the
so-called 2-hop neighbors). Since the advertised nodes
in a TC message are neighbors (MPR Selector Set),
such information can be also spread in the network, so
that each node knows the costs of all the links. The node
costs are computed by each node and spread through
the network together with the node addresses, included
in the TC and HELLO messages. Node and link costs
are stored in the QoS Costs Set (QCS) and used to
compute the routing table. Notice that the QCS is up-
dated more frequently than the OLSR tables, because
the costs change more frequently than the topology.
Since a modification of one of the tables causes the
re-computation of the routing table, we can adopt two
solutions to reduce the overhead. One is to define a
re-computation period N in terms of number of QCS
table changes. Alternatively, the re-computation can be
done when the differences between old costs, stored
in the QCS, and new costs are relevant, e.g. over a
certain threshold T. In these cases, N or T represent
parameters that have to be opportunely tuned.

4.2.1 Energy-aware routing in jOLSR

To enable jOLSR to execute an energy-aware rout-
ing, the cost to assign to the nodes (ei) is computed
as follows [10]: ei = RBPi/DRi, where RBPi is the
residual battery energy and DRi the drain rate of ni.
DRi is evaluated every T seconds as an average of both
new and past values: DRi = DRiold + (1 − α)DRisample ,
where DRiold is the previous computed value of DRi,
and DRisample the new one.

If ep is the minimum node’s weight of a generic path
p ∈ Psd, we have to find a path p∗ such that:

ze(p∗) = maxp∈Psd ep (4)

Thanks to this mechanism, a good compromise be-
tween preserving the nodes with a lower energy and
fairly exploiting the other nodes, is achieved. Equa-
tion 4 defines a max-min problem, which means that
the energy-based metric is concave [14]. To solve such
problem, we have chosen a variant of the well known
Bellman-Ford algorithm, originally proposed in [23].

4.2.2 Delay-aware routing in jOLSR

To enable jOLSR to execute a delay-aware routing, we
define as link cost dij the point-to-point packet trans-
mission latency of the link (i, j). To compute such cost,
we have designed a novel technique, which avoids the
need of synchronization of the nodes in the network,

by smartly exploiting the periodicity of the control mes-
sages typical of OLSR. The designed scheme envisages
the use of OLSR acknowledgment messages (ACKs)
and control messages. Here is how it works. We know
that a node i sends periodically a HELLO to its neigh-
bors. After the reception of N HELLO messages, each
neighbor j responds with an ACK. Node i can estimate
the delay of link (i, j) by subtracting the sending time
of the Nth HELLO from the reception time of the
ACK, hence dividing the result by 2. N is a parameter
to properly choose (a typical value of N might be, for
example, 4). Once a node has made such a delay esti-
mation, it spreads this information through the network
exactly as described previously for a generic set of link
costs. As stated in [13], when we estimate the values of
the point-to-point delay on the links, we do not need
to obtain their exact values but rather to ensure that
they meet the actual ordering relation among the real
delays. Given two estimations on the links (i, j) and
(i, k), let say them dij and dik, and the respective real
delays dij

real and dik
real, if dij

real < dik
real then dij < dik. If

dp = ∑
(i, j)∈p eij is the path delay (sum of the link delays

of the path), we have to find a path p∗ such that:

zd(p∗) = minp∈Psd dp (5)

Equation 5 defines a shortest path problem, since the
delay metric is additive. To solve this problem, we have
chosen an implementation of the Dijkstra’s algorithm
which is completely different from the implementation
of the same algorithm provided by both MChannel and
OLSR, since these last ones can be used only when the
simple hop-count metric is adopted. Our version can
instead be used to compute routes using any type of link
costs.

4.3 Implementation

The new module we herein describe, named QoS-
routing (QoSR) (see Fig. 2), implements the general
framework we designed to provide routing mechanisms
based on specific QoS metrics.

It is organized in three packages:

– urv.olsr.qosrouting.data, containing all
the data structures used by QoSR;

– urv.olsr.qosrouting.routescomputation,
providing the algorithms used for the computation
of the paths fulfilling the given QoS constraints;

– urv.olsr.qosrouting.util, containing all
the classes required for the computation of the
estimations used in the optimized routing.



Mobile Netw Appl (2012) 17:281–297 291

Fig. 2 The QoS-routing
module

The class OLSRnodeQosCosts represents the set of
costs associated with a node. QosCostsTable and
QosCostsTable- Entry implement the QoS Costs Set
(QCS). The interface QosRoutingTableComputation

Controller defines the algorithm used to compute
the routing table. With regards to the example of
use of this framework, that is the development of
the above described routing mechanisms based on en-
ergy and delay metrics respectively, the framework has
been used as follows. The classes OLSRnodeQosCosts,
QosCostsTable, QosCostsTableEntry include a cost
for each link and one for each node. QosRouting-

TableComputationControllerDijkstra and QosRou-

tingTableComputationControllerMaxMin are im-
plementations of the interface QosRoutingTable-

ComputationController used respectively for delay-
and energy-aware routing in jOLSR. Actually, these
classes implement generic algorithms usable for the
computation of routing tables based on the resolu-
tion of max-min and shortest path problems. Addi-
tionally, we have developed other classes and modified
some existing classes of MChannel. The new classes
are DelayTimer, which is the timer needed for de-
lay estimations, and NeighborsDelayTable, an aux-
iliary data-structure used for the same purpose. The
main classes of MChannel we have modified are
OLSRNode, which is the representation of a node run-
ning OLSR, and the classes TcMessageHandler and
HelloMessageHandler. The modification of the first
class has been made because we have implemented the

costs of a node as a new attribute of the same class. The
second modification was needed to enable handlers to
update the QoS Costs Set upon reception of a control
message. An application programmer can now choose
if the selection path strategy in jOLSR has to optimize
the number of hops, the nodes lifetime or the average
end-to-end delay, by setting a configuration parameter
of MChannel.

5 Trials and experimentations

In this section, in order to qualitatively appreciate the
correct behavior of the new module introduced, we first
of all provide some trivial examples showing how the
optimized routing works. A first example shows how
the module set up for an energy-aware routing avoids
to select the path in which there is a node with low
energy. A second example will show how the module
set up for the delay-aware routing chooses the path with
minimum end-to-end delay.

5.1 Qualitative evaluations

In the example of Fig. 3, node 1 has to send a data
message to node 5. The figure shows the routing table
of 1 computed by MChannel compared to the one
computed by the version of MChannel making use of
the new module. The former defines the next-hop by
using the hop-count metric. In this case, all the routes



292 Mobile Netw Appl (2012) 17:281–297

Fig. 3 A simple example of energy-aware routing

to 5 have a cost of two hops, so the choice of the next-
hop is random and node 2 is selected. The latter chooses
a route in which the minimum energy of a node is
maximum, compared with the minimum energy of the
other routes. In this case the next-hop is node 4, which
is characterized by a higher residual energy.

Fig. 4 A simple example of delay-aware routing

In Fig. 4, MChannel works as usual (simple hop
count metric); hence, it does not take into account
the delays of the several links. On the contrary, the
improved version of MChannel selects the path with
minimum end-to-end delay.

5.2 Quantitative evaluations

We now describe some experimental results related to
our proposed extension of MChannel, which show the
achieved improvement with respect to both network
lifetime (Energy-aware MChannel—EMC) and aver-
age end-to-end delay (Delay-aware MChannel—DMC).
Network lifetime can be defined in several ways [8]: (i)
the time before the first node fails, (ii) the time before a
MANET application cannot work, because a sufficient
number of nodes is not available and (iii) the time be-
fore communication between each pair of nodes in the
network is no longer possible (network partitioning).
On the other hand, the average end-to-end delay is the
end-to-end delay averaged considering all the possible
source-destination pairs in the network. We report also
some experiments executed with scenarios in which the
requirements of lifetime and delay are not compatible.
In fact, if we analyze the two implemented mechanisms,
we can deduce that they might achieve similar results
in terms of both average delay and network lifetime.
Nevertheless, we have found scenarios characterized
by a different behavior of the energy and delay aware
routing protocols. Mchannel provides an emulator (see
Fig. 5) which can be used to test applications.

Inside the emulator, the UDP level has been re-
placed with a virtual one: instead of delivering messages
through sockets, local queues of messages are used.
With such an approach, sending a message to a neigh-
bor through a socket actually translates into inserting

Fig. 5 MChannel’s emulator



Mobile Netw Appl (2012) 17:281–297 293

Fig. 6 Network topology used in the trials

it in the neighbor’s message queue. The employed em-
ulated network is provided to the emulator by means
of a Pajek file.2 The advantage of such an instrument is
that no modification to an application is required when
it comes time to deploy it on an actual network.

The scenario we have used for the emulations in-
cludes 15 static nodes (the network topology is reported
in Fig. 6). We have no trial involving mobile nodes. This
is due to two main reasons. First of all, we have not
designed a brand new protocol; hence, there was noth-
ing new we might have discovered in case of mobility.
Furthermore, the employed metrics are associated with
properties of the network nodes which have no strict
relation with their mobility. The communication model,
the initial node energy levels, as well as the delay values
used in the emulations are different in each of the tests,
and thus provide a reliable basis for the performance
considerations we are going to derive from the trials.

5.2.1 Network lifetime

Since we have used emulations to perform tests, we
had to develop a model for energy consumption. An
implementation of such model has been integrated in
each emulated node, so as to simulate the energy de-
crease due to message transmission and reception. The
mentioned model is similar to the one used in [10]
and [9]. We assume that all the nodes are equipped with
a network interface with a 54 Mbps transmission rate
(as in IEEE 802.11g). The energy necessary to transmit

2http://vlado.fmf.uni-lj.si/pub/networks/pajek

a packet p from a node is computed as: E(p) = v · i ·
t(p) Joules, where v is the voltage, i the current and
t(p) the time needed to transmit the packet. Voltage
has been set to 5 V, transmission current is 280 mA,
reception current is 240 mA. The time t(p) is computed
as (size(p))/(54 · 106). We do not take into account
overhearing (i.e. node energy consumption caused by
the reception of traffic not directed to the node, but
inevitably heard).

In the first test, nodes 6, 9 and 10 belong to the
same multicast group. Node 6 sends 200 application
messages to the group. All the others, except the three
nodes in the group, have a very low energy. Figure 7
reports the number of alive nodes as a function of
the number of transmitted messages. This figure shows
how the routing algorithm influences the network life-
time during a communication session, both in the case
of MChannel in its plain version and in the case of
MChannel optimized in order to work with energy-
aware path selection (‘MChannel opt’ in the picture).

We see that a higher number of nodes fail in MChan-
nel, compared to its energy-optimized version. The
reason is that the native version uses the hop-count
metric, without taking into account the residual en-
ergy of the nodes in the network. With the energy-
optimized version, instead, each node in the network
selects paths which exclude low energy nodes. Control
messages spread information about each node’s status
through the network. Figure 8 reports the distribution
of residual energy of the nodes in the network, in a
scenario where node 6 sends 500 messages to its multi-
cast group and all the nodes have maximum energy. We
notice that, in case of energy-aware routing, nodes are
exploited for the data forwarding in an almost uniform
way. In the other case, some nodes are used more than

Fig. 7 Network lifetime

http://vlado.fmf.uni-lj.si/pub/networks/pajek


294 Mobile Netw Appl (2012) 17:281–297

Fig. 8 Nodes battery level distribution

others and this reduces the network lifetime. For in-
stance, node 6 exploits node 1 quite intensively because
this is the best next-hop for the data transmission (when
using the hop-count metric). In this case, the energy of
node 1 decreases quickly. In the first case, however, the
transmission overhead is distributed between nodes 1
and 13. In general, the optimized routing results in a
uniform distribution of energy expenditure among all
the nodes in the network, and it increases the time
which elapses before network partitioning. We do not
report the values of nodes 6 (the sender) and 15, be-
cause they are not involved in packet routing.

As a further remark, we show the advantage result-
ing from the use of a node cost depending on the energy
reduction rate of the node. In this scenario, node 10 has
a data connection with node 2. All the nodes have a low
energy, except nodes 8 and 3 which have a maximum
battery level. If a node’s cost depends on its residual
energy (without considering the drain rate), the route
selection scheme always chooses route 8 − 3 − 2, be-
cause nodes 8 and 3 have maximum energy. If the
drain rate component is considered, the transmission
overhead is distributed among more paths, resulting
in a reduction of energy expenditure in nodes 8 and
3. Figure 9 shows the trend of the residual energy in
node 8.

As it comes out from the picture, the drain rate
causes a fair exploitation of the nodes, but it also pre-

Fig. 9 Residual energy in node 8

vents the incoming links of nodes with higher energy
(e.g. node 8) from becoming congested. If we take into
account both residual energy and energy consumption
rate, we strike a balance between preservation of nodes
with low energy and overhead reduction of nodes with
higher energy.

5.2.2 Average end-to-end delay

In order to evaluate the average end-to-end delay, we
set up a communication scenario which is the same as
the one used for the energy consumption experiments,
with the only difference that in this case energy values
have been randomly set since they are not the subject of
our investigations. We compare native MChannel with
the new version configured so as to perform a delay-
aware routing. The synthetic delays introduced in the
links are random. We consider two cases: the former
in which the link delay values are characterized by a
low variance (i.e. they differ only slightly between each
other); the latter in which they show, on the contrary, a
large variance. Figures 10 and 11 compare the average
end-to-end delay of the network in the two cases above.

First of all, the figures indicate a reduction of the
average end-to-end delay in both cases. We further
remark that, when link delays are comparable, the
resulting improvement is smaller with respect to the
alternative case. In fact, when the differences among
link delays are not relevant, the optimal path chosen by
the native hop-count metric might match the minimum
delay path identified by the optimized version of the
middleware. In the opposite case, it is more likely that
we eventually find a path in the network with more
than the minimum number of hops, but nonetheless
characterized by a shorter end-to-end delay. In this

Fig. 10 Average end-to-end delay: low variance scenario



Mobile Netw Appl (2012) 17:281–297 295

Fig. 11 Average end-to-end delay: high variance scenario

case, Dijkstra’s algorithm based on the hop-count does
not select the same path as the delay-aware selection
scheme.

5.2.3 Energy vs delay metric

In the following test we consider two different scenar-
ios. With the former, we will show that the adoption
of delay-aware routing can negatively affect energy
performance. In the latter, we instead demonstrate how
energy-efficient routing can result in a higher end-to-
end delay. In both cases, we use the novel module with
either the energy-aware or the delay-aware algorithm
alternatively activated. The tests show two cases in
which delay-aware and energy-aware routing behave
differently. In fact, we can easily understand that there
are cases in which the paths selected are the same. For
example, if we find a path with the minimum delay, the
same path might also be selected by using the energy
metric. The reason is that the energy cost of a node
includes an estimation of its energy dissipation rate,
which increases or decreases during the transmission.
Now, if this rate is high, i.e. the node is forwarding
many packets, the delay of its incoming links might
also be high. In this case, both Dijkstra and the max-
min algorithm might not choose that node as an ideal
forwarder. The section concludes with a further com-
parison between one of the two advanced metrics and
the native hop count approach.

In the first scenario, node 10 sends 100 unicast ap-
plication messages to node 2. All the nodes have a
high battery level, except node 8 (whose level is 10%).
We observe the trend of node 8’s battery level as a
function of the number of messages sent, both in the
case of DMC and in the case of EMC (Fig. 12). To

Fig. 12 Scenario 1

better notice the contrast between the two considered
routing strategies in this scenario, we consider only the
decrease of energy caused by data traffic.

As expected, energy-aware routing works better be-
cause, unlike its delay-aware competitor, it takes into
account the low battery level of node 8. With EMC,
energy remains constant because the routing table of
node 10 does not indicate node 8 as next-hop towards
the destination 2. Hence, node 8 does not forward
traffic to node 2. Instead, DMC selects the path based
only on the link delays, and more often than not it
happens to select node 8 as a next-hop.

In the second scenario, node 10 sends unicast mes-
sages to node 2; all the nodes have the same battery
level and the delays on the links are random. Figure 13
compares average end-to-end delay of EMC and DMC.

Fig. 13 Scenario 2



296 Mobile Netw Appl (2012) 17:281–297

We have explained above a similarity between the
delay and the energy-based metrics. In this scenario,
since all the nodes have the same battery level, the
energy rate component has a heavier impact on routing
decisions. Nevertheless, in the presence of random de-
lays on the links, EMC uniformly distributes among the
network nodes the overhead associated with message
forwarding; though, it does not consider the random
delay introduced by the links. For this reason, it works
worse than DMC.

As a last experiment, we compare the average num-
ber of hops in the cases of native MChannel, EMC and
DMC. It is obvious that in this case the native MChan-
nel outperforms its two extensions, because it optimizes
the hop-count metric. DMC, in turn, performs slightly
better than EMC, because delay minimization can often
bring to the selection of paths with fewer hops (Fig. 14).

For the benefit of the readers, we finally describe (at
a very high level) a typical scenario where the EMC is
preferable to the DMC. If the nodes in the network
run an intensive computing application characterized
by a rare communication, the main cause of energy
consumption would not be due to the transmission
and reception of messages but rather to the frequent
computations. In this case, a high energy drain rate on
a node is not due to a notable traffic on the incom-
ing/outgoing links. Hence, while the energy-aware rout-
ing would not consider such node as a good candidate
for a potential forwarding path, the delay-aware routing
might do so. In this case, the adoption of DMC would
most probably result in a shorter network lifetime.

Indeed, the choice of one or the other routing strat-
egy is strictly related to both the specific application
considered and the network conditions (especially in
terms of nodes battery level). For instance, real time
applications might work better with DMC than with
EMC. Nevertheless, if some nodes have low energy
and there is the risk of network partitioning, EMC is
definitely more indicated. The combined adoption of

Fig. 14 Scenario 3

both strategies represents a further option. Based on
the application requirements, a node can start with
DMC, and once one or more nodes in the network
reach a specified threshold of residual energy, it can
switch to EMC in order to best adapt to the new
situation.

6 Conclusions and future work

This work has analyzed ways to optimize both delay
and energy metrics in Mobile Ad-hoc Networks. We
have proposed and evaluated two extensions of the
OLSR protocol aimed at considering the mentioned
metrics. Experimental results have demonstrated that
such extensions overcome MChannel with regard to the
above metrics.

In fact, our tests have shown that the new routing
module we added to the MChannel middleware has a
positive impact both on network lifetime and end-to-
end delay. In particular, energy-aware routing allows
for a prolonged duration of the network nodes, when
compared to the native OLSR implementation based
on shortest path routing. We guarantee a uniform uti-
lization of the nodes involved in the data forwarding
phase, which results in extended lifetime of the nodes
themselves, as well as improved network availability.
Similarly, delay-aware routing entails an improvement
in terms of average end-to-end delay. Such improve-
ment is greater if the link delays differ significantly
between each other. We have also discussed the mutual
impact of the two metrics we introduced, by showing
that, even though in the most general case they find
similar paths, scenarios exist in which the choice of a
particular metric negatively affects the performance of
the other.

Different extensions can be considered as future
work. The most natural one is to find a way to consider
both energy and delay, in the path selection policy.
This requires defining a multi-objective model and sub-
sequently designing a proper heuristic to solve it in a
feasible way.

Other additional work can definitely be done to
improve the energy-aware routing. At the moment,
the Minimum Drain Rate (MDR) mechanism is used,
which is known to not guarantee a low total trans-
mission power consumption. The Constrained MDR
(CMDR) might hence introduce an improvement in
this sense, and thus represents one of the alternatives
we are willing to analyze.

Future work which requires a greater effort concerns
the study and implementation of strategies consider-



Mobile Netw Appl (2012) 17:281–297 297

ing brand new metrics associated with network nodes
and arcs. This can be done by exploiting the inherent
flexibility of the framework we provided.

References

1. Anathan R, Redi J (2002) A brief overview of ad hoc
networks: challenges and directions. IEEE Communications
Magazine, 50th Anniversary Commemorative issue, pp 20–22

2. Conti M, Giordano S, Maselli G, Turi G (2004) Cross-
layering in mobile ad hoc network design. IEEE Computer,
Special Issue on Ad Hoc Networks

3. Lopez PG, Tinedoa RG, Alsina JMB (2010) Moving rout-
ing protocols to the user space in MANET middleware.
J Netw Comput Appl 33(5):588–602 (Middleware Trends for
Network Applications)

4. Lin X, Shroff NB, Member S, Srikant R (2006) A tutorial
on cross-layer optimization in wireless networks. IEEE J Sel
Areas Commun 24:1452–1463

5. Meghanathan N (2009) Survey and taxonomy of unicast rout-
ing protocols for mobile ad hoc, vol 1(1). The international
journal on applications of Graph Theory in Wireless Ad hoc
Networks and Sensor Networks (GRAPHHOC). Jackson
State University, Jackson, MS, USA

6. Mahapatra P, Li J, Gui C (2003) QoS in mobile ad hoc net-
works. IEEE Wirel Commun 10(3):44–52

7. Toh C-K (2001) Maximum battery life routing to support
ubiquitous mobile computing in wireless ad hoc networks.
IEEE Commun Mag 39(6):138–147

8. Mahfoudh S, Minet P (2008) Survey of energy efficient strate-
gies in wireless ad hoc and sensor networks. In: IEEE inter-
national conference on networking. Cancun, Mexico, pp 1–7

9. De Rango F, Fortino M (2009) Energy efficient OLSR
performance evaluation under energy aware metrics. In:
Symposium on performance evaluation of computer and
telecommunication systems, pp 193–198

10. Kim D, Garçia Luna Aceves JJ, Obraczka K, Cano J, Man-
zoni P (2002) Power-aware routing based on the energy drain
rate for mobile ad hoc networks. In: Proceedings of IEEE
11th international conference on computer communications
and networks, pp 562–569

11. Perkins CE, Belding-Royer E (2001) Quality of service for ad
hoc on-demand distance vector routing. Mobile Ad Hoc Net-
working Working Group, Internet Draft (expired on January
2001)

12. Lee S, Gerla M (2001) Split multipath routing with maximally
disjoint paths in ad hoc networks. In: Proceedings of IEEE
ICC

13. Sondi P, Gantsou D (2009) Voice communication over mo-
bile ad hoc networks: evaluation of a QoS extension of OLSR
using OPNET. In: Proceedings of AINTEC’09, Bangkok

14. Badis H, Munaretto A, Agha KA, Pujolle G (2003) Qos for
ad hoc networking based on multiple-metric: Bandwidth and
delay. In: IFIP/IEEE international conference on mobile and
wireless communications networks

15. Badis H, Al Agha K (2005) QOLSR, QoS routing for ad
hoc wireless networks using OLSR. Eur Trans Telecommun
16:427–442. doi:10.1002/ett.1067

16. Mahfoudh S, Minet P (2008) An energy efficient routing
based on OLSR in wireless ad hoc and sensor networks. In:
Proceedings of the 22nd international conference on ad-
vanced information networking and applications—work-
shops (AINAW ’08). IEEE Computer Society, Washington,
DC, pp 1253–1259. doi:10.1109/WAINA.2008.60

17. Jaffrès-Runser K, Schurgot M, Comaniciu C, Gorce JM
(2010) A multiobjective performance evaluation framework
for routing in wireless ad hoc networks. In: IEEE 8th inter-
national symposium on modeling and optimization in mobile,
ad hoc, and wireless networks (WiOpt)

18. Marwaha S, Srinivasan D, Tham CK, Vasilakos A (2004)
Evolutionary fuzzy multi-objective routing for wireless mo-
bile ad hoc networks. In: Proceedings of the IEEE Congress
on Evolutionary Computation (CEC2004), vol 2, pp 1964–
1971

19. Montana D, Redi J (2005) Optimizing parameters of a mobile
ad hoc network protocol with a genetic algorithm. In: Pro-
ceedings of the 2005 conference on Genetic and Evolutionary
Computation (GECCO ’05), pp 1993–1998

20. Sarangapani J (2007) Wireless ad hoc and sensor networks:
protocols, performance, and control. Control Engineering Se-
ries

21. Asokan R, Natarajan AM (2008) An approach for reducing
the end to end delay and increasing the network lifetime in
mobile ad hoc networks. Int J Inf Technol 4(2):121–127

22. Asokan R, Natarajan AM (2008) Performance evaluation of
energy and delay aware Quality of Service (QoS) routing
protocols in mobile adhoc networks. IJBDCN 4(1):52–63.
doi:10.4018/jbdcn.2008010104

23. Li Q, Aslam J, Rus D (2001) Online power-aware rout-
ing in wireless ad-hoc networks. In: Proceedings of the 7th
annual international conference on mobile computing and
networking (MobiCom ’01). ACM, New York, pp 97–107.
doi:10.1145/381677.381687

http://dx.doi.org/10.1002/ett.1067
http://dx.doi.org/10.1109/WAINA.2008.60
http://dx.doi.org/10.4018/jbdcn.2008010104
http://dx.doi.org/10.1145/381677.381687

	Energy- and Delay-Efficient Routing in Mobile Ad Hoc Networks
	Abstract
	Introduction
	Background and motivation
	Routing in MANETs
	The MChannel approach

	Energy- and delay-efficient routing for MANETs
	Energy-aware routing protocols
	Delay-aware routing protocols
	Power and delay in the OLSR protocol
	Multi-objective routing in Ad Hoc Networks

	Introducing energy- and delay-efficient routing in MChannel
	Problem statement
	Design
	Energy-aware routing in jOLSR
	Delay-aware routing in jOLSR

	Implementation

	Trials and experimentations
	Qualitative evaluations
	Quantitative evaluations
	Network lifetime
	Average end-to-end delay
	Energy vs delay metric


	Conclusions and future work
	References



