Mobile Netw Appl (2011) 16:270-284
DOI 10.1007/511036-011-0305-7

Towards an Elastic Application Model for Augmenting
the Computing Capabilities of Mobile Devices

with Cloud Computing

Xinwen Zhang - Anugeetha Kunjithapatham -
Sangoh Jeong - Simon Gibbs

Published online: 2 April 2011
© Springer Science+Business Media, LLC 2011

Abstract We propose a new elastic application model
that enables seamless and transparent use of cloud
resources to augment the capability of resource-
constrained mobile devices. The salient features of this
model include the partition of a single application into
multiple components called weblets, and a dynamic
adaptation of weblet execution configuration. While
a weblet can be platform independent (e.g., Java or
.Net bytecode or Python script) or platform dependent
(native code), its execution location is transparent—
it can be run on a mobile device or migrated to the
cloud, i.e., run on one or more nodes offered by an IaaS
provider. Thus, an elastic application can augment the
capabilities of a mobile device including computation
power, storage, and network bandwidth, with the light
of dynamic execution configuration according to de-
vice’s status including CPU load, memory, battery level,
network connection quality, and user preferences. This
paper presents the motivation behind developing elas-
tic applications and their architecture including typical

X. Zhang (X))
Huawei Research Center, Santa Clara, CA, USA
e-mail: xinwen.zhang@huawei.com

A. Kunjithapatham - S. Gibbs
Samsung Information Systems America, San Jose, CA, USA

A. Kunjithapatham
e-mail: anugeetha. k@samsung.com

S. Gibbs
e-mail: s.gibbs@samsung.com

S. Jeong

LG Electronics, 221 Yangjae-Dong, Seocho-gu,
Seoul, Korea

e-mail: sangohjeong@gmail.com

@ Springer

elasticity patterns and cost models that are applied
to determine the elasticity patterns. We implement a
reference architecture and develop a set of elastic ap-
plications to validate the augmentation capabilities for
smartphone devices. We demonstrate promising results
of the proposed application model using data collected
from one of our example elastic applications.

Keywords elastic application - cloud computing -
mobile device - weblet - dynamic execution
configuration

1 Introduction

Applications on smartphones traditionally are con-
strained by limited resources such as low CPU fre-
quency, small memory, and a battery-powered com-
puting environment. For example, the iPhone 3G is
equipped with 412 MHz CPU, 512 MB RAM, and a
battery allowing about 5 hours of talking time. The
new Samsung Galaxy Android phone has 528 MHz
CPU, 128 MB RAM, and battery offering about 6.5
hours of talk time. Both devices have up to 7.2 Mbps
3G data network connection. Compared to today’s PC
and server platforms, these devices still cannot run
compute-intensive applications such as complex media
processing, search, and large-scale data management
and mining.

Cloud computing delivers new computing mod-
els for both service providers and individual con-
sumers including infrastructure-as-a-service (IaaS),
platform-as-a-service (PaaS), and software-as-a-service
(SaaS), which enable novel IT business models such
as resource-on-demand, pay-as-you-go, and utility-

Mobile Netw Appl (2011) 16:270-284

271

computing [6]. From the perspective of service
providers, cloud computing is often viewed as a vast and
scalable platform for service delivery. We suggest a new
perspective, one tuned to the needs of mobile devices.
We consider cloud computing as a means to extend
or augment the capabilities of resource constrained
devices.

There are several approaches to realize this perspec-
tive. One approach is to duplicate the runtime envi-
ronment of the device in the cloud and then run the
application either on the device or in the cloud. The off-
device runtime environment is sometimes called a “sur-
rogate” [18], a “clone” [9], or a cloudlet [23]. Virtual
machine technology is often used to host and isolate
the off-device runtime so making this approach fit well
with emerging IaaS platforms such as Amazon EC2 [1].
Running a device clone in the cloud has some attrac-
tive properties such as enhanced CPU and memory
resources which lead to better performance. Further-
more, applications do not need any modification—the
clone and the physical device can run identical binaries.
However, this approach has disadvantages too. First,
the application on the clone may need to access the
physical hardware on the device. For example, consider
a GPS application or simply the question of how an
application running in the clone interacts with the user.
It is certainly possible to transfer device I/O between
the device and clone environment over the network,
but this may impact responsiveness and battery use.
Secondly, simply replacing one processor with another
fails to take full advantage of cloud compute resources.
Ideally, a cloud application should be able to run in
a highly parallel fashion distributed over many cloud
nodes.

Thirdly, completely duplicating a device and running
it on the cloud increases the complexity of device man-
agement. For example, the cloud system needs similar
security protection and data privacy control as those on
the device since it runs all possible applications with
data from the original device.

The above considerations lead us to focus on ap-
plication level augmentation instead of cloning a com-
plete device environment. Often these applications are
data-parallel with high compute-to-communication ra-
tio. Examples include media processing, search, and
data mining. Our goal is to design an architecture
and related middleware to enable elastic applications
which consist of multiple components called weblets,
each of which can be launched on a mobile device
or in the cloud. The decision of where to launch a
weblet is based on application configuration and/or
the status of the device such as its CPU load and
battery level. Ideally the application model could also

support migration of weblets between the device and
cloud platform during runtime. While offloading and
delegating computing have been proposed by many
researchers [8, 11, 14, 18], the novelty of our approach
lies in enabling flexible and optimized elasticity by
considering multiple factors including device status,
cloud status, application performance measures, and
user preferences (e.g., different running modes of an
application including power-saving mode, high speed
mode, low cost mode, offline mode, or in terms of
expected application specific modes).

To enable this new application model, many chal-
lenges exist in different areas, including management
of heterogeneous computing environments, data man-
agement and communication dependencies between
weblets, state synchronization between weblets, and
cost-effective dynamic execution configuration. The
middleware should provide infrastructure for seam-
less and transparent execution of elastic applications
and offer convenient development support. This paper
first gives the concepts and typical elasticity patterns
(Section 2). We then focus on the optimization of cost-
effective execution configuration by considering multi-
ple factors (Section 3), which we believe is one of the
most critical and unique components of the application
model. We then present a high-level description of an
implemented reference framework including deploy-
ment and runtime architecture and software develop-
ment kit (SDK) (Section 4). We then illustrate a set
of example elastic applications developed based on our
reference architecture and cloud platform (Section 5).
We show some experimental results which confirm the
augmentation capabilities of our approach with col-
lected data from an elastic image processing application
(Section 6). We present some related work and oversee
further research themes along this novel application
model at the end of this paper (Section 7 and 8).

2 Concepts & elasticity patterns
2.1 Concepts and benefits

We define elastic applications as having two properties.
First, following the client/server split of traditional web
applications, an elastic application is split or partitioned
so that execution occurs partially on the device and par-
tially on the cloud. Previous work has proposed many
mechanisms for splitting an application into modular
components for remote execution or cyber foraging
purposes, such as [7, 8, 11, 14, 21, 25]. For elastic devices
we assume application developers can determine how
to organize weblets based on their functionalities and

@ Springer

272

Mobile Netw Appl (2011) 16:270-284

runtime behaviors such as computation demand, data
dependency, and communication need, which we be-
lieve should be part of high-level design consideration
of an application. Elastic middleware should provide
necessary SDK and tools allowing developers to im-
plement and test their designs. A unique requirement
for elastic applications is that a weblet’s functionality
should not be affected by the location or environment
where it is running. Essentially, the location of individ-
ual weblets should be transparent to users. One prin-
ciple for partitioning applications is that each weblet
should have minimum dependency on others. This is
not only for robustness but decreases communication
overhead between weblets during runtime.

Second, the execution configuration of an elastic
application is not static, instead it is determined when
the application is launched and potentially modified
during runtime. By execution configuration, we mean
the assignment of application partitions to execution
units (e.g., cores or virtual machines), either on the
device or in the cloud. The left hand side of Fig. 1
shows some possible execution configurations for an
application using three weblets.

There are several benefits that the elastic application
concept offers to mobile users and application develop-

Fig.1 Execution
configurations and elasticity

patterns
Device

Elastic App

Device

Elastic App

Device

Elastic App

Execution Configurations

@ Springer

‘l

ers deriving from coarse-grained application partition-
ing and dynamic configuration. First, elastic applica-
tions are not constrained by the compute capabilities of
today’s mobile platforms and can be configured to take
advantage of multiple processing cores when available.
If more compute (or storage) is needed then this can
be obtained from the cloud. As devices become more
powerful, compute and storage can shift back to the
device. On the other hand, mobile device compute and
storage need not be designed to satisfy the most de-
manding applications. Device resources can be modest
(and less power consuming) since the more demand-
ing applications can acquire resources from the cloud.
From a performance perspective, the ability to allocate
resources in the cloud and migrate functionality gives
the device great flexibility. For example, performance
can be increased or optimized to fit various goals (such
as responsiveness, monetary cost, or power consump-
tion). Furthermore, application components that are
partitioned for migration can also be replicated. The
failure then of one instance of a replicated component
need not compromise the application. Also, the elastic
application model offers a testbed for future technolo-
gies of mobile devices. Applications that run on the
cloud today can move to the device in future products.

Replication
Pattern

Splitter Weblet3
e
Device Cloud 7,

Elastic App

Aggregator
Pattern

) A

—
- -

HTTP request
Weblet push

Elasticity Patterns

Mobile Netw Appl (2011) 16:270-284

273

This greatly extends the lifetime of applications and
reduces development costs.

2.2 Elasticity patterns

We now consider elastic applications and weblets in
more detail. Our motivation for using weblets is that
developers are familiar with the web application model
and so can easily transition from the client/server parti-
tioning of web applications to the more general form of
partitioning found in elastic applications. Furthermore,
programming methods used for web applications, for
example AJAX and REST, are adapted by weblets. To
see the similarities and differences of web applications
and elastic applications, it is interesting to compare
weblets with traditional web services. We highlight
some areas for comparison in Table 1.

In designing a web application, a key issue is deter-
mining what logic will run on the server and what on the
client. For early web sites, the client was mainly used for
rendering and input, but now with JavaScript, AJAX,
and plug-ins such as Flash and Silverlight, many tasks
can be performed by the client. With elastic applica-
tions there is a similar issue, but because several weblets
can be created by a single application, the topology
of elastic applications is more varied. It appears these
topologies fall into some common patterns, what we
call elasticity patterns, several of these are shown on
the right hand side of Fig. 1 and briefly summarized as
follows.

Replication patterns: pools and shadowing Weblet
replication refers to running multiple weblets with the
same interface, i.e., accepting the same types of request.
There are two forms of replication: pools and shad-
owing. Weblet pools allow an application to leverage
cloud CPU cycles and augment its throughput. With
this pattern, the application issues requests that are
routed to weblets as they become available. Weblet
pools are well suited for applications that are easily
divided into similar tasks, for example processing sets

of images or scanning sets of files. Closely related to
pools is shadowing in which the same request is sent
to a set of replicated weblets in parallel. Shadowing
can be used for fault tolerance and latency control.
For example, shadowing a weblet on the device with
a copy on the cloud can help the application recover
from loss of network connectivity or loss of battery
power. Shadowing can also enable more flexible latency
control for an application, e.g., the device can use the
earliest response from multiple shadowed weblets on
the cloud.

Splitter pattern With the splitter pattern, a set of
worker weblets perform variant implementations of a
shared interface. For example, the workers may encap-
sulate adapters to access different social networks, or
codecs to process different media formats. The appli-
cation is decoupled from the various implementations
by a splitter weblet that routes requests to appropri-
ate workers. This pattern increases application exten-
sibility since new worker weblets are added without
changing the application structure. Splitting can also
enhance the user experience by converging multiple
services on a single device. For instance, in the case
where the worker weblets access different social net-
works, the splitter weblet’s interface provides a unified
or converged interface to a range of social networking
services.

Aggregator pattern An elastic application can also ag-
gregate computations from multiple worker weblets. In
this pattern, an aggregator weblet collects information
from multiple worker weblets and uses weblet push
to relay this information to the device. For example,
an application can run multiple weblets in the cloud
as background threads that monitor the user’s web
accounts (e.g., emails or instant messages), the aggre-
gator weblet pushes events (such as account activity)
to the device. In some cases the splitter and aggregator
patterns are combined or overlaid, the splitter pushes
requests to the workers while the aggregator pushes
events back to the device.

Table 1 Weblets vs. web Weblets

Web services

services HTTP (REST interface)

Single client

Client is application root or other weblet

Short-lived & long-lived requests
Dynamic endpoints (may migrate)

Lifetime is client dependent

Runs on servers or client (cloud or device)

Push to client possible

HTTP (REST or SOAP interface)

Many clients

Clients are generally browsers or
other web services

Generally short-lived requests

Fixed endpoints

Lifetime is client independent

Runs on servers

Not available or non-standard

@ Springer

274

Mobile Netw Appl (2011) 16:270-284

3 Cost optimization for elastic applications
3.1 Cost model

The augmented computation of an elastic application
is not free but introduces costs to the mobile device
and user, which depends on when and where a weblet
is running and communications within weblets or be-
tween weblets and Internet. Furthermore, elastic ap-
plications can exhibit variant runtime behaviors with
dynamic execution configurations, such as power con-
sumption, monetary consummation, application per-
formance, and even security and privacy properties.
Therefore, the dynamic execution configuration of an
elastic application is decided based on some cost saving
objectives, which form a cost model in our framework.
As Fig. 2 shows, the cost model takes inputs of sensor
data from both device and cloud sides, and runs opti-
mizing algorithms to decide execution configuration of
applications. Device and cloud related data such as bat-
tery level, network conditions, device loads, cloud loads
and other performance data including current latency
of the application, are obtained from appropriate sens-
ing modules. The output of the cost model is possible
actions that lead to the optimal execution configuration
for the application, such as allocating resources on the
cloud, launching/migrating weblets on/to device and/or
cloud, selecting/switching between different network
interfaces, replicating and shadowing weblets on cloud,
etc.

An important part of the cost model is choosing the
attributes or objectives that should be optimized. We
consider the following four attributes in our current
elastic application framework, while we believe new
cost objectives can be integrated easily.

Power consumption Each application/weblet running
on a mobile device consumes battery power by using
CPU cycles, memory and radio module for communi-

Execution

Configurations
v Cloud

Inputs Constraints
Resources
Cost model
battery level L .
Application 1) Allocation

. i & migration
Connection Requirements g

quality \ . WiFi
device loads Cost Model (- 2) Connection @‘_’ @
/ selection & * BG.

switching
(@ Weblet pool

®
@< g

“a Device

cloud loads Goal (examples)
Minimize cost
Maximize performance
Minimize power
Maximize robustness ~ 4) Shadowing
Maximize security

3) Replication
Performance

Fig. 2 Cost model of elastic applications

@ Springer

cation with peer weblets on the cloud and/or external
web services. The power consumption of a weblet on
the device heavily depends on the I/O operations it
performs [4, 27]. In addition, different communication
channels, such as W-CDMA, WiFi (802.11) etc., con-
sume different power [2, 3, 5]. Considering the above,
it is evident that although launching/migrating weblets
to clouds should ideally save power consumption of
computation on the device, the power consumption of
network interfaces may override the benefits of the
migration.

Monetary cost Execution of a weblet on a cloud plat-
form may involve a monetary cost for the application
user, based on the exact resources consumed on the
platform. Usually, a commercial cloud service provider
measures the cost of a computing task based on the
amount of CPU cycles, storage, and communication
traffic (in and out) of a cloud platform [1]. The mon-
etary cost of a weblet running on the cloud platform is
determined by the size of the input data consumed by
the weblet (including those from peer weblets on the
device for the same application and external web ser-
vices), total execution time of the weblet on the cloud
platform, data size/rate for intra-cloud communication
between this weblet and others within the same cloud
service provider (if applicable), and any other attributes
that affect these parameters, such as network status
affecting data transmission rate.

Performance attributes As an elastic application po-
tentially runs across different platforms, latency is an
important design consideration. There are different
aspects of latency, such as impact on the user expe-
rience when using the application’s Ul and network
latency with different network connections and traffic
status, and the application latency to finish a particular
computing task. Throughput also can be an important
objective for some applications. For example, an appli-
cation that does image analysis to find similar pictures
from a large database needs maximum throughput. To
achieve this, the heavy computing tasks are launched
or migrated to the cloud, although there is a tradeoff
between doing this and the data communication over-
head: too much communication may slow down the
overall application throughput. Given this, building
a good performance model is more challenging than
power and monetary aspects. In general, to optimize
latency, throughput and some application-specific op-
tions, CPU cycles and memory used by the weblets,
along with the available network bandwidth for com-
munication between the device and the cloud should be
carefully evaluated.

Mobile Netw Appl (2011) 16:270-284

275

Security and privacy Security is increasingly con-
cerned in web-based computing systems. A mobile de-
vice potentially contains many user secrets and privacy-
sensitive data, such as: contacts, SIM information,
credit card details and many other credentials that may
be needed to consume web services. Naturally, a mobile
user may trust her device more than the cloud platform
which is controlled by a third-party service provider.
As launching or migrating a weblet to the cloud may
also require offloading user data to the cloud, the user
security and privacy concerns are even higher with an
elastic mobile device. A weblet on the device or the
cloud may need to access external web services on
behalf of the user. For cost modeling purposes, we need
to evaluate if a weblet requires any user data and if the
user has strong concerns about offloading such data to
the cloud. If the user has concerns over doing this, the
weblet that requires this data should be launched on the
device only and never migrated. Furthermore, during
runtime, if a weblet needs to acquire external user data
from other web services, which usually requires user
credentials (username/password, public key certificate,
or any other security credentials), the weblet may have
to be migrated back to the device.

3.2 Optimizing execution configuration

Once a cost model is developed for a particular applica-
tion, a mechanism is needed for efficient and intelligent
dynamic execution configuration, e.g., via some light-
weight machine learning algorithms at the device side.
In our implementation of one elastic application, we
use Naive Bayesian Learning techniques to find the op-
timal weblet configuration (# of weblets on device and
cloud), given device status (in terms of CPU, memory
and network consumption), user preference (in terms
of expected # of images that should be concurrently
processed), and history data of the application.

As Fig. 3 shows, a vector ‘x’ consists of values rep-
resenting device status components such as the upload
bandwidth, throughput, power level, memory usage
and file cache. A vector ‘z’ consists of values represent-
ing user’s preferred setting for cost objectives includ-
ing monetary cost, power consumption, and processing
speed. The configuration variable ‘y’ has values from 1
to N (max number of possible configurations), where
each value maps to a specific configuration pair. Given
all these data, the following expression can be applied
to determine the most optimal configuration.

L M
y* = argmax p(y) 1_[p(xily) 1_[Pjly) 1
y :

i=1 j=1

Speed Power Expense

)
......... (]

/\/’ 4 L L3 %y y

~_,

Offline computation

Training set X
(x,2,y), /
Log (X,2,y), — i“P“Y‘”d ! Classifier
data i earning
(x,2,y), T~ y

Fig. 3 Weblet scheduling through Machine Learning techniques

In the above expression, x; is the i-th status compo-
nent value that can have different number of states for
each component and z;is a j-th preference component,
where i € {1,2,---,L} and je{1,2,---, M}, with L
and M representing the number of components in the
status vector and the number of components in the
preference vector, respectively.

Note that it is relatively easy to determine dynamic
configurations in this application since it has only one
type of weblet. For a general application with multiple
types of weblets, each having different runtime behav-
iors, the optimization can be very complex and the
computation itself may override the cost savings. Con-
sidering that an elastic application can be installed and
executed by many users on similar devices, a service-
oriented cost optimization implementation can save
computation cost for the device.

4 Reference implementation
4.1 Reference architecture

To experiment with this new application model, we
have developed a reference framework including ap-
plication bundle, architecture, and some example elas-
tic applications. Our framework works with Amazon
EC2 and S3. Figure 4 shows the main functional
components.

In our current framework design, a typical elastic
application consists of a Ul component, one or more
weblets, and a manifest. Weblets are autonomous soft-
ware entities that run either on the device or cloud and
expose RESTful web service interfaces via HTTP. The
manifest is a static XML file that contains metadata
for the application. It could be used to specify any
requirements and constraints for the application and
the individual weblets, such as: the digital signature

@ Springer

276

Mobile Netw Appl (2011) 16:270-284

Elastic
Application
ul

manifest | weblet1

Cloud Elasticity
Service

laaS/PaaS

Manager weblet 2 n
___J

Node Vi
/
/ Cloud
\ i) Fabric Application
(webtet1) |\ Sensing | |nterface Installatio
\
\

X
Weblet Y Cloud Ve e ~N

Container %, Manager
AppRoot
i

Ul Container

. »,
\ *e h
N HTTP(sY, i |\t
“ ., Elastic Layer | P
N\, *, K

. ’c. Device Elasticity ! \ Router

. - Manager /)

N HTTP(s) 7 H

\\\ Sensing S/ |

~.. ’
~ e

" . Weblet
Elastic Device Container

. J

Fig. 4 Reference architecture for elastic application

needed to download/migrate the weblets, requirements
for compute power, network and storage, time limits
for weblet execution, maximum instances of the weblet
that can be launched on the device and the cloud, if
a weblet can be launched/migrated to the cloud and
specifics about handling data required/generated by the
application/weblets etc.

On the device side, the key component is the
device elasticity manager (DEM) which is responsi-
ble for configuring applications at launch time and
making configuration changes during run time. The
configuration of an application includes: where the ap-
plication’s components (weblets) are located, whether
or not components are replicated or shadowed (e.g., for
reliability purposes), and the selection of paths used for
communication with weblets (e.g., WiFi or 3G if such a
choice exists). The router passes requests from UI com-
ponents to weblets. It insulates the UT logic from weblet
location. When a weblet is migrated, the router will be
aware of the new location and will continue passing
requests from the UI to the weblet (and passing replies
back to the UI). Each device also provides sensing
data from the device such as processor type, utilization,
and battery state. This data is made available to the
elasticity manager and is used to determine when and
where a new weblet instance should be launched.

The cloud elasticity service (CES) consists of the
cloud manager, application manager, and sensing infor-
mation collection. The cloud manager is responsible for
allocating resources from, and releasing to, underlying
cloud nodes. It maintains usage information, includ-
ing compute, bandwidth and storage, for the various
weblets running on the cloud. The application manager
provides functions to install and maintain applications

@ Springer

on behalf of elastic devices, and helps launch weblets on
different cloud nodes. Sensing information refers to the
collection of operational data on the cloud platform.
These data are made available to the cloud manager
to assist it in tracking usage. In addition to applica-
tion performance data, sensing may collect information
on cloud architecture, failures of various forms, and
resource availability. As a service provider, the CES
exports a web service, referred to as the cloud fabric
interface (CFI) to elastic devices and applications. A
node manager on each cloud node oversees resources
associated with a particular node (server) within the
cloud. It communicates directly with the cloud manager
and application manager. Each node runs one or more
weblet containers which are the weblet runtime envi-
ronments hosted on an Amazon EC2 instance.

4.2 SDK development

We have implemented a preliminary SDK based on
the reference architecture, which is used to develop the
basic interfaces of weblets in our example applications.
Using this SDK as a base, developers can build elastic
applications in high-level languages such as JavaScript,
Java, and C#. Currently the SDK has C# bindings;
however it is easy to extend it to other languages.

A typical elastic application includes a AppRoot
component and one or more weblets. The AppRoot
is the part of the application that provides the user
interface and issues requests to weblets. All of these are
packaged into one bundle, which includes the binaries
of weblets and a manifest describing the application,
and most importantly, the developer-signed hash val-
ues of the individual weblets. Figure 5 shows a state
diagram illustrating the lifecycle of a weblet, including
the various states that a weblet can be in and the actions
that cause the state transitions. A weblet is an indepen-
dent functional unit of an application that is capable of
compute, storage, and networking tasks. It resembles
an embedded or dedicated web server and presents a
web service interface (i.e., it is accessed via HTTP). In
our SDK, an abstract class called AbstractiWeblet
is defined to represent the core behavior of weblets.
Other specific types of weblets can be implemented as
subclasses of AbstractWeblet and extend its meth-
ods as required. Each weblet is associated with a weblet
type and identified through a unique id. Once an ap-
plication has defined one or more weblet types, it can
use the DEM to create instances (i.e., to create specific
weblets) and issues requests to these weblets. We de-
scribe below the core interfaces supported by DEM and
illustrate how to create and communicate with a weblet.

Mobile Netw Appl (2011) 16:270-284

277

AppRoot

ate gend
Reply

D eosses

o

Send
Request

& TTTTTTLIS

Resume after migrate

(from saved state) Die

Fig. 5 Lifecycle of a weblet. A weblet is always created by
the AppRoot, and can be in state of Running, Paused, or
Terminated

Pause for migrate
(save state)

Create a weblet In order to create a weblet, two para-
meters are required including: the type of the weblet
and a call back function to invoke when the weblet
is created. For example, the following code creates a
weblet of type

MyWebletType:

CreateWeblet (“"MyWebletType”,
OnCreateMyWeblet) ;

Send a request to a weblet A request can be sent to a
weblet using the SendWebletRequest interface. The
interface requires the following parameters: the weblet
to which the request is to be sent, the actual request
(query string) to be sent, and a callback function that is
invoked when a reply is received. Below is sample code
to achieve this:
SendWebletRequest (w,
OnMyWebletReply) ;

“RequestQuery”,

Receive a response from a weblet When the DEM re-
ceives a response from a weblet it invokes the callback
function indicated by the requestor along with request.
With this, the requestor only needs to implement the
call back function to receive the reply. For example, in
continuation with the example given above, the DEM
would invoke the following function to convey the reply
to the application:

OnMyWebletReply (w, reply);

The DEM can decide to migrate a running weblet
from the device to the cloud or vice-versa; weblet
migration is transparent to the application. When a
weblet is running on device and the DEM decides to
migrate it to a cloud node, the DEM issues a Pause
request to the weblet, this causes the weblet to close
its request interface, release resources and save state.
The DEM then sends the saved state to the cloud via
the CFI. After the state has been transferred to the
cloud, the weblet is resumed and restores itself from
the saved state. The CFI returns the new connection
information for the weblet (e.g., IP address, port, and
session tokens) to the DEM so that the DEM may
continue to route requests to the weblet on cloud.

5 Elastic applications

To demonstrate the elastic application model, we have
developed several applications with our SDK and de-
ployed on the reference architecture with Amazon
EC2. This section explains the design and elasticity
patterns of these sample applications, aiming to provide
the abstract principle of designing elastic applications in
general.

5.1 Elastic image processing

The simplest is an image processing application in
which various filtering operations are applied to set
of images. Following the replication pattern, a weblet
pool is created on the cloud; images are then processed
in parallel by pool members. The application can ad-
just the size of the pool, so it is possible to compare
throughputs for different execution configurations. The
application supports 3 workloads (number of images
to process). Load 1 has 1 image, load 2 has 4 images,
and load 3 has 16 images. The images are 24-bit color
images of size 240 x 360. Figure 6 shows a snapshot
when the application is running on a Samsung Galaxy
smart phone with Android 1.6.

The application implements many of the elastic ap-
plication concepts described in the previous sections
and enables the user to do the following through the UTI:
(1) Specify if the device is online (i.e., if it should make
use of the cloud to run weblets); (2) specify the number
of weblets to run on the cloud; (3) specify the kind of
filtering to be done on the images; and (4) specify the
load or the number of images to process concurrently.

This image processing application consists of only
one type of weblet (ImageWeblet), as shown in
Fig. 7. Its functionality is to perform image filtering as
specified by the user. The weblet is replicated on the

@ Springer

278

Mobile Netw Appl (2011) 16:270-284

Fig. 6 Snapshot of elastic
image processing application

device and the cloud, as and when required. The total
number of weblet instances spawned depends on the
load specified and the user specified value for number
of weblets in the cloud.

5.2 Elastic augmented reality: object identification
and replacement

A second example is a form of augmented reality
(AR) in which real-world objects are detected and
enhanced. This application runs tracking and rendering
on the device and uses the splitter pattern with a set of
matcher weblets on the cloud. Each matcher searches
for different objects within video frames. The splitter
collects information on identified objects and relays this
to the device for rendering. By running the matchers
in the cloud, many more objects can be detected (per
unit time) than when the application runs fully on the
device.

j Image Weblet 1

App on Device V4 w Image Weblet 2

(Analysis & Filtering of s 7
images)

V/
¥ = WImage Webletn
-
ElasticIP App

Image Weblet

Fig. 7 Weblet topology of elastic image processing

@ Springer

Elastic AR

|=asA
Ry

Fig. 8 Snapshot of elastic AR: object identification and
replacement

A snapshot of this application is shown in Fig. 8. On
a high level, the application works as follows. First, the
image/video frame from the mobile device camera is
captured, and the feature points for the image in the
frame are extracted. With these feature points, planar
objects are then identified, by matching the extracted
feature points to those of known planar objects in a
database. The recognized planar object is then used
to select a replacement image in the user’s choice of
language. Finally, the replacement image is provided
to the device and is overlaid on top of the current
image. For this scenario, the users are able to specify
the language of choice for the user and the number
of weblets to run on the cloud through the UI. This
augmented reality application would consist of three
types of weblets, as illustrated in Fig. 9: The first type
of weblet (Tracker) performs feature extraction on
the live feed; the second type of weblet (Matcher)
matches extracted features with images in a database.
As this is a compute-intensive task, multiple instances
of this weblet type are spawned on the cloud; and

Splitter

App on Device
(Identify, track &
replace “target” images)

> Gt)
Y Gaerer2)

ElasticAR App

Fig. 9 Weblet topology of elastic AR: object identification and
replacement

Mobile Netw Appl (2011) 16:270-284

279

the third type of weblet (Compositor) performs the
image replacements on the device.

5.3 Elastic augmented reality: augmented video

Our third sample application is another elastic AR ap-
plication which enables an augmented video scenario,
where in a user visiting a building (e.g., a technol-
ogy expo or a museum) is able to seamlessly access
information about points of interest (POIs)/demos in
the area. When the user holds up his phone camera,
information about points of interest in the area (title,
description of demos and the number of people in the
demo area) is overlaid on the camera view, represented
using different types of icons and labels.

Figure 10 shows the snapshot of the application
when running on Samsung Galaxy. When running, the
application obtains the accelerometer, compass and
GPS readings from the phone thus the current po-
sition and direction of the user are identified. The
application then obtains a list of POIs/demos in the
target area by submitting its location information to
a web service interface running on cloud. The web
service also collects the number of people near each
POI, which would be done periodically by monitoring
the location/coordinates of people in the target area
through their devices; After these, the POIs near the
user’s position and within the camera’s field of view are
determined, and the POIs and information about the
number of people in their proximity are overlaid on the
user’s screen.

Figure 11 shows the weblet topology of this appli-
cation, which consists of four types of weblets. The
first type of weblet (UserTracker) identifies the po-

Fig. 10 Snapshot of elastic AR: augmented video

PoiMonitor

App on Device
(Display points of interest,
based on user’s position).

Crowd
’
Crowd
Monitor
Crowd |...
Monitor

-

ElasticAR App
UserTracker
PoiFilter

Compositor

Fig. 11 Weblet topology of elastic AR: augmented video

sition and direction of the user. The second type of
weblet (PoiMonitor and CrowdMonitor) collects
device information and calculates the number of peo-
ple near the POIs. Multiple instances of this weblet
type are spawned on the cloud. The third type of
weblet (PoiFilter) determines the POlIs in the user’s
vicinity and field of camera view. The fourth type of
weblet (Compositor) overlays the information about
the POIs on the device’s screen.

6 Experimental validation

We validate the elasticity of our framework by using
the aforementioned image processing application as
benchmark. This application consists of only one type
of weblet called ImageWeblet. Its functionality is to
perform image filtering with an algorithm specified by
the user. The weblet is replicated on the device and
the cloud, as and when required. The total number of
weblet instances spawned depends on application load
and the number of weblets in the cloud, both specified
by the user. The application UI enables the user to
do the following configurations during runtime: online
(can launch weblet at cloud) or offline (all weblets are
running on the device) mode of the application, number
of weblets to run on the cloud (if in online mode),
the filtering algorithm to be used, and the number of
images (workload) to process at the same time. The
images used in by the experiment are 24-bit color with
size 240 x 360.

The goal of our validation is to compare the per-
formance of an elastic device (ED) and a non-elastic
device (NED) running the same image processing ap-
plication. Figure 12 shows an overview of the demo
configuration and system setup. For the elastic device,
the application uses an in-house cloud comprising of 8

@ Springer

280

Mobile Netw Appl (2011) 16:270-284

Fig. 12 Experiment
configuration for elastic
image processing application

Monitor App

Non-Elastic App

i

\

ImageWeblet \

ImageWeblet

Linux boxes. A non-elastic version of the application is
also running independently in order to compare it with
the elastic version. Essentially, the non-elastic version
uses only the device to run weblets, whereas the elastic
version uses both the device and the in-house cloud.
The setup also includes PCs to host the CFI and a per-
formance monitor application. The CFI is implemented
with PHP scripts on a Linux server with Apache and
MySQL.

The performance monitor collects several measure-
ments, including the available upload/download band-
width (KB/s), application workload (number of images
to be processed) and throughput (the number of image
tiles processed/s), average CPU usage (%), and avail-
able memory (MB), from the test device and from the
cloud. In addition, it also maintains information about
the total number of weblets started for the application
and the individual number of weblets running on the
device and the cloud.

Each configuration has a unique composition of
device weblets and cloud weblets. We set the maxi-
mum number of weblets as 16 and consequently, more
than 100 different configurations are possible. The
configuration specifying 1 device weblet & 0 cloud
weblets is considered the default configuration for the
non-elastic device. Among all possible configurations,
we chose the 74 configurations where the number of
device weblets is less than or equal to 4 (due to lim-
itations with CPU utilization) for analysis. For each
configuration, the data was collected 20 times and the
average values were considered for final comparisons.

Figure 13 shows the performance of the elastic
device over 74 configurations. In comparison with
the throughput of about 6 tiles/s for the default/non-
elastic device configuration (1 device weblet, 0 cloud
weblets), the throughputs of all other configurations
are better. We can observe that the throughput for the
configuration with 0 device weblet and 16 cloud weblets

@ Springer

Elastic App DEM

Monitor App —l
‘ CFI

ImageWeblet }o, y Node 1

- - — -
\~ ~ - - & Controller
~

K
=~ ImageWeblet 3 1
.

Node m
Controller

A

~
\ ~
TmageWeblet \ ~
ImageWeblet

has the highest throughput among the 74 configurations
tested. The configuration with 16 device weblets has
the best performance, as there are a total of 16 im-
ages in load 3. A surprising observation is that the
configuration with 8 weblets performed better than
configurations with 9-15 weblets (a result of inter-
nal application logic). This indicates that an intelli-
gent weblet scheduling is essential to identify the most
efficient weblet configuration.

CPU usage is more predictable overall, in that more
device weblets lead to more CPU usage. However, the
trend is interesting when comparing the number of
device weblets. For configurations with up to 2 device
weblets, running more cloud weblets leads to more
CPU usage. For configurations with 3 and 4 device
weblets, a general trend is that running more cloud
weblets reduces the CPU usage. By combining CPU
usage data in Fig. 14 with the throughput data in Fig. 13,
we are able to identify the configurations that lead
to low CPU usage and high throughput: for instance,
configurations (0,2), (0,3) and (0,4) have lower CPU
usage (than that of a non-elastic device) and higher

L9 0.16) (1,15 o
T N | | P - i . (38.13)
¢ | @.6) 4,12)
I wies Rl #:6)
< okl 1111/ W |17 O
£ ol N | {00 01O Y
£ oo JIEHENEN | HEAEAEE EEEARR CRERRH 0 ERH
. LoIEEAHHAE | SRR HIEARECR AR AR
O |1
T A T INTR e 1
o AL R AR R ARRRRRRRY
(0,1) (1,0) (2,0) (3,0) (4,0)

Configurations = (# of Device Weblets, # of Cloud Weblets)

Fig. 13 Throughputs vs. configurations

Mobile Netw Appl (2011) 16:270-284

281

100 37H

NED 26) EARN CE P
(1.8) (1,15) (214
& b LYo RRERRRER A RERRRETRRRRAL..]
o
o
> aol S i m. ... i
g
[0)
z
@.0) 3,0) 4,0)
S

Fig. 14 CPU usage vs. configurations

throughput. This results in more available CPU cy-
cles for other applications and improves multi-tasking
capabilities.

Figure 15 shows interesting but not easily compre-
hensible results regarding the available memory ver-
sus configurations. Certain configuration such as (0,1),
(02), (0.3), (1,0), (1.1), (1.2), (2,0), (2.1), (2,2), (3,0),
(3,1), and (4,0) have much available memory. Most
of the configurations have only up to 4 total weblets
and using only the device weblets consumed only a
little memory up to 4 device weblets. Meanwhile, other
configurations up to (3,13) have similar available mem-
ory, but there is significant variation between (4,1) and
(4,12). It is not clear why the system behaves that way,
but it could be related to cache operations and memory
paginations. This will need further investigations. Com-
bining this result with Fig. 13 can lead to a memory-
constrained optimal configuration. Of course, it would
also be conceivable to find a good configuration con-
strained on both memory and CPU.

.
3

W W
s _8

b
3

Average available memory (MBytes)

(1,0) (2,0) (3.0) (4.0)
Configurations = (# of Device Weblets, # of Cloud)

Fig. 15 Available memory vs. configurations

7 Related work
7.1 Execution offloading

The elastic model builds on previous work in the ar-
eas of remote execution and application offloading.
Cyber foraging [7, 8, 18, 25] is a common approach
explored by many to augment the capability of
resource-constrained mobile devices. The basic idea
is to dynamically discover and make use of nearby
resources, aka surrogates, to offload the execution of
an application or parts of an application running on a
mobile device. Compared to these approaches, elastic
application model has more flexible deployment pat-
terns to parallelize tasks on multiple remote cores.

CloneCloud takes the approach of cloning the entire
user’s mobile device environment on a remote server.
Applications can then be quickly restarted on or mi-
grated to the remote machine when the user’s machine
is running low on resources [9]. Similar virtual machine-
based approach is used by cloudlet [23]. As mentioned
in Section 1, our elastic application model offloads
computing tasks in more fine-grained level such that
it leverages the parallel computing advantage of cloud
resources.

Some research work extend existing programming
language and application runtime middleware to trans-
form applications into distributed systems [11, 14, 21].
Adaptive Offloading [11] leverages Java’s object ori-
ented design to identify possible partitions for a Java
application and modified the JVM to support such
partitioning. Coign [14] makes use of the location
transparency supported by COM and converts an ap-
plication built from COM components into a distrib-
utable application. R-OSGi [21] extends the centralized
module management functionality supported by the
OSGi specification to enable an OSGi application to
be transparently distributed across multiple machines.
The main limitation with these approaches is that they
are tied to one particular language or specification and
hence not suitable for a wide range of applications.
Compared to these approaches, our proposed elastic
application model is programming language indepen-
dent, and can be extended to many existing application
middleware.

Virtual machine migration [19, 26] and VM-based
cloudlet [23] are complementary approaches to enable
users to seamlessly access their applications and data
across multiple and heterogeneous devices in general.
It also enables users to instantly continue/restore an
application on a different device, when their current
machine is running low on resources.

@ Springer

282

Mobile Netw Appl (2011) 16:270-284

7.2 Cost-aware configuration

There have been literatures dealing with configuration
methods based on resource estimation. In [17, 24],
a resource-aware configuration method decides the
configuration based on user’s quality of service require-
ment, resource and service availability, and application
fidelity as a function of resources. It tries to maximize
a product-based utility function so that the aggregate
resource demand cannot exceed the resource supply.
A machine learning approach is introduced in [32] to
capture the complex nonlinear relationship between
resource properties and computing power. It provides
resource selection for a job in Grid scheduling to have
the maximum utility of CPU. However, these works
are not specifically targeted for remote execution on
mobile devices. The tactics-based remote execution
in [8] aims to select the best tactic, the useful knowl-
edge about an application relevant to remote execution,
using resource prediction and resource monitoring. It
tries to maximize the latency-fidelity metric in the tactic
selection. In [10], a similar work is proposed, using a
product-based decision criterion for remote execution.
It considers only three metrics of execution time, en-
ergy usage, and fidelity.

Narayanan et al. [20] use historical application log-
ging data to predicate the fidelity of an application,
which decides its resource consumption. However, in
this work, only aspects of device hardware and applica-
tion inputs are considered. In our cost model, we con-
sider more comprehensive factors not only on device
side, but also on cloud side. Uniquely, we incorporates
user preferences in terms of cost objectives. Gurun
et al. [13] extend the network weather service (NWS)
toolkit in grid computing to predict offloading, which
can be leveraged as an implementation mechanism for
our cost model.

In [12], a Fuzzy Control model-based offloading in-
ference engine is introduced to solve when to trigger
adaptive offloading and how to partition an application.
However, the decision criterion is based only upon
the memory, not considering multiple factors. Our ap-
proach provides an optimized elasticity by considering
multiple factors as costs, including device status, Cloud
status/usage, application performance measures, and
user preference to the cost factors.

Comparing with these approaches our work is based
on the assumption that cloud has huge resources, thus
releasing the resource estimation requirement in the
cloud from the decision of weblet scheduling. There are
some literatures regarding cost analysis on the cloud
side-only. The tradeoffs between the cloud computing

@ Springer

and desktop grids are provided in [15]. The total cost
of ownership and utilization cost is introduced in [16]
to evaluate the economic efficiency of the Cloud. A
workload balancing approach [30] is proposed between
public Cloud and private Cloud for cost-saving. In [28],
the monetary cost of leasing CPU time from commer-
cial Clouds is compared with that of purchasing and
using a server cluster of equivalent capability.

8 Conclusions and future work

We propose an elastic application programming model
aiming to remove the constraints of specific mobile
platforms by providing a distributed framework that
extends the device into the cloud. The salient fea-
ture of this model is that it offers a range of elas-
ticity patterns between resource constrained devices
and Internet-based clouds. Each pattern in turn can be
realized by several execution configurations. A com-
prehensive cost model is used to dynamically adjust
execution configurations thus optimizing application
performance in terms of a set of objectives. We present
the high level design of elasticity framework and primi-
tive experimental results with an example application.

8.1 Future work

There are aspects of this work that need further re-
search efforts. We highlight some of them at the end
of this paper.

Data and state synchronization As aforementioned in
the elasticity patterns, weblets of a single application
may share application data and state. For example,
different weblets may require the same data from the
device for their input, or they may update the same
data during runtime. Since weblets run in different
locations, it is desirable to replicate data to increase
performance, but then data integrity and synchroniza-
tion become issues. Alternatively, data synchroniza-
tion can be explicitly performance by applications, or
implicitly by framework architecture and transparent
to applications. In the first case, an elastic application
handles its own data management including storage
and synchronization between device and cloud nodes.
The advantage is flexibility: a user or application de-
veloper can select the data storage mechanism on the
cloud. However, this leaves data access handling to
developers, and the user may need to manually initiate
synchronization during runtime. In the architecture-
based approach, application data are duplicated and

Mobile Netw Appl (2011) 16:270-284

283

synchronized by the elasticity architecture, such that
the applications are not aware of data location. APIs
can be defined to access (read and write) data via
middleware, which hide the details of data management
including synchronization and backup. This releases the
burden of data management from application develop-
ers, while heterogeneous data storage mechanisms at
device and cloud side give challenges to middleware
design.

Communication between weblets In our reference ar-
chitecture, weblet requests are initiated on the device
side and can propagate to the cloud to be passed
from one cloud weblet to another (as in the splitter
pattern). To support more flexible elasticity patterns, a
mechanism is needed to allow a cloud-residing weblet
to invoke requests of device weblets. This problem
becomes challenging when the device is mobile, it may
switch between different network channels, e.g., be-
tween WiFi or 3G network, or even between different
wireless network providers, and it may be running be-
hind a firewall or using NAT. Communication beyond
organization boundaries is another challenging issue
to be solved. Increasingly smartphones run enterprise
applications and connect to intranet servers. Typically
VPN software is installed on these devices. How to
enable secure and flexible communications between
weblets on enterprise-owned mobile devices and cloud
servers needs further research efforts.

Media channel between weblets Although HTTP is
light-weight and flexible, and is used in our refer-
ence architecture and example applications, it is not a
good option for media streaming or distributed visual
processing between device and cloud. Tasks requiring
significant processing or data storage, such as visual
object recognition or rendering complex 3D models,
can be performed in the cloud rather than on the
device. However for cloud computing to be used in
highly interactive and visually rich applications, there
is a need for a high-speed and low-latency transfer
method for structured visual data between the device
and cloud. For example, consider a 3D game where
some scene elements are rendered on the cloud and
then sent, along with camera and depth information, to
the device for mixing with locally rendered elements.
Early work in this direction includes frame-oriented
2D graphics protocols (e.g., RDP, RFB, VNC), pro-
tocols for remote rendering of 3D graphics (e.g., X11
extensions for OpenGL) and protocols for encoding
segmented video (MPEG4). Generally these protocols
involve a generic decoder, i.e., no application-specific
logic is required for decode and display. For situations

where application logic is split between the device and
the cloud, and visual processing takes place on both
sides, new protocols are needed to exchange partially
rendered and partially processed data.

Weblet migration Code and computation migration is
a traditional problem in many systems [8, 29]. To en-
hance the mobile user experience, our model supports
migration without the need to migrate code. During
installation of elastic applications, the code used by
weblets is installed on both the device and the cloud.
When a weblet is required to migrate from device to
cloud, a new weblet instance is allocated on a cloud
node, and the runtime state is copied from the device
weblet to this new weblet. We believe this state migra-
tion is more efficient than migrating a weblet’s memory
image and state information. To support this type of
migration, a weblet is not migrated when in an arbitrary
state. Instead the weblet closes any pending requests
and then saves state information in preparation for
transfer. After migration the weblet loads the saved
state and resumes its operation. With this approach, the
specification and representation of a weblet state are
critical. Basically, the state information should include
the current task status, its working data, and handles
to any other weblets with which it communicates. The
state should also ensure that the physical location of
the new weblet does not affect existing communication
channels between other weblets and external parties.
For this purpose, a routing-like mechanism should be
provided by the architecture and supported by the
middleware. A weblet can then have some well-known
name for use by the application, while the binding
between the name and a physical weblet entry point
(e.g., a URL) is dynamic.

Trust and security The elastic application model and
middleware should provide a mechanism to authenti-
cate weblets belonging to a single application. Authen-
tication is the prerequisite to building secure commu-
nication between weblets. Also, session management
is essential, especially weblet behaviors at cloud side
should be accounted, e.g., to give the mobile user the
resource usage and cost of the application. In our refer-
ence architecture, we have designed a lightweight pro-
tocol to distribute shared secrets and session keys be-
tween weblets for mutual authentication purposes [31].
Beyond this, there are some challenging problems for
elastic applications. First of all, a mobile user needs
trust to launch weblets on a public cloud, especially
when the computation and network traffic incur mone-
tary bills to the user. This demands that the computing
environments in the cloud should be verifiable by a user

@ Springer

284

Mobile Netw Appl (2011) 16:270-284

or a trusted party, e.g., to ensure there is no hidden or
even malicious code running beside weblets. Similarly,
the quality of service from cloud providers should be
verifiable. Furthermore, a mobile user should be as-
sured that the weblets running in the cloud are the ones
that she has installed and their integrity can be verified
via trusted mechanisms. We believe that extending the
trusted computing base (TCB) of the mobile device to
some necessary but minimum cloud service is necessary
to satisfy these security requirements [22].

References

1. Amazon EC2. http://aws.amazon.com/ec2/. Accessed 21 Mar
2011
2. RFMD product data sheet. http://www.rfmd.com/products.
Accessed 21 Mar 2011
3. Wifi power consumption analysis. http://nesl.ee.ucla.edu/fw/
documents/reports/2007/poweranalysis.pdf. Accessed 21 Mar
2011
4. Samsung flash memory databook. http://www.samsung.com/
global/business/semiconductor/packagelnfoList.do. Accessed
21 Mar 2011
5. Analog devices data sheet. http://www.analog.com/en/
content/psearch_landing/fca.html. Accessed 21 Mar 2011
6. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH,
Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I,
Zaharia M (2009) Above the clouds: a berkeley view of cloud
computing. Technical Report UCB/EECS-2009-28. EECS
Department, University of California, Berkeley
7. Balan R, Flinn J, Satyanarayanan M, Sinnamohideen S, Yang
H (2002) The case for cyber foraging. In: Proc. of the 10th
ACM SIGOPS European workshop
8. Balan RK, Satyanarayanan M, Park S, Okoshi T (2003)
Tactics-based remote execution for mobile computing. In:
Proc. of the 1st international conference on mobile systems,
applications, and services, pp 273-286
9. Chun B-G, Maniatis P (2009) Augmented smartphone appli-
cations through clone cloud execution. In: USENIX HotOS
XII
10. Flinn J, Park S, Satyanarayanan M (2002) Balancing perfor-
mance, energy, and quality in pervasive computing. In: Proc.
of the international conference on distributed computing
systems
11. Gu X, Messer A, Greenberg I, Milojicic D, Nahrstedt K
(2004) Adaptive offloading for pervasive computing. [EEE
Pervasive Computing 3(3):66-73
12. Gu X, Nahrstedt K, Messer A, Greenberg I, Milojicic D
(2003) Adaptive offloading inference for delivering appli-
cations in pervasive computing environments. In: Proc. of
IEEE international conference on pervasive computing and
communications
13. Gurun S, Krintz C, Wolski R (2004) Nwslite: a light-weight
prediction utility for mobile devices. In: Proc. of international
conference on mobile systems, applications, and services
14. Hunt GC, Scott ML, Hunt GC, Scott ML (1999) The coign
automatic distributed partitioning system. In: Proc. of the 3rd
symposium on operating systems design and implementation,
pp 187-200

@ Springer

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Kondo D, Javadi B, Malecot P, Cappello F, Anderson DP
(2009) Cost-benefit analysis of cloud computing versus desk-
top grids. in: proc. of the ieee international symposium on
parallel & distributed processing

Li X, Li Y, Liu T, Qiu J, Wang F (2009) The method and
tool of cost analysis for cloud computing. In: Proc. of IEEE
international conference on cloud computing

Poladian V, Sousa JP, Garlan D, Shaw M (2004) Dynamic
configuration of resource-aware services. In: Proc. of interna-
tional conference on software engineering

Porras ORJ, Kristensen MD (2008) Dynamic resource
management and cyber foraging. Chapter Middleware
for Network Eccentric and Mobile Applications. Springer
Press

Kozuch M, Satyanarayanan M (2002) Internet sus-
pend/resume. In: Proc. of the 4th IEEE workshop on
mobile computing systems and applications

Narayanan D, Flinn J, Satyanarayanan M (2000) Using his-
tory to improve mobile application adaptation. In: Proc. of
the 3rd IEEE workshop on mobile computing systems and
applications

Rellermeyer JS, Alonso G, Roscoe T (2007) R-osgi: distrib-
uted applications through software modularization. In: Proc.
of the ACM/IFIP/USENIX international conference on mid-
dleware

Santos N, Gummadi KP, Rodrigues R (2009) Towards
trusted cloud computing. In: Proc. of the workshop on hot
topics in cloud computing

Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The
case for vm-based cloudlets in mobile computing. IEEE Per-
vasive Computing 8(4):14-23

Sousa JP, Balan RK, Poladian V, Garlan D, Satyanarayanan
M (2008) User guidance of resource-adaptive systems. In:
Proc. of international conference on software and data
technologies

Sousa J, Garlan D (2002) Aura: an architectural framework
for user mobility in ubiquitous computing environments. In:
Proc. of the 3rd Working IEEE/IFIP conference on software
architecture

Travostino F (2006) Seamless live migration of virtual ma-
chines over the man/wan. In: Proc. of the ACM/IEEE con-
ference on Supercomputing

Vijaykrishnan N, Kandemir M, Irwin M, Kim H, Ye W (2000)
Energy-driven integrated hardware-software optimizations
using simplepower. In: Proc. of the int. symposium on com-
puter architecture

Walker E (2009) The real cost of a CPU hour. IEEE Comput
42(4):35-41

Xian C,Lu YH, Li Z (2007) Adaptive computation offloading
for energy conservation on battery-powered systems. In:
ICPADS

Zhang H, Jiang G, Yoshihira K, Chen H, Saxena A (2009)
Intelligent workload factoring for a hybrid Cloud computing
model. In: Proc. of the congress on services

Zhang X, Schiffman J, Gibbs S, Kunjithapatham A, Jeong
S (2009) Securing elastic applications on mobile devices for
cloud computing. In: Proc. of ACM cloud computing security
workshop

Zhao G, Shen Z, Miao C, Wan C (2009) ELM-based in-
telligent resource selection for Grid scheduling. In: Proc.
of IEEE international conference on machine learning and
applilcations

http://aws.amazon.com/ec2/
http://www.rfmd.com/databooks
http://nesl.ee.ucla.edu/fw/documents/reports/2007/poweranalysis.pdf
http://nesl.ee.ucla.edu/fw/documents/reports/2007/poweranalysis.pdf
http://www.samsung.com/global/business/semiconductor/packageInfoList.do
http://www.samsung.com/global/business/semiconductor/packageInfoList.do
http://www.analog.com/en/content/psearch_landing/fca.html
http://www.analog.com/en/content/psearch_landing/fca.html

	Towards an Elastic Application Model for Augmenting the Computing Capabilities of Mobile Devices with Cloud ComputingQ1Please check Article title if correct.
	Abstract
	Introduction
	Concepts & elasticity patterns
	Concepts and benefits
	Elasticity patterns

	Cost optimization for elastic applications
	Cost model
	Optimizing execution configuration

	Reference implementation
	Reference architecture
	SDK development

	Elastic applications
	Elastic image processing
	Elastic augmented reality: object identification and replacement
	Elastic augmented reality: augmented video

	Experimental validation
	Related work
	Execution offloading
	Cost-aware configuration

	Conclusions and future work
	Future work

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

