Mobile Netw Appl (2009) 14:350-364
DOI10.1007/s11036-008-0101-1

A Stochastic and Dynamic Vehicle Routing Problem
with Time Windows and Customer Impatience

M. Pavone - N. Bisnik - E. Frazzoli - V. Isler

Published online: 16 October 2008
© Springer Science + Business Media, LLC 2008

Abstract In this paper, we study the problem of de-
signing motion strategies for a team of mobile agents,
required to fulfill request for on-site service in a given
planar region. In our model, each service request is
generated by a spatio-temporal stochastic process; once
a service request has been generated, it remains active
for a certain deterministic amount of time, and then
expires. An active service request is fulfilled when one
of the mobile agents visits the location of the request.
Specific problems we investigate are the following: what
is the minimum number of mobile agents needed to
ensure that a certain fraction of service requests is ful-
filled before expiration? What strategy should they use
to ensure that this objective is attained? This problem
can be viewed as the stochastic and dynamic version
of the well-known vehicle routing problem with time
windows. We also extend our analysis to the case in
which the time service requests remain active is itself a

M. Pavone (X)) - E. Frazzoli

Laboratory for Information and Decision Systems,
and the Aeronautics and Astronautics Department,
Massachusetts Institute of Technology,

Cambridge, MA 02139, USA

e-mail: pavone@mit.edu

E. Frazzoli

e-mail: frazzoli@mit.edu

N. Bisnik - V. Isler

Rensselaer Polytechnic Institute, Troy, NY 12180, USA

N. Bisnik
e-mail: bisnin@cs.rpi.edu

V. Isler
e-mail: isler@cs.rpi.edu

@ Springer

random variable, describing customer impatience. The
customers’ impatience is only known to the mobile
agents via prior statistics. In this case, it is desired to
minimize the fraction of service requests missed be-
cause of impatience. Finally, we show how the routing
strategies presented in the paper can be executed in a
distributed fashion.

Keywords mobile robotic networks -

sensor networks - traveling salesman problem -
vehicle routing problem with time windows -
customer impatience

1 Introduction

The vehicle routing problem with time windows
(VRPTW) is an extension of the classic vehicle routing
problem (VRP) and is defined as follows: given a set
of depots, a homogeneous fleet of vehicles and a set of
known demand locations, find a set of closed routes,
originating and ending at the depots, that service all
demands and minimize the travel cost; in addition, the
service at each demand must start within an associ-
ated time window. All problem parameters, such as
demand locations and time windows, are assumed to
be known with certainty. Time windows constraints are
indeed common in many applications, including bank
deliveries, postal deliveries, grocery distribution, dial-
a-ride service, bus routing, and repairmen scheduling.
The VRPTW has generated significant research interest
over the years (see, for example, [1-5]), resulting in
major contributions in the area of combinatorial opti-
mization. However, paralleling the observations in [6]
about the VRP, the VRPTW, as a model for routing

Mobile Netw Appl (2009) 14:350-364

351

problems, is static and deterministic, whereas many
routing problems in practice are inherently dynamic
and stochastic. In fact, requests for service often arrive
sequentially in time, and these arrival epochs may be
stochastic; moreover, locations of future demands may
be unknown or known only probabilistically.

Optimization problems with these characteristics
arise frequently in sensor network settings. As an ex-
ample, imagine a sensor network composed of a large
number of nodes is deployed over a vast field, for
example to study the behaviors of elusive animals,
or to detect suspicious activity in a protected region
as, for example, home burglaries, or insurgents plac-
ing improvised explosive devices (IEDs). Typically,
network nodes contain inexpensive sensors, such as
motion detectors, which are susceptible to false alarms.
In addition to the sensor network, suppose a team
of unmanned aerial vehicles (UAVs) is also available,
which are equipped with more sophisticated on-board
sensors. Each time a sensor detects an event, a UAV
is sent to the location to investigate the cause of the
alarm, i.e., to verify the presence of the animal or the
intruders. Then, the UAV mission control is a con-
tinuous process of collecting alarms, planning routes
and sending UAVs; moreover, timeliness is paramount:
should the UAV take too long to reach the location of
the event, its cause may have already left the premises,
and be hard to track. Another possible scenario is a
sensor network in which sensors are triggered by ex-
ternal events, and then remain active to upload data
to a UAV for a certain known amount of time. Af-
ter this time expires, sensors return to a power-saving
“sleep” mode.

1.1 The dynamic and stochastic VRPTW

In this paper, we introduce and study the following
dynamic and stochastic version of the VRPTW. We
assume that demands for service arrive according to
a Poisson process with rate A to a bounded Euclidean
service region Q with area |Q|. Upon arrival, demands
assume an independent and uniformly distributed loca-
tion in Q. Each demand has an associated deterministic
time window [r;, d;], where d; > r;, r;, d; € R; the release
time r; is the demand’s arrival time, while the deadline
is r;+ T, where T € R, is a constant independent of
the demand. Notice the assumption of equal width for
the time windows (although release times and deadlines
clearly differ from demand to demand). Demands are
serviced by a fleet of vehicles that travel at constant
velocity v. We assume that the on-site service times are
equal to zero (i.e., we assume that the on-site service
times are negligible compared to the travel times).

Given ¢ € (0, 1], the objective is to find routing policies
that, with the minimum possible number of agents,
ensure that each demand has a probability of being
visited before expiring greater than 1 — e.

This problem can be viewed as an extension of our
complementary previous works [7] and [8].

1.2 Related work

The static and deterministic VRPTW has been the
subject of intensive research efforts for both heuristic
and exact optimization approaches (see, for example,
[1-5]). Indeed, the VRPTW is NP-hard; even finding a
feasible solution to the VRPTW when the number of
vehicles is fixed is itself an NP-complete problem [9].
Chapter 7 in [3] provides a comprehensive survey on
exact (exponential-time) solution techniques. Because
of the difficulty of the VRPTW and its wide applica-
bility to real-life situations, many heuristic solution
techniques capable of producing high-quality solutions
in limited time have been proposed; a recent thorough
survey on heuristics for the VRPTW can be found
in [4, 5].

To the best of our knowledge, this is the first time
that a dynamic and stochastic version of the VRPTW
is introduced. The dynamic and stochastic VRPTW
is closely related to the dynamic traveling repairman
problem (DTRP) [6, 7, 10-12], in which m identical
vehicles must service demands whose time of arrival,
location and on-site service time are stochastic, and
the objective is to find service policies that minimize
the expected waiting time of the demands. In [8] the
authors studied a similar vehicle routing problem where
demands expire. They presented approximation algo-
rithms for the case where vehicles’ motion is restricted
to a planar curve.

The dynamic and stochastic VRPTW is also re-
lated to coverage problems of sensor networks. Con-
siderable research effort has been invested in studying
coverage properties of static sensor networks [13-17].
More recently, there has been growing interest in un-
derstanding how the coverage properties of a sensor
network may be improved by introducing mobility to
the sensor devices. The problem of relocating sensors
to improve coverage has been studied in [18]. In this
formulation, the sensors can individually estimate the
positions of the targets. However, the quality of cov-
erage decreases with increasing distance. The average
area covered by mobile sensors over a period of time
has been characterized in [19]. It is shown that for a
mobile sensor network with spatial density A, with each
sensor moving according to a mobility model similar
to a random walk with expected velocity E[V], the

@ Springer

352

Mobile Netw Appl (2009) 14:350-364

expected area covered in time interval (0, ¢) is given by
1 — exp (=A(r? 4 2r E[V]1)). Finally, another related
problem is the orienteering problem (see, for exam-
ple, [20]): the input is an edge-weighted graph G =
(V, E) (directed or undirected), two nodes s, ¢ € V and
a non-negative budget B. The goal is to find an s — ¢
walk of total length at most B so as to maximize the
number of distinct nodes visited by the walk.

1.3 Statement of contributions and paper organization

Since we use a variety of results from several areas, we
present a brief overview in Section 2. In Section 3 we
formally define the dynamic and stochastic VRPTW. In
Section 4 we study the special case when ¢ — 0 and A
is large; setting ¢ — 0™ implies that almost all demands
are required to be serviced before expiring. First, we
compute a lower bound on the minimum number of
vehicles needed to ensure that almost all demands are
serviced before expiring; second, we propose and ana-
lyze a service policy whose performance provably ap-
proximates that of optimal policies. Then, in Section 5,
we study a provably correct service policy for the gen-
eral case with ¢ and A arbitrary. In Section 6 we extend
our analysis to the case in which the time service re-
quests remain active is itself a random variable, describ-
ing customer impatience; the customers’ impatience is
only known to the mobile agents via prior statistics. In
Section 7 we present simulation results. In Section 8
we present a distributed strategy for assigning demands
to the vehicles, and to route them in an efficient way;
finally, in Section 9, we draw some conclusions and
discuss some directions for future work.

2 Preliminaries

In this section, we briefly describe some known con-
cepts from probability, geometry and combinatorial
optimization, on which we will rely extensively later in
the paper.

2.1 Notation

Let Ny be the set of nonnegative integers and R be
the set of positive real numbers. Let || - || denote the
Euclidean norm. Let Q be a compact, convex subset
of R?. We denote the Lebesgue measure of Q as |Q |.
We define J,, = {1,2,--- ,m}. Let G = (g1, -+ ,8&m) €
Q" c (RY)™ denote the location of m points in Q. A
partition (or tessellation) of Q is a collection of m closed
subsets @ = {Q, - - - , O} with disjoint interiors whose

@ Springer

union is Q. The partition of Q is convex, if each Q;,
j € Jum, is convex.

2.2 Convergence of random variables

We refer the reader to [21, 22] for comprehensive treat-
ment of convergence of random variables. A sequence
of random variables X,,r € Ny, converges almost surely
to X (lim,_o X, = X)) if lim,_, o X, () = X (w) for
all sample functions w € Q where P[Q2] = 1. (In other
words, P [lim,_, ., X, = X]=1.) The sequence of random
variables X, converges almost surely to X if and only if,
for each ¢ > 0,

lim P [sup,., {|X; — X[} > ¢] = 0. (1)
r—00 -

2.3 Inequalities for random variables

If X and Y are defined on the same probability space,

then X is almost surely larger that Y, written X a'zs' Y,if
and only if X(w) > Y(w) for all w € Q where P[Q2] = 1.

Moreover, we define the following notions for
asymptotic almost sure inequalities. We say that a
sequence of random variables X,, r € Ny, is asymp-
totically almost surely upper bounded by the random

variable X (which we write as lim, o, X, Cx) if, for
any ¢ > 0,

lim P [sup,., {X; — X} > ¢] = 0. 2)

r—00

Similarly, we say that X, is asymptotically almost surely

lower bounded by X (that is, lim,_, o X, aés' X)) if, for
any ¢ > 0,

lim IP[supSZ, (X - X} > 8] =0. 3)

Notice that neither Eq. 2 nor 3 implies any form of
convergence for the sequence X,. On the other hand,
if both hold at the same time, it is clear that Eq. 1 is
recovered.

2.4 Asymptotic and worst-case properties
of the traveling salesperson problem
in the Euclidean plane

The Euclidean traveling salesperson problem (TSP)
is formulated as follows: given a set D of n points
in RY, find the minimum-length tour (i.e., closed path

Mobile Netw Appl (2009) 14:350-364

353

that visits all points) of D. Let TSP(D) denote the
minimum length of a tour through all the points in D; by
convention, TSP(¥) = 0. Suppose the set D is composed
of n points whose locations are independently chosen at
random from a distribution f, supported on a compact
set Q. In [23] it is shown that there exists a constant
Brsp.qa such that, almost surely,

TSP(D) 4. = _
lim # = ﬂTSP,d'/Q f (@' dq, 4)

notoo pl-1/d

where f is the density of the absolutely continuous part
of the point distribution f. In other words, the optimal
cost of stochastic TSP tours approaches a deterministic
limit. In the planar case, the cost of stochastic TSP tours
grows as the square root of the number of points in D.
Moreover, the current best estimate of the constant in
the case d =2 is Brspr >~ 0.7120 (see, e.g., [24]). For
short, we let 8 = Brsp.».

Notice that the bound (4) holds for all compact sets:
the shape of the set only affects the convergence rate
to the limit. According to [25], if Q is a “fairly compact
and fairly convex” set in the plane, then Eq. 4 provides
an adequate estimate of the optimal TSP tour length for
values of n as low as 15.

Remarkably, the asymptotic cost of the stochas-
tic TSP for uniform point distributions is an upper
bound on the asymptotic cost for general point distri-
butions, i.e.,

TSP(D)

lim ————+ < l/d
i =< Brsp.al Q.

where | Q| is the area of Q. This follows directly from an
application of Jensen’s inequality for concave functions
to the right hand side of Eq. 4

-
ff(cn‘—% dqlel”“(f F@ dq) <10/,
o (]

Finally, if the support of the point distribution f is
a compact set Q C R? the following (deterministic)
bound holds on the length of the TSP tour [26]:

TSP(D) < Bon'~"4 Q)" (5)

The price of determinism is that the constant go de-
pends on the set Q, and is generally much larger than
Brsp,qa. For example, if Q is a unit square, Bp = 2.

2.5 Voronoi diagrams

We refer the reader to [27] for a comprehensive treat-
ment of Voronoi diagrams. The Voronoi Diagram
V(G) = (Vi(G), -+, V,u(G)) of O generated by points
G = (g1, -, 8&n) is defined by

VilG)y={xe Q| llx—gill < llx—gjll, Vi#i j€ Jn}
(6)

We refer to G as the set of generators of V(G), and to
Vi(G) as the Voronoi cell or region of dominance of
the i-th generator. Each Voronoi cell is a convex set.
Indeed, a Voronoi Diagram is a convex partition of Q.
For simplicity, we will refer to V;(G) as V;. When the
two Voronoi cells V; and V; are adjacent (i.e., they
share an edge), g; is called a Voronoi neighbor of g;
(and vice-versa).

Finally, we define an equitable Voronoi diagram as a
Voronoi diagram where all Voronoi cells have the same
Lebesgue measure, with respect to the distribution f.

2.6 The VRPTW

The classic VRPTW is defined on a complete graph
G = (V, A),where V = {vg, v1, ..., v,} is the vertex set
and A = {(v;,vj) : v;,v; € V,i# j}is the arc set. The
first p vertices in V represent depot locations at which
one or more of the m > p available vehicles are based,
while the remaining vertices of V represent demand
locations to be serviced. With each vertex v; € V is
associated a nonnegative on-site service time s;, and a
time window [r;, d;], where d; > r;, r;, d; € No. We refer
to r; as a release time, to d; as a deadline, and to d; — r;
as the width of the time window. Each arc (v;, v;) has an
associated nonnegative cost ¢;; (usually the travel time
between v; and v;). The VRPTW consists of designing
m vehicle routes on G such that: (1) every route starts
and ends at the same depot; (2) every demand belongs
to exactly one route; (3) the service at demand i begins
in the interval [r;, d;], and each vehicle jleaves its depot
and returns to its depot in the interval [r}, d;], (4) the
total travel cost of all vehicles is minimized. There
are variants of this problem where other constraints
are added, for example the total load and duration of
route j are required not to exceed certain thresholds.
Moreover, the fleet size m can be a variable and a usual
additional objective is to minimize m.

All problem parameters are assumed to be known
with certainty. Note that finding a feasible solution to
the VRPTW is itself an NP-complete problem [9].

@ Springer

354

Mobile Netw Appl (2009) 14:350-364

3 Problem definition

We focus on the case where the environment Q is a
compact, convex subset of R?.! Without loss of gener-
ality we will assume that the measure of QO (denoted as
1QDis L.

Demands are serviced by a team of m holonomic
vehicles, modeled as point masses. The vehicles are
free to move, with bounded velocity v, within the en-
vironment Q ; without loss of generality, we will assume
that the velocity magnitude is unitary. The vehicles are
identical, and have unlimited fuel and demand servicing
capacity. For simplicity, vehicles are not required to
stop or to loiter in proximity of demands (i.e., we
assume zero on-site service time).

Service operations start at time 0; the initial num-
ber of demands is a positive integer random variable.
Demands arrive at Q according to a Poisson process
with intensity A, and their locations are independent
and uniformly distributed over Q. In other words, the
number of demands generated over time within a re-
gion S C QO can be described as a homogeneous Poisson
process with rate

As=A-|S|.

When the number of vehicles is a function of A, we
denote such number as m(A). It is assumed that the
initial number of demands is independent of 1. The term
heavy load is used to denote the condition A — co. We
will label demands in increasing order with respect to
time of arrival, by using the index i € Ny. Each demand
has an associated deterministic time window: the release
time r; is the demand’s arrival time, while the deadline
is r;+ T, where T € R, is a constant independent of
the demand. Notice the simplifying assumption of equal
width for the time windows (although release times and
deadlines clearly differ from demand to demand).

If one of the vehicles visits the location of the
i-th demand at a time ¢; such that r; < t; < d;, then the
i-th demand is considered serviced; otherwise the i-th
demand is considered expired. Let W; be a random
variable expressing the sojourn time in the system for
the i-th demand. If the i-th demand is serviced, then
Wi =t; — r;, otherwise W; = T. Notice that, by defini-
tion, all random variables W; are surely bounded below
and above; in particular, we have 0 < W; < T.

IExtensions to higher dimensions are in principle straightfor-
ward, but the constants appearing, e.g., in Eq. 4, are less well
known.

@ Springer

Let D (¢) be the set of locations of demands gener-
ated up to time ¢. Information on outstanding demands
(i.e., arrived demands that have neither been serviced
nor expired) at time ¢ is summarized as a finite set of
demand positions D, (f) € D (¢). Demands are inserted
in both D and D, as soon as they are generated; they
are removed from D, either upon servicing—as a vehi-
cle visits the demand’s location— or upon expiration.
We assume that information contained in D (f) and
D, (1) is available to all vehicles.

Given ¢ € (0, 1], the objective is to find routing poli-
cies that ensure

ImP[W; <T]>1—¢, (7)
11— 00
with the minimum possible number of agents. (Notice
that W; = T if and only if the i-th demand expired.) We
will refer to ¢ as the “reliability” of the system (notice
that ¢ small implies high reliability).

Define W/ as the sojourn time of the i-th demand
when the arrival rate is A. Given ¢ € (0, 1], the objec-
tive, in heavy load, is to find routing policies that ensure

limIP’|:lim WI-A<T:|21—8. (8)
i—00 A—00

The heavy load assumption will allow us to find some
interesting asymptotic results.

4 The dynamic and stochastic VRPTW
in heavy load

In this section we study the special case when ¢ — 07
and A — oco. Setting ¢ — 0" implies that, in steady
state, almost all demands are required to be serviced
before expiring. Our strategy is the following: First, we
establish a heavy-load lower bound on the minimum
number of agents required to ensure Eq. 8 whene — 0.
Second, we analyze a heavy-load policy with a provable
performance guarantee.

4.1 Heavy-load lower bound

We have the following

Theorem 4.1 The minimum number m*(\) of vehicles
required to ensure Eq. 8 when ¢ — 07 satisfies:

. m*(d) y
Am ==z ©)

where y > 2/(3+/2m) ~ 0.266.

Mobile Netw Appl (2009) 14:350-364

355

Proof When ¢ — 0T, we require that, in the limit i —
0o, all demands (except possibly a negligible set) re-
ceive service before expiration. Thus, in the limit i —
00, our problem resembles the dynamic vehicle routing
problem [6]. In [6] it is shown that, for any policy, the
limiting expected sojourn time satisfies (assuming zero
on-site service time):

E[wW2 m2(n
lim [L,DT;P] ()Z)/2,

where Wl.,*DTRP is the sojourn time of the i-th demand
in the DTRP when the arrival rate is A, and y >
2/(3+/2m) ~ 0.266. Therefore, in heavy load

E[wA m2(\
lim lim [Wibrre]m*G: > y2.
A—>00 [— 00 A.

Since all demands, except possibly a negligible set,
receive service within a time 7, we have eventually
E [WLADTRP] < T. Tt follows that

>y (10)
Therefore, to satisfy Eq. 10, we need

A
lim M o

14
A—00 ﬁ _ﬁ'

Thus, the required number of vehicles in heavy
load and when ¢ — 0T can not be less then m*(1) =

(V\/)»/_T—I-

4.2 A provably good heavy load policy

In this section, we propose a policy (which we call
TSP Policy) that satisfies Eq. 8 and requires a number
of vehicles that is within a constant factor from the
optimum. A pseudo-code description of the TSP Policy
is provided in Algorithm 1. The requirement that the
location of each demand is visited even if the demand
expired is introduced to simplify the analysis.

Algorithm 1 TSP Policy
Require: m, the number of vehicles.
Ensure: Routing policy to service demands.
At start-up, the environment Q is partitioned into m
service regions Q;, j € J,,, of equal area 1/m (recall
that |Q| = 1), and each agent is assigned to a distinct
service region. Then, each agent executes in its own
service region:
while TRUE do
if there are no unvisited demands then
Move at unit velocity toward the median of the
service region.
else
Compute the TSP tour through all demands.
Service demands by following the TSP tour
(start from the closest demand and randomly
select one of the two possible orientations of the
tour).
Do not skip demands that expired.
end if
end while

We assume that each vehicle spends a fixed time
¢>0, ckT, to compute a new TSP tour; the com-
putation time ¢ does not depend on the number of
outstanding demands.?

The behavior of the TSP policy is summarized in the
following theorem.

Theorem 4.2 Assume that the TSP policy is used with
a number of vehicles m()) (i.e., m depends on)\) that
satisfies

2 A
,3\/; < lim —"j/(x) < +o0. (11)
Then

limIP’|:1im W < T:| =1.
I—00 A—00

In other words, the TSP policy, with a number of vehi-
cles that satisfies Eq. 11, solves, in heavy load and when

2The assumption of a small and constant computation time is
indeed common in the DTRP literature; e.g., in [6], the computa-
tion time is assumed to be zero.

@ Springer

356

Mobile Netw Appl (2009) 14:350-364

& — 0T, the dynamic and stochastic VRPTW. Moreover,
if we define, with § > 0 an arbitrarily small constant,

mrsp(L) = ’7\& (ﬁ\/;ﬁL 5)—‘ (12)

(mrsp (1) clearly satisfies Eq. 11) we obtain

A
im MIP) _ 550 (13)
A—>00 m*()\)

Equation 13 shows that the number of vehicles required
by the TSP policy is within a constant factor from the
optimal value.

Before proving Theorem (4.2), we need some nota-
tion and two lemmas.

To simplify the analysis, we write A = k[where k €
Ny and / > 0 is an arbitrary constant: thus, heavy load
is obtained for kK — oo. With a slight abuse of notation,
let WA be the sojourn time of the i-th demand arriving
in serV1ce region j. By definition of the policy, what
happens in a service region j € J,, is independent of
what happens in any other service region 4 # j. Thus,
under the TSP policy, ensuring Eq. 8 when ¢ — 07 calls
for ensuring that

limIP’|:11m W’ <T]_l VieJ,.

i—00 r—00

Our analysis will thus concentrate on the (indepen-
dent) sequences of random variables Wif\j. In the fol-
lowing, to avoid cumbersome notation, we will drop the
index j, with the understanding that all the following
analysis refers to a service region j (and not to the
whole environment Q).
The arrival rate in a service region of area 1/m(1), is
A = 1/m()). We refer to the time instant ., r € Ny, at
which the vehicle computes a new TSP tour (recall that
each service region is serviced by exactly one vehicle) as
the epoch r of the policy; we refer to the time interval
between epoch r and epoch r 4 1 as the r-th iteration.
Finally, we define
e nk, r> 1: number of demands arrived in between
epochs r — 1 and r, when the overall arrival process
has intensity A = k[;

° Crk, r > 0: time interval between epochs r and r + 1,
when the overall arrival process has intensity A =
k. This time interval is the sum of (1) the computa-
tion time (equal, deterministically, to ¢ time units),
and of (2) the time required to service all demands

@ Springer

arrived in between epochs r — 1 and r following a
TSP tour;

° Wik, i > 0: sojourn time of the i-th demand, when
the overall arrival process has intensity A = k/;

e m(k): number of vehicles used when A = kl.

Notice that C¥ — ¢ is also the length of the TSP tour
through the demands arrived in between epochs r — 1
and r; indeed, velocity is unitary, and in heavy load we
can safely neglect the travel component between the
agent’s current position and the closest demand in the
TSP tour [see also part (1) in Lemma 4.3 below].

In the next Lemma, we provide some almost sure
convergence results concerning random variables Ck
and nt.

Lemma 4.3 Assume

i

Then, at each epochr > 1:

lim — < 400
k— o0

Ck—c a.s
(2) lim m(k) = B;
k— o0 /nrk
nk 1 as
(3) lim 2 oy,

koo CX Kl jm(k)

Indeed, limit (1) is intuitive; limit (2) is an application of
the TSP Theorem (Eq. 4), and limit (3) is a consequence
of the strong law for renewal processes. A detailed
proof is provided in the Appendix.

The next Lemma characterizes the length of an
iteration.

Lemma 4.4 Assume

-

Then

hm —— < H00.

lim sup lim sup C* T

r—00 k— o0

Mobile Netw Appl (2009) 14:350-364

357

Proof Recall that CX | — cis the length of the TSP tour
through the demands arrived in between epochs r and

r + 1. Then, using Lemma 4.3, we can write

limsup Cf,, = ¢+ limsup (Cf,, —¢)

k—o0 k— o0

Ck . —cy
rl —C m(k)\@

¢+ limsup ———

k—o00 /nrkJrl hY% m(k)
B/
S n,

B nfikl/m) .,

IS}
@

¢ + lim sup
k—o00

crimsip o\ CF kijmk)
as. . kl
= c+hmsup/3£ Ck
k— o0 m(k)

(14)

A

o

l’
N~
TS
3 &

o}
O

)

Define the random variable X, =limsup,_, ., CX; Eq. 14
allows to determine an almost sure upper bound on
limsup,_, ., X,. It is straightforward to verify

2
1 T T
limsup X, S — (/= +/ = +4c]) ; 15
1Ir_1)il;p ,<4(2+ 2+c (15)

since, by assumption, ¢ < T, we get the claim. O

Proof (Theorem 4.2) Notice that, for demands arriving
in between epochs r and r + 1, the sojourn time Wik
is bounded above by (CX + C\,); therefore, applying
Lemma 4.4, we can write

a.s

lim sup lim sup W/ < lim sup lim sup (Crk + C*k) < T.

. r+1
i—00 k—o0 r—00 k— o0

(16)
For convenience, define T as

T = lim sup lim sup Wl-k .

i—00 k—o0

From the definition, T is a random variable (it might
not be a constant) almost surely smaller than 7'. Recall-
ing the definition of almost sure convergence, we have
forany § > 0

lim [P | sup { sup (lim sup qu) — TH >4§|=0.
=0 q=p \ k—oo

p=i

Thus, we have a fortiori

lim P |:<lim sup Wr — T) > 8] =0.

11— 00 k— 00

The claim follows from the fact that § is arbitrary and

= a.s.

T < T. O

5 A service policy for the non-asymptotic case

The previous results hold only in the limit A — oo
and when ¢ — 0". In this section, we study the TSP
policy for arbitrary values of ¢ € (0, 1] and in general
load conditions. In particular, we study the number
of vehicles that are sufficient, for a given ¢, to ensure
Eq. 7. Here, we assume that vehicles are allowed to skip
the expired demands. We have the following

Theorem 5.1 Forany given ¢ € (0, 1] and any A, a num-
ber of vehicles sufficient for the TSP policy to ensure
Eq.7is

= [10f]

where B is a constant that depends on the shape of the
service regions.

Proof As in Section 4.2, we analyze the sequence of
sojourn times within a given cell j € J,,, and we drop
the index j, with the understanding that all the follow-
ing analysis refers to a service region j (and not to the
whole environment Q).

To avoid any confusion, we restate some of the
notation. The arrival rate in a service region, whose
areais 1/m,is A = A/m. We refer to the time instant ¢,,
r € Ny, in which the vehicle computes a new TSP tour
as the epoch r of the policy; we refer to the time interval
between epoch r and epoch r + 1 as the r-th iteration.
We define n, as the number of demands arrived in
between epochs r — 1 and r. Finally, we define C, as the
time interval between epochs r and r + 1. For simplicity
we assume the computation time to be zero; extension
to the case ¢ > 0 is straightforward but cumbersome.

First, we study the sequence of expected values
E [C,]. By the deterministic inequality for the TSP tour
through n points, we have (recall that the area of each
service region is 1/m)

Cr+l < ﬂQ\/ l’l,+1/m,

@ Springer

358

Mobile Netw Appl (2009) 14:350-364

where the contribution of the initial travel to the closest
demand in the TSP tour is included in 8. By applying
Jensen’s inequality for concave functions, in the form

E [\/X’] < VE[X], we get

E [Cr+1] < BoE [nrﬂ]/m.

During iteration r of the policy, demands arrive
according to a Poisson process. Call n'*V the number
of demands arrived during iteration r. Thus, we have
E [ny11] = E [n2V] = AE [C,]; therefore

E[Cri1] < BoAE[C/]/m.

The above inequality describes a recurrence relation
that allows to bound the value to which E[C,] con-
verges as r — oo. It is straightforward to verify that

A
li E[C] < p5—.
imsupE[C,] < Bp 5

Since, for demands arriving in between epochs r and
r + 1, the sojourn time W; is bounded above by (C, +
C,11), We can write

M
limsup E[W;] < 283 —.
i—00 m

Furthermore, since W; is a non-negative random vari-
able with finite mean, we can apply Markov inequality
to obtain

MW=N2MW2H§ET%

therefore we have

A
m2T’

Wil

E
lim supP[W; =T] < lim sup [< 2,82Q
i— 00 =00
If we choose m such that 2/3sz /(m>T) < e, we can guar-
antee that limsup,,, P[W;=T] < ¢, and we obtain
the claim. O

Remark 5.2 Some remarks are in order.

1) The constant 8y depends on the shape of the
service regions; for example, if service regions are
approximately square, then 8o ~ 2 (recall that we
are including in B¢ the contribution of the initial
travel to the closest demand in the TSP tour).

@ Springer

2) Markov inequality is often a loose upper bound for
the cumulative distribution function of a random
variable; thus, we believe that the result of Theo-
rem 5.1 is very conservative.

3) Notice, moreover, that the TSP policy does not rely
on the knowledge of demands’ release times; in
other words, it does not give priority to demands
that are about to expire. It is clear that, to lower
the number of needed vehicles, the knowledge of
the releases times should be exploited.

6 The dynamic and stochastic vehicle routing
problem with customer impatience

In this section, we extend our analysis to the case in
which the time service requests remain active is itself
a random variable, describing customer impatience. In
this case, it is desired to minimize the fraction of service
requests missed because of impatience. A preliminary
version of these results appeared in [28].

6.1 Problem definition

The problem definition is similar to that of Section 3.
The new fact is that, now, each demand i/ has an as-
sociated random impatience time L;; should the i-th
demand not be visited within time L; from its arrival,
it will expire. The impatience times L; are indepen-
dent and identically distributed according to a density
fr : Ry — R. We assume that demands’ impatience is
known to the vehicles only via prior statistics. This is in
sharp contrast to the standard vehicle routing problem
with time windows, where the time windows are known
by the vehicles.

Similarly as before, we define W; as the sojourn time
in the system for the i-th demand. The random variable
Wi is the elapsed time between the arrival of demand
i and the time when either one of the vehicles visits
its location or such demand departs from the system
due to impatience - whichever is smaller. A demand is
considered serviced if W; < L;.

Given ¢ € (0, 1], the objective is to ensure that no
more than a fraction ¢ (where ¢ € (0, 1] is a control
parameter) out of all the arrived demands departs im-
patiently before service. Notice that we rule out the
case ¢ = 0. We want to answer the questions: what is
a sufficient number of mobile agents needed to ensure
that each service request is fulfilled before expiring,
with probability at least 1 — ¢? What strategy should
they use to ensure this objective is attained?

We will restrict our analysis to the heavy load case.

Mobile Netw Appl (2009) 14:350-364 359
. . C . Table 1 Fraction p of expired demands
6.2 From customer impatience to deterministic
time windows maxp Elp] o(p)
4.1-1073 3.5-1073 75107

Our approach is to transform the problem with cus-
tomer impatience into a problem with determinis-
tic time windows, and then to apply the results of
the previous sections. Recalling that the impatience
times are identically distributed, define the critical time
Terit as

T crit =max {T e R, : / frdt=P[L >T]> 1—<p}.
T

Clearly, if a routing policy is able to ensure that each
demand location (regardless of its impatience) is visited
within time T from its arrival, then this policy ensures
that no more than a fraction ¢ out of all the arrived
demands departs impatiently before service. Through
the concept of critical time we can, therefore, address
the problem of servicing demands with impatience
as the problem of visiting a// demands’ locations, re-
gardless of their impatience (i.e., even if they depart
impatiently), within a constant time. In other words,
through the concept of critical time, we cast the prob-
lem of servicing demands with impatience into the
previous dynamic and stochastic VRPTW, in which the
time windows have length 7T, and we require a system
reliability e — 0.

This approach on the one hand introduces some de-
gree of conservatism, but on the other hand it simplifies
considerably the mathematical analysis.

6.3 A provably correct heavy load policy

From the previous discussion, we argue that, in heavy
load, the TSP policy (see Algorithm 1) solves the dy-
namic and stochastic vehicle routing problem with cus-
tomer impatience for any ¢ € (0, 1]. An upper bound
on the number of vehicles needed by the TSP policy is

m= ’7;3 7%)L~t—‘ . (17)

7 Simulation results for the TSP policy

In this section we verify by simulations the correctness
of the previous results. All simulations are performed
using linkern? as a solver to generate approxima-
tions to the optimal TSP tour. This powerful solver

31inkern is written in ANSI C and is freely available for acad-
emic research use at http://www.tsp.gatech.edu//concorde.html.

yields approximations in the order of 10% of the op-
timal tour cost very quickly for many instances. For
example, in our numerical experiments on a 2.4 GHz
Pentium machine, approximations of random TSPs
with 1,000 points typically required about two seconds
of CPU time.

7.1 TSP policy in heavy load

The analysis of the TSP policy in heavy load culminates
in Eq. 12, which dictates how many vehicles are needed
to ensure that almost no demand is missed.

We consider the scenario A = 1000 and T = 5. Then,
Eq. 12 prescribes mysp = 15 vehicles. We run, starting
from random initial conditions, 100 simulations; each
run consists of 200 iterations of the TSP policy. For each
run, we record the fraction p of demands that expire
before service. Table 1 summarizes simulation results;
we report the worst case value of p, the mean value of
p and its standard deviation (mean value and standard
deviation are over 100 realizations).

From Table 1, the worst case fraction of missed
demandsis p = 4.1 - 1073, that is 4 demands every 1000
demands are missed in the worst case; recalling that
our analysis holds in the limit A — oo, and that we
are using an approximate TSP solver, we conclude that
simulation results match our previous analysis.

The central idea in the analysis of the TSP policy
in heavy load is that each iteration should last a time
interval less than 7'/2. Figure 1 shows the worst case it-
eration length versus the number of vehicles employed.
We consider the case 7 =15 and 1 =400. Equation
12 prescribes 10 vehicles, and m = 10 is exactly the
minimum number of vehicles to obtain a worst case

20

15+ B

10+

Iteration Length

Number of Vehicles

Figure 1 Iteration length as a function of m; A =400, T =5,
mtsp = 10

@ Springer

http://www.tsp.gatech.edu//concorde.html

360

Mobile Netw Appl (2009) 14:350-364

iteration length smaller than 7/2. This shows that our
analysis of the TSP policy is rather tight.

7.2 TSP policy in normal load

We now test the TSP policy in moderate load, with
the number of vehicles prescribed by Theorem 5.1.
We compute the maximum fraction p of missed de-
mands as a function of ¢ and A. The maximum is
over 100 sample paths, with 200 iterations each. We
consider T =5,¢ € {0.1,0.4,0.6,0.9} and A = {1, 5, 10,
20, 30, 40, 50, 60, 70, 80}. The number of vehicles is dic-
tated by Theorem 5.1.

For all pairs (e, 1), we obtained max p = 0. This re-
sult is somewhat expected, since, as discussed before,
Theorem 5.1 provides a very loose upper bound on the
number of vehicles needed to guarantee ¢-reliability.

It is interesting to verify if the results obtained for
the heavy load case, in particular Eq. 12, remain valid
for moderate values of A. Figure 2 shows the worst case
fraction of missed demands for various values of A (the
worst case is with respect to 100 sample paths). The
number of vehicles is prescribed by Eq. 12. It can be
seen that for A > 350 p ~ 0, and that for A < 350 p is
never larger than 0.1.

7.3 TSP policy with customer impatience

First, we consider the scenario where demands have an
impatience uniformly distributed in [0, 90], i.e.

_) 1/9 if t € [0, 90];
fu = {O otherwise.

We set ¢ = 0.05; therefore T, = 4.5 seconds. We con-
sider A = {10, 20, 40, 50, 75, 100}. For each value of A,
we run, starting from random initial conditions, 100
simulations. For each A, we record the fraction p of
demands that are missed in the worst case run. For

1
0.9+ B
0.8- b
0.7+ B
0.6 B

a 0.5f B
0.4- B
0.3+ B
0.2r B

01 1
AW I
0 50 100 150 200 250 300 850 400 450 500 550 600

A

Figure 2 Fraction p of missed demands as a function of A. The
number of vehicles is prescribed by Eq. 12

@ Springer

0.06 Requirement

Experimental

0 50 100 150 200 250 300 350 400
A

Figure 3 Fraction of demands that depart impatiently as a func-
tion of A; the number of agents is respectively m = {1, 1, 2, 2,
3,4,4,5,5,6,7,9,10}. The impatience time follows a uniform
distribution

every value of X, the number of vehicles is dictated by
Eq. 17.

Figure 3 shows the results. The TSP policy always
satisfies the requirement that no more than ¢ = 5%
of demands depart impatiently. The requirement is
satisfied with a considerable safety margin, and this is
a consequence of the conservatism that characterizes
our approach. Recall that Eq. 17 was derived under the
heavy load assumption. These simulations show that
Eq. 17 seems to be applicable for every value of A.

Then, we consider an impatience that follows an
exponential distribution with the same mean of the
previous uniform distribution, i.e.:

se=% ift > 0;
fu = {O otherwise.

where § = 1/45 seconds. We repeat the previous simu-
lations with this new customer impatience model. The
TSP policy, also in this case, always satisfies the require-
ment, with a considerable safety margin (see Fig. 4).

0.06}- Requirement

Experimental

G I I I I I I I
0 50 100 150 200 250 300 350 400
A

Figure 4 Fraction of demands that depart impatiently as a
function of A; the number of agents is respectively m = {1, 1, 2,
3,3,5,5,6,7,9, 10, 12, 14}. The impatience time follows an expo-
nential distribution

Mobile Netw Appl (2009) 14:350-364

361

Dominance
4_— .
Region
o Aw\‘
—

Agent
Generator's

Location

Figure 5 Agents, virtual generators and regions of dominance

8 Decentralized equitable partitioning

The TSP policy is centralized, since it requires a central-
ized assignment of the service regions. As introduced in
[7,29], assuming that Q is convex, m agents can achieve
a configuration with equitable (i.e. with the same area)
service regions in a decentralized way. The first step
is to associate to each vehicle i a virtual generator g;.
We define the region of dominance for vehicle i as
the Voronoi cell V; = V;(G), where G = (g1, -+ , &m)-
We refer to the partition into regions of dominance
induced by the set of virtual generators G as V(G). A
virtual generator g; is simply an artificial variable locally
controlled by the i-th agent; in particular, g; is a virtual
point (see Fig. 5).

We shall assume that each vehicle has sufficient in-
formation available to determine: (1) its Voronoi cell,
and (2) the locations of all outstanding events in its

f L] - .0
° g ® — ®
[o° X
L ° PR 5 o
° . B R Agent
Demand --1--- e : 5w
° : =
% g ° o e® % °
L)
° d F] ° e
L 4 . .,
I. ® ® o ? :. e q Generatorls
4 g . ; % Location
TSP tour ° o T[T
----------- > o £ ® .
P % e
i W o

Figure 6 Each vehicle services outstanding demands inside its
own region of dominance by following a TSP tour

Voronoi cell. A control policy that relies on informa-
tion (1) and (2) is Voronoi-distributed in the sense that
the behavior of each vehicle depends only on the loca-
tion of the other agents with contiguous Voronoi cells
(the number of Voronoi neighbors of each generator
is on average less than or equal to 6 [27]). Accord-
ingly, Voronoi-distributed policies are spatially distrib-
uted and scalable in the number of agents. A spatially
distributed algorithm for the local computation and
maintenance of Voronoi cells is provided in [30].

The key idea, then, is to enable virtual generators
to follow a (Voronoi-distributed) gradient descent law
such that an equitable partition is reached (see [7] for
the details). Figure 6 shows a typical partition that
arises with such algorithm.

9 Conclusion

In this paper, we introduced and studied a dynamic
and stochastic version of the well-known vehicle rout-
ing problem with time windows. In our model, each
service request is generated by a spatio-temporal sto-
chastic process; once a service request has been gen-
erated, it remains active for a certain deterministic
amount of time, and then expires. Given ¢ € (0, 1],
the objective is to find routing policies that, with the
minimum possible number of agents, ensure that each
demand has a probability of being visited before expir-
ing greater than 1 — ¢.

We first presented a lower-bound on the minimum
number of vehicles for the case where ¢ — 0T and the
arrival rate of events is large (heavy load). Next, we
presented a heavy-load routing strategy for servicing
almost all demands before they expire and showed that
the number of vehicles is within a small constant from
the optimal value. We then studied the case where the
arrival rate is arbitrary and an arbitrary fraction of the
events must be serviced; also for this case we provided a
provably correct algorithm. Finally, we extended these
results to the case where the expiration time of an event
is itself a random variable. In addition, we showed
how the routing strategies presented in the paper can
be executed in a distributed fashion. Our theoretical
results are confirmed by simulations.

Several important research directions will be the
objective of future work. First of all, the results in
this paper assume that the time windows are either
deterministic and uniform for all demands, or stochastic
and unknown to the agents; it is of interest to extend
our work to a more general setup. Second, we will
investigate the extension of the work presented in this
paper to the case in which the demands are generated

@ Springer

362

Mobile Netw Appl (2009) 14:350-364

according to non-uniform spatial distributions. Finally,
some of the bounds in this paper are conservative, thus
we plan to search for tighter bounds.

Acknowledgements The work of Pavone and Frazzoli was par-
tially supported by the National Science Foundation (grants num-
ber 0325716, 0715025, 0705451, 0705453). Isler was supported in
part by NSF CCF-0634823 and NSF CNS-0707939. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect
the views of the supporting organizations.

Appendix
In this appendix, we restate and prove Lemma 4.3.
Lemma 4.3 Assume
B,/ 2 lim m) +00
— < 1 —_— < .
T k—00 m
Then, at each epochr > 1:

(1) lim n} £ oo;

k—o0
Crk —C a.s
@) lim i m(k) = B;
nk 1 a.s

3) lim %
G o km

Proof The arrival rate in a service region is kl/m(k).
Consider an arbitrary deterministic time interval ¢ > 0
and let n%(c) be the number of Poisson arrivals, with
rate kl/m(k), in such time interval; we start by proving
that limg_, o n¥(c) = o0o. From Section 2, we have

lim 7%(¢) & 0o & VN >0 lim P [U;O:k[np (©) < N]] —0.
k— 00 k— o0

Therefore, we want to show that

Ve>0 3Jk:Vk>k }P’[U;O:k[n”(c) < N]] < &.
(18)
By assumption
m(k)

L < lim — < U,

k—o00 \/H

where L and U are two positive constants (their values
are of no concern here). Thus, there exists k; > 0 such
that for all k > k;

m(k)

< < U.
vkl

@ Springer

Let k, be the smallest integer k such that v/klc/L > 1.
Now, by using the union bound and assuming k >
max(ky, ky), we have

P[U;‘;k [n”(c) < N]] <Y Bl () < N

_ Z efr»%) (P lc/m(p))
n'

p=k n=0
o _ /7 N-1
< NZe’ 7 (yple/L)
p=k

The series))., - (Vple/L) N1'is convergent
(as it can be easily verified with the comparison test);

therefore, limy o >)7y s (\/ﬁc/L)N*1 =0. Let
k; be the smallest integer such that, for all k > k3,
ook e’@(\/ﬁc/L)N_l <e&/N. Then, by letting
k = max(ky, ka, k3), we prove Eq. 18.

Now, the time interval between epochs r — 1 and r
(call it 7,_;) is at least as large as the computation time
¢ > 0. Thus, if Q is the set of sample functions w for
which limy_, o n¥(c) = 0o, we have limy_, o n*(1,_) =
oo for all @ in Q. Since P[] = 1 (and n*(z,_;) = nk by
definition), part (1) is proven.

We now prove part (2). By Eq. 4, we know that,
given a set D, of n points that are independent and
uniformly distributed in a region of unit area, we
have lim,,_, o, TSP(D,,)//n = B. From part (1) of this
Lemma, we also have that limy_, n,k £ 0o. Assume,
now, that we scale by a factor «/m(k) the coordinates
of the demands that arrive in between epochs r — 1
and r, when the overall arrival rate is kl. Let F* be
the length of the tour through such scaled demands
(the scaled demands are uniformly distributed in a
region with unit area). Thus, for any sample function
(except possibly for a set of probability zero), F¥/ \/rT,k
runs through the same sequence of values with in-
creasing k as TSP(D,)/+/n runs through with increas-
ing n. Thus if Q is the set of sample functions » for
which both lim,, .o, TSP(D,))/+/n = f and lim;_, o, n* =
00, we have limy_, o Frk /\/if = g for all sample func-
tions in Q. By Eq. 4 and part (1) of the Lemma we have
P[] = 1. Thus

k
lim L o B
k— o0 nrk '

Mobile Netw Appl (2009) 14:350-364

363

By scaling, we have F¥ = (C¥ — ¢)«/m(k), and thus we
get the limit in part (2).

Finally, we prove part (3). The number of arrivals
in between epochs r —1 and r is N %(Crk_,), where
{N %(t); t > 0} is a Poisson process with intensity
kl/m(k). By the strong law of large numbers for re-
newal processes (see, for example, [31]) we have

lim N'(¢)/t = 1.
—00
For every k, consider the time scaling:

r;—kl t
T omk)

Notice that in the new time scale the arrival rateis A = 1
for every k. Let C* | be the length of the time interval
between epochs r — 1 and r in the new time scale, i.e.

Ck, = %C}il. Since, by definition, C* | > ¢ > 0, and

since by assumption limy_, o kI/m(k) = oo, we have
lim CF | = o0

k— o0

Therefore, with similar arguments as before, we obtain
(19)

By scaling, we have N'(Ck) = Nnio (Ck,), therefore
Eq. 19 is equivalent to

N (CE)
ck, kl/m(k)

IS)
ksl
—_—

lim
k—o0

Since, by definition, n¥ = N#% (CX |) , we obtain the
claim. O

References

1. Solomon MM (1987) Algorithms for the vehicle routing and
scheduling problems with time window constraints. Oper Res
35(2):254-265

2. Desrosiers J, Dumas Y, Solomon MM, Soumis F (1995) Time
constrained routing and scheduling. In: Ball MO, Magnanti
TL, Monma CL, Nemhauser GL (eds) Handbooks in opera-
tions research and management science, chapter 8. Elsevier,
Amsterdam, The Netherlands, pp 35-139

3. Toth P, Vigo D (2002) The vehicle routing problem. SIAM
Monographs on Discrete Mathematics and Applications,
Philadelphia, PA

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Briysy O, Gendreau M (2005) Vehicle routing problem with

time windows, part I: route construction and local search
algorithms. Transp Sci 39(1):104-118

. Brédysy O, Gendreau M (2005) Vehicle routing problem with

time windows, part II: metaheuristics. Transp Sci 39(1):119-
139

. Bertsimas DJ, van Ryzin GJ (1993) Stochastic and dynamic

vehicle routing in the Euclidean plane with multiple capaci-
tated vehicles. Adv Appl Probab 25(4):947-978

. Pavone M, Frazzoli E, Bullo F (2007) Decentralized

algorithms for stochastic and dynamic vehicle routing with
general target distribution. In: Proc IEEE conference on de-
cision and control, New Orleans, LA

. Bisnik N, Abouzeid A, Isler V (2007) Stochastic event cap-

ture using mobile sensors subject to a quality metric. IEEE
Trans Robot 23:676-692

. Savelsbergh MWP (1985) Local search in routing problems

with time windows. Ann Oper Res 4(1):285-305

Bertsimas DJ, van Ryzin GJ (1993) Stochastic and dynamic
vehicle routing with general interarrival and service time dis-
tributions. Adv Appl Probab 25:947-978

Bertsimas DJ, van Ryzin GJ (1991) A stochastic and dynamic
vehicle routing problem in the Euclidean plane. Oper Res
39:601-615

Frazzoli E, Bullo F (2004) Decentralized algorithms for
vehicle routing in a stochastic time-varying environment. In:
Proc IEEE conf on decision and control, Paradise Island,
Bahamas

Huang C-F, Tseng Y-C (2003) The coverage problem in a
wireless sensor network. In: 2nd ACM international confer-
ence on wireless sensor networks and applications (WSNA).
ACM Press, New York, NY, USA, pp 115-121
Meguerdichian S, Koushanfar F, Potkonjak M, Srivastava
MB (2001) Coverage problems in wireless ad-hoc sensor
networks. In: 20th annual IEEE conference on computer
communications (INFOCOM), pp 1380-1387

Wang X, Xing G, Zhang Y, Lu C, Pless R, Gill C (2003)
Integrated coverage and connectivity configuration in wire-
less sensor networks. In: SenSys 03: proceedings of the 2nd
international conference on embedded networked sensor sys-
tems. ACM Press, New York, NY, USA, pp 28-39

Xing G, Lu C, Pless R, O’Sullivan JA (2004) Co-grid: an
efficient coverage maintenance protocol for distributed sen-
sor networks. In: 3rd international symposium on informa-
tion processing in sensor networks (IPSN). ACM Press,
New York, NY, USA, pp 414-423

Isler V (2006) Placement and distributed deployment of
sensor teams for triangulation based localization. In: Proc
IEEE ICRA, pp 3095-3100

Cortés J, Martinez S, Karatas T, Bullo F (2004) Coverage
control for mobile sensing networks. IEEE Trans Robot
Autom 20(2):243-255

Liu B, Brass P, Dousse O, Nain P, Towsley D (2005) Mobil-
ity improves coverage of sensor networks. In: International
symposium on mobile ad hoc networking and computing
(MobiHoc). ACM Press, New York, NY, USA, pp 300-308
Chekuri C, Korula N, Pal M (2008) Improved algorithms
for orienteering and related problems. In: SODA ’08: pro-
ceedings of the nineteenth annual ACM-SIAM symposium
on discrete algorithms. Philadelphia, PA, USA, Society for
Industrial and Applied Mathematics, pp 661-670

Durrett R (1996) Probability: theory and examples. Duxbury
Press, Belmont, CA

Stark H, Woods JW (1986) Probability, random processes,
and estimation theory for engineers. Prentice-Hall, Inc,
Upper Saddle River, NJ

@ Springer

364

Mobile Netw Appl (2009) 14:350-364

23. Beardwood J, Halton J, Hammersley J (1959) The short-
est path through many points. In: Proc of the Cambridge
Philoshopy Society, vol 55, pp 299-327

24. Percus G, Martin OC (1996) Finite size and dimensional
dependence of the Euclidean traveling salesman problem.
Phys Rev Lett 76(8):1188-1191

25. Larson RC, Odoni AR (1981) Urban operations research.
Prentice-Hall, Englewood Cliffs, NJ

26. Steele JIM (1990) Probabilistic and worst case analyses of clas-
sical problems of combinatorial optimization in Euclidean
space. Math Oper Res 15(4):749-770

27. Sugihara K, Okabe A, Boots B, Chiu SN (2000) Spatial
tessellations: concepts and applications of Voronoi diagrams.
Wiley, New York, NY

@ Springer

28.

29.

30.

31.

Pavone M, Bisnik N, Frazzoli E, Isler V (2007) Decentral-
ized vehicle routing in a stochastic and dynamic environment
with customer impatience. In: Proc Robocomm, Athens,
Greece

Pavone M, Frazzoli E, Bullo F (2008) Distributed algorithms
for equitable partitioning policies: theory and applications.
In: Proc IEEE conference on decision and control, Cancun,
Mexico

Cao M, Hadjicostis CN (2003) Distributed algorithms for
Voronoi diagrams and applications in ad-hoc networks.
Technical Report UILU-ENG-03-2222, UIUC Coordinated
Science Laboratory

Gallager RG (1996) Discrete stochastic processes. Kluwer,
Dordrecht, The Netherlands

	A Stochastic and Dynamic Vehicle Routing Problem with Time Windows and Customer Impatience
	Abstract
	Introduction
	The dynamic and stochastic VRPTW
	Related work
	Statement of contributions and paper organization

	Preliminaries
	Notation
	Convergence of random variables
	Inequalities for random variables
	Asymptotic and worst-case properties of the traveling salesperson problem in the Euclidean plane
	Voronoi diagrams
	The VRPTW

	Problem definition
	The dynamic and stochastic VRPTW in heavy load
	Heavy-load lower bound
	A provably good heavy load policy

	A service policy for the non-asymptotic case
	The dynamic and stochastic vehicle routing problem with customer impatience
	Problem definition
	From customer impatience to deterministic time windows
	A provably correct heavy load policy

	Simulation results for the TSP policy
	TSP policy in heavy load
	TSP policy in normal load
	TSP policy with customer impatience

	Decentralized equitable partitioning
	Conclusion
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

