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Despite the effective implementation of many scientific 
advancements in the cultivation of rice crops, pests and dis-
eases continue to exist, so preventative measures should be 
taken to minimize yield loss [1].

Sheath blight (ShB), caused by Rhizoctonia solani Kuhn 
[teleomorph - Thanatephorus cucumeris Frank (Donk)], is 
one of the most serious diseases of rice worldwide, which 
poses a significant threat to rice production. Despite the 
effective control of bacterial blight and rice blast through 
advanced resistance breeding, managing ShB remains chal-
lenging due to the limited understanding of its underlying 
molecular resistance mechanisms. In the early stages of the 
disease, water-soaked lesions appear, which later develop 
into a rattlesnake-like pattern with greyish-white cents and 
dark brown margins. As the infection becomes severe, the 
fungus produces sclerotia interwoven mycelial masses 
coated in hydrophobic layers. These sclerotia, measuring 
1 to 3 mm in diameter, initially appear white and gradu-
ally turn brown or dark brown, forming on the surface of 
infected rice. These remains dormant in the soil between 
crops for many years and regains its their infectivity under 
favourable conditions [2]. ShB causes yield loss of up to 
50% at the field level, whereas artificially inoculated plots 
show 20–42% yield loss [3].

Introduction

Rice stands as one of the most vital staple foods, nourishing 
over half of the global population. As the population ele-
vates in countries where rice is a staple crop, it is anticipated 
that there will be an increased demand for rice in the future. 
Despite tremendous advancements in agricultural technol-
ogy over the past fifty years, a significant proportion of the 
global population still faces starvation and undernourish-
ment. Hunger and malnutrition are caused by an imbalance 
between crop production and population for food leading 
to starvation and malnutrition, especially among children. 
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Abstract
Sheath blight, caused by the fungus Rhizoctonia solani, is a major problem that significantly impacts rice production and 
can lead to substantial yield losses. The disease has become increasingly problematic in recent years due to the wide-
spread use of high-yielding semi-dwarf rice cultivars, dense planting, and heavy application of nitrogenous fertilizers. The 
disease has become more challenging to manage due to its diverse host range and the lack of resistant cultivars. Despite 
utilizing traditional methods, the problem persists without a satisfactory solution. Therefore, modern approaches, including 
advanced breeding, transgenic methods, genome editing using CRISPR/Cas9 technology, and nanotechnological interven-
tions, are being explored to develop rice plants resistant to sheath blight disease. This review primarily focuses on these 
recent advancements in combating the sheath blight disease.

Keywords Rice · Rhizoctonia solani · Disease resistance · CRISPR/Cas9 · Nanoparticles

Received: 28 May 2024 / Accepted: 25 August 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Advances in breeding, biotechnology, and nanotechnological 
approaches to combat sheath blight disease in rice

David Jesudoss1 · Vignesh Ponnurangan1,2 · Mohana Pradeep Rangaraj Kumar2 · Krish K. Kumar1 · 
Jayakanthan Mannu3 · Harish Sankarasubramanian2 · Sudhakar Duraialagaraja1 · Kokiladevi Eswaran1 · 
Arul Loganathan1 · Varanavasiappan Shanmugam1

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11033-024-09889-5&domain=pdf&date_stamp=2024-9-3


Molecular Biology Reports          (2024) 51:958 

R. solani is a soil-borne necrotrophic fungal pathogen 
that infects plants of over 32 taxonomic families. R. solani 
isolates had fourteen different anastomosis groups (AGs). 
AGs are a classification system based on hyphal fusion reac-
tions. These groups are crucial for understanding the genetic 
diversity in this plant pathogenic fungus, indicating its great 
genetic variability [4]. The first thirteen groups were called 
AG1–AG13, while the 14th group, AGB1, is a bridging iso-
late. Bridging isolate is a specific isolate that can undergo 
hyphal fusion with isolates from different AGs, making it 
important for understanding the genetic diversity and taxo-
nomic connections within the R. solani species complex. 
Several anastomosis groups are further subdivided into 
intraspecific groups (ISGs). R. solani AG1 isolates are clas-
sified into three ISGs, viz., IA, IB, and IC, based on host 
origin, symptoms, cultural characteristics, DNA sequence 
homology and sclerotia morphology [5]. R. solani AG1-
IA is generally accepted to be the cause of ShB disease in 
rice. Pathogens enter plants by lobate appressoria, infection 
cushions, or both. R. solani runner hyphae form convo-
luted hyphal clusters, known as infection cushions. Infec-
tion typically occurs through direct cuticular penetration via 
an infection cushion, while stomatal penetration via lobate 
appressoria is less common [2].

The pathogen is difficult to manage due to its broad host 
range, high genetic variability, and lack of natural resistance 
in available rice germplasm. Finding solutions to combat 
the pathogen is crucial for reducing rice yield losses and 
ensuring global food security. This review outlines breed-
ing methodologies, focusing on the molecular mechanisms 
of defense-related genes, the use of genome editing to tar-
get negative regulators, and the roles of nanoparticles in 
enhancing ShB resistance.

Virulence factors involved in R. solani 
infection in rice

The pathogen R. solani infiltrates the host through multiple 
mechanisms, while rice counters with innate and systemic 
acquired resistance (SAR) immunity. Effector proteins are 
utilized by pathogens to infect host plants and can cause 
disease. R. solani is known to produce a variety of effec-
tor molecules with different functions that enable successful 
colonization. Domains of three potential secreted effec-
tors of R. solani AG1-1 A: glycosyltransferase GT family 
2, cytochrome C oxidase assembly protein CtaG/ cox11, 
and peptidase inhibitor I9 have been identified to induce 
cell death in rice during R. solani invasion [6]. Genomic 
analysis of virulent Indian strains identified additional effec-
tors, including histone acetyltransferase, MDR transporter, 

polygalacturonase, and pectin lyase [7]. The polygalacturo-
nase gene significantly contributes to R. solani pathogenesis 
[8].

R. solani secretes a variety of secondary metabolites, 
such as host-selective toxins and biologically active mole-
cules, which enhance pathogen virulence by breaking down 
host physical barriers and disrupting normal physiological 
functions of the host plant [6]. Biologically active molecules 
produced by R. solani include oxalic acid (OA), 3-methyl-
thiopropionic acid (MTPA), phenylacetic acid (PAA) and its 
derivatives [9]. OA produced by necrotrophic pathogens is 
an essential virulence factor for successful infection. Dur-
ing R. solani infection, OA inhibits the synthesis of various 
phenolic substances and degrades the cell wall for effective 
penetration [10].

Fungal plant pathogens typically secrete various types 
of carbohydrate-active enzymes (CAZymes), for successful 
invasion, including cell wall-degrading enzymes (CWDEs) 
viz., cellulases, pectinases, and hemicellulases to breach 
plant cell wall components. R. solani evades plant immunity 
by masking its cell wall chitin with α-1,3-glucan. The com-
bined action of these CWDEs allows R. solani to effectively 
penetrate and spread within the host plant tissues, contribut-
ing to the pathogen’s ability to cause disease. Understanding 
the role of CWDEs is a crucial strategy to combat R. solani 
infection [11].

Factors influencing ShB pathogenesis

Sheath Blight pathogenesis is influenced by various factors, 
including hormones, sugars, and nitrogen sources. Hor-
mones play a crucial role in regulating plant responses to 
pathogens. Sugars and nitrogen sources are essential nutri-
ents utilized by pathogens for their growth and development 
during host-pathogen interactions [12]. Understanding and 
effectively managing these factors are critical for controlling 
and mitigating the spread of ShB disease. Comprehending 
how hormones, sugars, and nitrogen sources interact with 
R. solani and the host plant is crucial for reducing disease 
incidence and enhancing crop yield.

Hormones

Plant hormones such as auxin, ethylene (ET), salicylic acid 
(SA), jasmonic acid (JA), brassinosteroids (BRs), gibber-
ellin (GA), abscisic acid (ABA), strigolactone (SL), and 
cytokinin (CTK) intricately regulate rice defense responses 
against R. solani [12]. Auxin, essential for rice growth, 
facilitates transport via PIN-FORMED 1a (OsPIN1a) and 
enhances resistance to ShB when overexpressed, suggest-
ing its role in modulating plant-pathogen interactions [13]. 
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Ethylene, traditionally associated with fruit ripening, also 
significantly enhances rice resistance to pathogens by acti-
vating defense responses such as reactive oxygen species 
(ROS) and phytoalexin production, mediated by OsACS2 
and OsEIL1 [14]. Salicylic acid and jasmonic acid, two 
distinct defense-related hormones, play differing roles in 
rice immunity: SA primarily acts against biotrophic, while 
JA defends against necrotrophic pathogens. Both hor-
mones contribute positively to rice resistance against ShB 
through pathways involving NPR1-mediated SA signaling 
and OsWRKY30-mediated JA responses [15]. Beyond SA 
and JA, BRs, GA, ABA, SL, and CTK also modulate rice’s 
defense strategies. BRs, typically associated with growth 
promotion, negatively regulate ShB resistance [16]. GA’s 
influence on immunity involves complex interactions with 
JA signaling and developmental processes [17]. ABA acts 
as a negative regulator of rice immunity, contrasting with 
CTK’s role in promoting defense responses against patho-
gens. These hormones collectively illustrate the intricate 
balance and interplay required for rice to effectively combat 
ShB, underscoring the complexity of plant-pathogen inter-
actions [12].

Sugar

Sugars produced through photosynthesis are essential 
for plant growth and serve as vital nutrients utilized by 
R. solani during the invasion. SWEET proteins, such as 
OsSWEET11/Os8N3, mediate sugar transport across cell 
membranes, facilitating pathogen access to extracellular 
sugars [18]. Modulating sugar levels impacts rice suscepti-
bility to ShB, linking sugar metabolism directly to disease 
outcomes. Effector protein AOS2 interact with host pro-
teins (e.g., WRKY53, GT1) to activate sugar transporters 
(e.g.,OsSWEET2a, OsSWEET3a), influencing the rice-ShB 
interaction and resistance mechanisms [19].

Nitrogen fertilizer

Nitrogen (N) fertilizer has played a crucial role in boosting 
rice yields since the Green Revolution, particularly with the 
development of semi-dwarf varieties, such as those carry-
ing the sd1 allele, which enhance the yield but often exhibit 
poor nitrogen use efficiency (NUE) [20]. While high nitro-
gen levels support rice growth and yield, they also correlate 
with increased susceptibility to ShB disease [21]. Recent 
studies have highlighted specific genes influencing nitro-
gen’s impact on ShB resistance. For example, OsAMT1;1, 
a rice ammonium transporter, has been identified as crucial 
for enhancing ShB resistance by promoting the accumu-
lation of nitrogen metabolites and activating the ethylene 
signaling pathway [22]. Additionally, OsDEP1, associated 

with both NUE and ShB resistance, regulates susceptibil-
ity to ShB; silenced plants and mutants exhibit enhanced 
resistance, whereas overexpression aggravates susceptibil-
ity [23]. These findings underscore the complex interplay 
among nitrogen management, yield enhancement, and dis-
ease resistance strategies in rice.

Management of ShB disease in rice

Management of ShB disease is challenging because of their 
wide host range, genetic variability, fungicidal resistance 
and lack of durable resistance cultivars in rice. The exces-
sive use of fungicides harms beneficial microorganisms and 
human health. In this context, there is an urgent need for 
alternative and sustainable management strategies.

Biological and chemical control

Biological control methods offer promising strategies for 
managing R. solani. Plant growth-promoting actinomy-
cetes, particularly Streptomyces sp. exhibit strong micro-
bial antagonism against R. solani. Bacterial biocontrol 
agents such as Pseudomonas and Bacillus not only sup-
press fungal pathogens but also promote plant growth 
through various mechanisms such as nutrient solubiliza-
tion and phytohormone synthesis [24]. Timely application 
of fungicides between panicle differentiation and heading 
stages is a crucial factor in overcoming resistance develop-
ment, especially in susceptible varieties [25]. However, the 
continuous use of single fungicides can lead to resistance 
by R. solani, necessitating combination formulations like 
Azoxystrobin + Difenoconazole that will delay resistance 
development [26]. Despite their efficacy, chemical methods 
pose environmental risks. Hence, the use of non-chemical 
methods, which include modern breeding strategies such as 
QTLs, genome editing, and nanotechnological aspects, to 
develop viable resistance against ShB is indispensable.

Breeding strategies for ShB resistance

Breeding strategies aimed at enhancing ShB resistance in 
rice elite cultivars involve several key approaches. ShB 
resistance may be attributed to two main mechanisms: dis-
ease escape and physiological resistance. Disease escape 
relies heavily on crop architecture, with morphological 
traits such as plant height, heading date, and stem thickness 
showing positive correlations with resistance. Physiologi-
cal resistance, on the other hand, is linked to processes that 
reduce the efficiency of one or several stages of the patho-
gen’s infection cycle [27].

1 3

Page 3 of 15   958 



Molecular Biology Reports          (2024) 51:958 

are essential to develop resistant varieties. Still, none of the 
genotypes with absolute resistance are identified [30]. The 
list of rice varieties with variable resistance is noted in Table 
1.

Marker-assisted breeding

Marker-assisted breeding is pivotal for integrating identified 
resistance QTLs into popular rice cultivars. By identifying 
and integrating genes that offer resistance to ShB, breeders 
can develop rice varieties with reduced vulnerability to the 
disease. Researchers have employed advanced backcross 
methods and double haploid (DH) populations to map rice’s 
QTLs responsible for ShB resistance. They’ve discovered 
potential genetic markers for breeding resistant varieties, 
from both wild rice species like O. minuta and O. rufi-
pogon, as well as cultivated varieties through backcrossing 
with species like O. officinalis [36]. These QTLs, notably 
located on chromosome 9, contribute to the complex genetic 
basis of ShB resistance, with studies indicating its polygenic 
nature influenced by multiple genes. This approach aids in 
reducing linkage drag during the introgression of genomic 
regions and facilitates the pyramiding of resistance genes. 
By utilizing molecular markers, breeders can precisely 
select rice plants carrying desired ShB resistance genes, 
thereby accelerating the breeding process [37]. While indi-
vidual R genes have proven effective against ShB disease 
in rice, the persistent challenge of rapid pathogen evolution 
exists. To tackle this issue, integrating genetic diversity of 
wild rice species and utilizing breeding methods to incorpo-
rate advantageous ShB resistance QTLs into japonica cul-
tivars shows significant potential for enhancing resistance. 
Ultimately, sustainable management strategies for ShB dis-
ease in rice can be achieved through the integration of vari-
ous resistance mechanisms and genetic resources.

QTL mapping

Sheath blight resistance in rice is a quantitative trait con-
trolled by multiple genes, making QTL identification, map-
ping, validation, and characterization crucial for developing 
resistant varieties [38]. Using diverse mapping populations 
and molecular markers, numerous QTLs for ShB resistance 
have been detected on all 12 rice chromosomes [2]. RIL 
(Recombinant Inbred Line) and DH mapping populations 
have largely replaced F2-derived populations due to lower 
recombination and their ephemeral nature [39]. Despite 
their potential, wild relatives of cultivated varieties have 
rarely been used for QTL detection due to crossability bar-
riers [40]. Due to environmental influences, accurate dis-
ease phenotyping remains a significant challenge for fine 
mapping of ShB-resistant loci. Resistance to rice ShB is 

Utilizing host plant resistance

Host plant resistance is considered the most sustainable 
method for managing ShB disease. When a plant recognizes 
a pathogen, signal transduction pathways collaborate to 
establish a complex network that triggers defence responses. 
During pathogen invasion, certain genes, known as disease 
resistance genes, respond by changing their expression or 
protein modifications. These include R (Resistance) genes 
and HPRR (host pattern recognition receptor) genes, which 
help detect and counteract the pathogen. In rice, disease 
resistance is either qualitative or quantitative. Qualitative 
resistance, controlled by a single R gene, is race-specific 
and offers strong, targeted protection against specific patho-
gens [28].

Quantitative resistance is controlled by multiple genes 
or quantitative trait loci (QTL), which confers partial resis-
tance to various pathogens. A plethora of reports eluci-
dates that quantitative resistance can work against different 
strains and even different species of the pathogen, which 
offer broad-spectrum resistance from annual to perennial 
crops under conducive environmental conditions [28]. ShB 
resistance in rice Indica cultivar was commonly controlled 
by numerous minor genes, which exhibit broad-spectrum 
disease resistance comparable with Japonica cultivars. In 
addition, wild relatives such as Oryza rufipogon, Oryza 
nivara, Oryza meridionalis, and Oryza barthii have shown 
resistance traits against ShB [4, 29].

Resistant cultivars against ShB

The use of ShB-resistant rice varieties is the most economi-
cal and effective strategy to combat ShB disease. Identify-
ing ShB-resistant germplasm and mapping resistance genes 

Table 1 List of Rice varieties recognized for their resistance to ShB 
disease
Moderately 
resistant 
variety

Disease score Subpopula-
tion / Origin

Refer-
ence

Jasmine 85 4.26 ± 0.08 indica [31]
Teqing 5.56–5.57(DPAA-based 

disease
index)

indica [31]

YSBR1 2.86 ± 0.10 indica [32]
Pecos 6.33–6.56 (DPAA-based 

disease
index)

United States [33]

Koshihikari 2.72 ± 0.37 temperate 
japonica

[34]

C418 3.84 ± 0.09 temperate 
japonica

[34]

Tetep 4.89–6.44 (DPAA-based 
disease
index)

temperate 
japonica

[35]
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chromosomal segment substitution lines, researchers identi-
fied 18 candidate genes associated with qSB12YSB, includ-
ing those implicated in secondary metabolite biosynthesis 
and ROS scavenging systems according to KEGG analy-
sis. Field trials confirmed qSB12YSB’s efficacy, showing 
significant resistance in commercial rice cultivars NJ9108, 
NJ5055, and NJ44 under severe ShB conditions, reducing 
yield losses by up to 13.5% in the Lemont background. 
These findings underscore qSB12YSB’s potential in rice 
breeding programs aimed at developing new, resistant vari-
eties to combat ShB [48].

Minor QTLs in rice refer to genetic loci with moder-
ate effects on phenotypic variation and lower LOD scores 
compared to major QTLs. In ShB resistance studies, these 
QTLs play a role in fine-tuning resistance traits across vary-
ing environmental conditions [49]. Exploring these minor 
QTLs is crucial for uncovering genes that could signifi-
cantly enhance ShB resistance in rice breeding programs.

Pyramiding of genes

Pyramiding is a process of combining major and minor resis-
tant genes to enhance and prolong resistance against ShB in 
rice varieties. Traditional breeding methods have struggled 
to produce ShB-resistant rice varieties due to the quantita-
tive nature of the trait [38]. Marker-assisted selection has 
not been used to incorporate ShB resistance QTL (qShB)s 
into commercial rice varieties despite its widespread use in 
disease resistance breeding [47]. The introduction of qShB-
9TQ and qShB-3TQ into Lemont could potentially reduce 
ShB loss by 15% [42].

Overexpressing a single defense-related protein may 
not be highly effective in enhancing resistance. Combining 
multiple ShB resistance QTLs can increase resistance to 
ShB. Combinatorial expression of defense genes has shown 
better results. Examples include combinations like MOD1 
and RCH10, Chi11 and thaumatin-like protein, Chi11 and 
β-1,3-glucanase, DmAMP1 and RsAFP2, Chi11 and ap24, 
RCH10 and AGLU1, Oxalate oxidase 4 and Chi11, NPR1 
and Chi11 [50, 51]. Studies indicate that dual-gene cassettes 
are more effective for ShB resistance than single-gene cas-
settes [50]. Additionally, combining glycoside hydrolase 
genes from Trichoderma atroviride (ech42, nag70, and 
gluc78) enhances pathogen tolerance [2, 52]. By combin-
ing these strategies, breeders can develop rice cultivars with 
enhanced tolerance to ShB disease in rice.

Omics approach to understanding the ShB pathogenesis

Omics is a comprehensive field of study focused on under-
standing the relationships among various molecules, partic-
ularly interactions between plants and pathogens. Recently, 

governed by polygenes [41, 42] although some studies sug-
gest control by major genes in certain varieties [31]. Over 
the two decades, numerous quantitative trait loci (QTLs) 
contributing to ShB resistance have been identified. Notable 
QTLs for sheath blight resistance in rice were mapped on 
chromosomes 2, 3, 7, 9, 11, and 12, with additional QTLs 
detected by various studies [36, 41]. However, these QTLs 
have yet to be exploited in developing ShB-resistant culti-
vars, and their breeding potential remains unassessed.

Introducing desirable ShB resistance QTLs into Japanese 
cultivars involves overcoming the predominance of such 
QTLs in indica rice. Most ShB resistance QTLs identified 
originate from indica rice, with few from japonica rice. 
Notably, qShB-7TQ and qShB-9TQ, originating from indica 
rice Teqing (TQ), have been located on chromosomes 7 and 
9, respectively. Research indicates that qShB-9TQ provides 
significant resistance to ShB, reducing disease ratings by 
1.0. (using the qShB-9TQ rating scale). However, Japa-
nese rice varieties lack qShB-9TQ.To address this, breed-
ing strategies involving crossing and backcrossing indica 
varieties with japonica varieties have been employed. This 
approach aims to introduce qShB-9TQ into japonica variet-
ies, thereby enhancing their resistance to ShB [38]. Cross-
ing the moderately-resistant CR 1014 with the susceptible 
Swarna-Sub results in identification of three QTLs (qShB-
1.1, qShB-1.2, qShB-1.3) on chromosome 1, with qShB-
1.1 consistently showing a high Logarithm of odds (LOD) 
score. This QTL co-located with qShB1 from Oryza nivara, 
includes potential candidate genes LOC_Os01g65650 and 
LOC_Os01g65900. Near-isogenic lines of Swarna-Sub1 
carrying qShB-1.1 exhibited a 27.8% reduction in lesion 
height [43]. Most of the QTLs have been summarized in 
previous studies [27]. Only a few QTLs discussed in later 
studies are covered in the following section.

Role of major and minor QTLs

Among the identified QTLs for ShB resistance in rice, 
qShB9-2 and qSBR11-1 stand out as major contributors, 
explaining 25% and 14% of the phenotypic variation, respec-
tively [44, 45]. qShB9-2 encompasses candidate genes such 
as β-1,3-glucanase and OsWAK91 and has been fine-mapped 
to a 146-Kb region [46]. Similarly, qSBR11-1, derived from 
the partially resistant line Tetep, spans a 0.85 Mb region on 
chromosome 11, featuring a tandem array of eleven class III 
chitinase genes and LOC_Os11g47510, which confer toler-
ance in susceptible cultivars like Taipei 309 [47]. Despite 
extensive studies, no novel candidate genes for breeding 
or genetic engineering have emerged from these QTLs. In 
contrast, qSB12YSB, originating from rice variety YSBR1, 
has been mapped to a 289-Kb region on chromosome 12. 
Through the use of 150 BC4 backcross inbred lines and 34 
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on transgenic rice plants harbouring rice chitinase chi11 
gene, belonging to a PR-3, confers ShB resistance. Over-
expression of the OsACS2 gene, a crucial ET synthesis 
enzyme, is controlled by the vigorous pathogen-responsive 
promoter (PBZ1). Besides enhancing their resistance to R. 
solani, transgenic lines also contribute to maintaining crop 
productivity. These findings underscore the potential of 
manipulating ethylene levels to fortify rice’s defence mech-
anisms against fungal pathogens [14].

Recently, 352 differentially expressed genes in six diverse 
rice genotypes resistant to ShB disease caused by R. solani 
AG1-IA are identified. Among 352 genes, Oschib1, a class 
III chitinase, was significantly overexpressed and cloned 
from the resistant variety Tetep. Overexpression of Oschib1 
in the susceptible variety Taipei 309 conferred resistance to 
R. solani, it demonstrates dose-dependent enzyme activity 
[60]. The list of transgenes utilized to develop resistance is 
listed in Table 2.

Genome editing through CRISPR technology

Earlier, techniques like EMS (Ethyl methane sulfonate) 
mutagenesis and T-DNA (Transfer-DNA) insertion induce 
random mutations in the genome. ZFN and TALEN repre-
sent advancements over earlier genome editing methods. 
CRISPR (Clustered Regularly Interspaced Short Palin-
dromic Repeats) is a natural defense mechanism in bacteria 
against phages, now widely utilized as a precise genome 
editing tool, surpassing the limitations of ZFN and TALEN. 
Among CRISPR/Cas systems, Type II CRISPR/Cas9 is com-
monly used, consisting of RNA-guided Cas9 endonuclease 
and single-guide RNA (sgRNA). In plants, the endogenous 
repair system employs two mechanisms to repair double-
strand breaks: NHEJ (non-homologous end-joining), which 
is error-prone, and HDR (homology-directed repair), which 
can lead to extensive insertion or fragment replacement [85]. 
To enhance precision and minimize unintended effects, pro-
tein engineering techniques have been employed to modify 
the Cas9 nuclease, resulting in variants such as Cas9D10A 
for more accurate editing [86].

The utilization of CRISPR/Cas9 technology will facili-
tate resistance creation against R. solani infection by tar-
geting the negative regulators. The knocking out of genes 
like OsMESL, OsEIL2, and OsSLR in rice enhances resis-
tance against R. solani by reducing ROS accumulation and 
downregulating GA signaling pathways [87–89]. Emerg-
ing shreds of evidence on CRISPR-Cas9 knockout of the 
microRNA Osa-miR444b.2 elucidate slower lesion expan-
sion, reduced grain weight (GW), and smaller panicles with 
increased tillering and plant height. Subsequently, gene 
expression analysis indicated that Osa-miR444b.2 regulates 
plant hormone signaling pathways, which play a pivotal 

research in this area has provided deeper insights into these 
interactions through transcriptomic, and metabolomic anal-
yses etc. Whole-genome sequencing on 13 inbred rice lines 
in this study revealed over 200 candidate genes, encom-
passing a total of 333 nonsynonymous single nucleotide 
polymorphisms (SNPs), distinguishing between susceptible 
and resistant genotypes to ShB [53]. Comparative transcrip-
tome analysis has revealed that alternative splicing of key 
pathogenic genes in R. solani AG1-1 A plays significant 
roles during its infection of rice, soybean, and corn plants 
[54]. Comparative transcriptomics between ShB-suscepti-
ble (Lemont) and tolerant (Teqing) rice cultivars identified 
4806 differentially expressed genes (DEGs) [55]. Further 
investigations into the proteome and metabolome of rice 
lines pre- and post-ShB infection uncovered 38 differen-
tially expressed proteins and 40 differentially accumulated 
metabolites, underscoring the significance of energy and 
carbohydrate metabolism in the plant’s response to R. solani 
[56]. Recently identification of 23 putative candidate rice 
miRNAs that could potentially be involved in the defense 
mechanisms against R. solani [57]. Genomic, transcrip-
tomic, proteomic, and metabolomic studies have identified 
key genes, proteins, metabolites, and miRNAs involved in 
rice and R. solani host-pathogen interactions.

Biotechnological approaches

Transgenic approaches

In rice, conventional breeding has attained partial resis-
tance to ShB. Genetic engineering techniques give a prom-
ising foundation for further improvement to get complete 
resistance. Transgenic approaches have been adopted by 
researchers to facilitate the introduction of desired genes, 
aiming to achieve comprehensive resistance in a rela-
tively condensed timeframe compared to traditional breed-
ing methods. This strategy not only reduces dependability 
on chemical pesticides but also enhances key agronomic 
parameters, effectively addressing challenges such as sexual 
incompatibility. Moreover, transgenic technology has the 
potential to introduce novel traits from disparate systems 
into the target organism, amplifying its versatility in crop 
improvement [58].

In a transgenic strategy, researchers develop resistance 
against ShB disease in rice by elevating innate immune 
responses such as pathogenesis-related genes and introduc-
ing several foreign genes. Transgenic plants were developed 
in elite indica cultivars viz., Pusa Basmati, ASD16, ADT38, 
and IR50 with co-expression of pathogenesis-related (PR) 
genes such as chitinase (chi11) and thaumatin-like protein 
(TLP) reveals enhance resistance through synergistic activ-
ity against ShB [59]. Subsequently, the conclusive evidence 
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S.No Gene Source of 
gene

Function Promoter Level of Resistance Refer-
ence

 Group of Chitinase Genes 
1 OsCHI11 Oryza sativa Degrades chitin by breaking

β -1, 4 linkages
CaMV35S More than 50% 

resistance
[61]

Maize ubiquitin 40% resistance [8]
2 OsCHI12 Oryza sativa Degrades chitin by breaking

β -1, 4 linkages
Maize ubiquitin 2-fold increase in 

resistance
[60]

3 Oschib1
4 OsRC7
5 OsRCH10 rbcS and Act1 promoters Significant symptom 

reduction
[62]

CaMV35S Significant resistance [63]
6 TAeCH42 Trichoderma 

atroviride
Cell Wall Degrading Enzyme (CWDE) Act1 Resistance [52]

7 TAeCHT42 Trichoderma 
virens

Degrades chitin by breaking β -1, 4 
linkages

CaMV35S 62% resistance [64]

8 McCHIT1 Momordica 
charantia

Class 1 secretory
endochitinase

Maize ubiquitin 25–43% resistance [64]

Group of thaumatin-like proteins
9 OsTLP-D34 Oryza sativa Fungal xylanase inhibition &mem-

brane permeabilization
CaMV35S Enhanced resistance [65]
Maize ubiquitin Enhanced resistance [66]

Group of sweet transporters
10 OsSWEET11 Oryza sativa Sugar transporter Rubisco promoter Less susceptible [67]
11 OsSWEET14 Oryza sativa Sugar transporter - Less susceptible [68]
Group of antimicrobial peptides
2 TaPIN A, 

TaPIN B
Triticum 
aestivum

Fungal lipid membrane disruption Maize ubiquitin 11–22% resistance [69]

13 Ace-AMP1 Allium cepa Effective antimicrobial protein 
homologous to ns-LTPs

PAL promoter and
ubiquitin

67% resistance [70]

14 Dm-AMP1, Dahlia 
merckii

Effective antimicrobial protein 
homologous to ns-LTPs

Maize ubiquitin 72% resistance [71]

15 RS-AFP2 Raphanus 
sativus

Antifungal plant defensin Maize ubiquitin 45% resistance [72]

16 OsWRKY30 Oryza sativa Positively regulated defence response Maize ubiquitin Enhanced resistance [73]
Group of osmotin genes
17 OsOSM1 Oryza sativa Osmotin protein

belonging to the PR 5 family, positive 
regulator

Maize ubiquitin Remarkable decrease 
in susceptible

[74]

18 Ntap24 Nicotiana 
tabacum

Plant defence response and Perme-
ability stress

CaMV35S Score 3 out of 9(IRRI 
scale)

[8]

Group of polygalacturonase (PG) Inhibiting proteins (PGIP)
19 OsPGIP1 Oryza sativa Inhibiting fungal polygalacturonase 

(PG) activity
CaMV35S Enhanced resistance [75]

20 OsPGIP2 Oryza sativa Maize
Ubiquitin-1

Enhanced resistance [74]

21 ZmPGIP3 Zea mays Ubiquitin Enhanced resistance [76]
Mitogen-Activated Protein (MAP) Kinases
22 OsMAPK20-5 Oryza sativa Plant development and adaptive 

response to biotic and abiotic stresses
- Moderately 

susceptible
[77]

23 OsACS2 Oryza sativa Overexpression of ethylene leads to 
resistance

PBZ1 Enhanced resistance [14]

Group of non-expression of pathogenesis-related genes
24 AtNPR1 Arabidopsis 

thaliana
Induce the SAR pathway Rice PD54O-544 30% resistance [78]

25 BjNPR1 Brassica 
juncea

Regulator of Systemic Acquired 
Resistance

CaMV35S Enhanced resistance [79]

Group of acyl-coa-binding proteins
26 OsACBP5 Oryza sativa Overexpression leads to resistance (RTLP1) promoter 2.5-fold reduction [80]
DNA-Binding One Finger (DOF)

Table 2 List of transgenes utilized to develop ShB resistance
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the SAR pathway in rice induces PR genes (PR-3, PR-5, 
PR-9, PR-10, PR-12 and PR-13) and PAL, enhancing resis-
tance [94]. Subsequently, specific PR-5 genes (TLP-D-34 
and OsOSM1) give promising evidence for improving ShB 
resistance [65, 74]. Moreover, overexpression of ethylene 
biosynthetic genes such as PR1b and PR5 elevates resis-
tance [14].

Signaling related genes

The nuclear localization of NPR1 (Nonexpressor of patho-
genesis related genes 1) is essential for activating the expres-
sion of PR genes. BjNPR1 and AtNPR1 show enhanced 
resistance to ShB in rice by activating the SA-mediated 
SAR pathway [78, 79]. In addition, transgenic rice lines 
expressing the ACS2 (1-aminocyclopropane-1-carboxylic 
acid synthase) gene for ethylene synthesis exhibit increased 
resistance to R. solani [14].

Antimicrobial peptides

The Glycine and cysteine-rich antimicrobial peptides 
(AMPs) like thionin (Thi3.1), defensin (PDF1.2) and lipid 
transfer proteins (LTPs) will defend by forming membrane 
pores, causing ion leakage and cell death [95]. AMP1 from 
Dahlia merckii and Allium cepa, AFP2 from Raphanus 
sativus, puroindoline (pinA and pinB) from wheat, Sna-
kin-1, Stomoxyn ZH1, Purothionin, Cecropin B, D4E1, and 
Phor21 expressed either through transgenic methods or by 
intrinsic inhibitory properties, contribute to elevate resis-
tance against R. solani [96].

Host-induced gene silencing

Host-induced gene Silencing (HIGS) leverages RNA 
interference (RNAi) to boost plant resistance by targeting 
pathogen genes. It relies on host plants by constitutively 
expressing dsRNA constructs that transfer siRNA comple-
mentary to the virulence factors of the pathogen. Recent 

role in disease resistance [90]. Several other genes are also 
employed to develop a resistance against ShB in rice, and 
they are listed in Table 3.

Role of pathogenesis-related genes

PR proteins play an important role in rice disease resis-
tance response. During R. solani infection, activation of 

Table 3 List of gene knockout studies using CRISPR against ShB dis-
ease in rice
S.No Gene Function Reference
1 SWEET11 Sucrose transporter [67]
2 SWEET2a Sucrose transporter [67]
3 OsMESL Methyl esterase family 

protein
It affects ROS 
accumulation

[88]

4 OsTrxm Thioredoxin protein. 
Involved in chloroplast 
redox regulation

[88]

5 OsNYC3 Non-yellow colouring 
gene
Regulates chlorophyll 
degradation

[84]

6 OsERF65 Act as a Transcription 
factor
Modulate ROS 
homeostasis

[91]

7 Osa-miR444b.2 Involved in plant 
hormone signaling 
pathways

[90]

8 OsEIL2 Involved in ethylene 
and salicylic acid sig-
naling and interacting 
with other defense-
related genes

[89]

9 OsSLR1 Negative regulator of 
gibberellic acid (GA) 
signaling in rice

[87]

10 IDD3 PIN auxin transporter 
genes

[92]

11 OsZF8 Post-transcriptional 
regulator

[93]

S.No Gene Source of 
gene

Function Promoter Level of Resistance Refer-
ence

27 OsDOF11 Oryza sativa Activation of DOF leads to resistance - Less susceptible [68]
Group of probenazole responsive proteins
28 OsRSR1 Oryza sativa Enhanced disease resistance via 

NBS-LRR
CaMV35S Enhanced resistance [81]

29 OsPP2A-1 Oryza sativa Protein Phosphatase Overexpression 
leads to resistance

Maize ubiquitin Enhanced resistance [82]

30 OsIMPA 2 Oryza sativa Non-host resistance gene
Importin alpha (IMPA) 2 provides 
immunity

- Moderate resistance [83]

31 OsNYC3 Oryza sativa Chlorophyll degradation gene Gene 
suppression leads to resistance

Maize ubiquitin 2.86–0.86 score 
(IRRI scale)

[84]

Table 2 (continued) 
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of their good bioavailability, slower dissolution, and silicon 
nutrient benefits. Simultaneously, they activate the CAM 
(Crassulacean acid metabolism) pathway, enhances PAL, 
leading to the production of SA, lignin, and antioxidants. 
SA, which upregulates the SAR, lignin acts as a physical 
barrier, and ROS scavenges through antioxidants. These 
comprehensively result in ShB resistance in rice [99]. Fig-
ure 1 illustrates the mechanisms by which nanomaterials 
combat ShB disease.

Silver nanoparticles (SNPs) are employed to combat 
ShB disease in rice, targeting the crucial factor of sclerotia 
germination. SNPs form an antimicrobial layer around rice 
plants, and penetrate the fungal cell membrane to eliminate 
pathogens. This process inhibits sclerotia formation and 
germination. The eco-friendly nature of SNPs, with fun-
gistatic, bacteriostatic, and plasmonic properties, positions 
them as environmentally conscious inhibitors against plant 
pathogens, contrasting with synthetic fungicides [100]. The 
use of Boro gold also reduces the severity of ShB in rice. 
Boro gold (SNSp) is a combination of nanosilver particles 

studies in rice R. solani pathogen system have successfully 
targeted key pathogenicity genes like MAP kinase (PMK) 
and polygalacturonase (PG), significantly reducing disease 
susceptibility [2]. Moreover, the Grassy tiller 1 (GT1) gene 
in rice, induced by R. solani, increases susceptibility to ShB 
by activating SWEET2a and SWEET3a genes. GT1 RNAi 
plants and mutants for sweet2a and sweet3a show reduced 
susceptibility to the disease compared to wild-type [97].

Nanotechnological approaches

Nanotechnology is the study of understanding the matter 
at nano dimensions. It involves building, controlling and 
structuring nanomaterials. So far, we broadly use chemical 
fungicides to manage ShB disease in rice. These chemicals 
are expensive and have residual effects. To overcome these 
things nowadays farmers use nanomaterials to combat ShB 
disease in rice [98]. Foliar application of lanthanum-based 
nanomaterials, particularly La10Si6O27 nanorods, suppresses 
ShB in rice. NR (nanorods) are more advantageous because 

Fig. 1 Mechanism of various nanomaterials that develop resistance against ShB in rice plants. (Figure created with www.Biorender.com)
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44.8%, and decreased arsenic and cadmium levels by 38.7% 
and 42.1%, respectively. They also increased Se bio-acces-
sibility by 22.0% and reduced As and Cd bio-accessibility 
by 20.3% and 13.4%, respectively, suggesting a sustainable 
strategy for better food quality and security [103].

Enzyme-responsive AZOX-AFS-Pec nanoparticles 
(NPs) use iron-based mesoporous materials and pectin as 
carriers to combat rice ShB. These NPs showed high AZOX 
loading capacity and released the fungicide selectively under 
acidic conditions in the presence of pectinase. They exhib-
ited superior wetting and adhesion on rice blades, enhanced 
fungicidal activity against ShB, and promoted rice growth 
by releasing Fe ions. Moreover, the NPs increased SA lev-
els in rice plants, bolstering disease resistance while reduc-
ing toxicity to earthworms compared to AZOX suspension 
[104]. Table 4 lists nanoparticles used to manage ShB.

Applying silver nanoparticles deactivates cellular 
enzymes that destroy pathogen cell division, enhancing 
plant resistance. Chitosan nanoparticles activate ß-1,3 glu-
canase, which breaks down fungal cell walls. Lanthanide 
nanorods activate the CAM pathway, enhancing PAL activ-
ity and producing SA, lignin, and antioxidants. SA upregu-
lates SAR, lignin acts as a physical barrier, and antioxidants 
scavenge ROS accumulation. Collectively, these effects 
confer ShB resistance in rice.

Key databases related to rice ShB

KRiShI - A Knowledgebase for Rice Sheath Blight Infor-
mation, a comprehensive, manually curated platform, inte-
grates dispersed unstructured scientific data on the rice ShB 
disease into an easy-to-use interface for effective mining, 
visualisation and search. In addition to offering comprehen-
sive information on host resistance, gene expression, pro-
teins, metabolites, resistance genes, pathways and OMICS 
studies (http://www.tezu.ernet.in/krishi/ ) [105]. RSIADB 
- Rice Sheath Blight Information and Analysis Database, is 
a dedicated resource offering extensive information on rice 
ShB disease. It includes data on pathogens, host interac-
tions, resistance mechanisms, and related research findings 
(http://genedenovoweb.ticp.net:81/rsia/index.php) [106].

Conclusion

ShB stands out as an emerging concern among various 
rice diseases, capable of severely disrupting rice produc-
tion and yield. Cultural and biological methods represent 
sustainable approaches for mitigating the severity of ShB 
disease. Promising bio-agents of Pseudomonas and Bacillus 
play a significant role in growth promotion and suppression 

and peroxy acid. This can be administered through root dip-
ping for 24 h followed by 2–3 times spray when it is needed 
[101].

Chitosan Nanoparticle (ChNP), partially or fully deacet-
ylated chitin, is a hydrolytic enzyme and a pathogenesis-
related (PR) protein. It is a non-toxic, biodegradable 
biopolymer and a powerful enhancer of plant immunity. 
Chitin is a primary component of the cell walls of fungi, 
insects, and crustaceans. Insoluble chitosan hinders agri-
cultural use, but water-soluble chitosan nanoparticles 
overcome this, exhibiting enhanced efficacy. Shrimp shell 
waste, sourced for chitosan extraction, is transformed into 
nanoparticles through ionic gelation with polyanion tripoly-
phosphate. Increased peroxidase in ChNP-treated plants 
defends against oxidative stress during pathogen invasion. 
PAL activates phenylpropanoid pathways, and ß-1,3 gluca-
nase breaks down fungal cell wall components. Chitosan 
nanoparticles trigger plant resistance by prompting diverse 
defence responses, including the formation of structural 
barriers. Chitosan nanoparticles can penetrate plant cells 
deeply, integrating into the plant’s defence mechanism 
systemically. They serve as powerful inducers of systemic 
resistance in rice against ShB disease [102].

Foliar application of selenium nanomaterials (Se0 NMs) 
significantly reduced ShB severity in rice by 68.8% at 
5 mg/L, outperforming Se ions and Thifluzamide. Se0 NMs’ 
controlled release increased bioavailability and promoted 
SA and JA-dependent resistance pathways. Additionally, 
Se0 NMs improved rice yield by 31.1%, enhanced nutri-
tional quality by 6.4–7.2%, raised organic Se content by 

Table 4 List of nanoparticles used against ShB in rice
S.No Nanoparti-

cle’s Name
Function of 
Nanoparticle

% of 
resistance

Refer-
ence

1 La10Si6O27 
nanorods

Bioavailability, 
slower dissolution, 
and silicon nutrient 
benefits. Simultane-
ously, they activate 
the CAM pathway

62.4% [99]

2 Silver 
nanoparti-
cles (SNPs)

Inhibits sclerotia 
formation and 
germination

85–92% [100]

3 Boro gold 
(SNSp)

Reduced ShB 
severity

60.94 [101, 
102]

4 Chitosan 
Nanoparti-
cle (ChNP),

Hydrolytic enzyme 
and a pathogenesis-
related (PR) protein

75% [102]

5 Selenium 
nanomateri-
als Se0 NM

Increased bioavail-
ability & promoted 
SA & JA dependent 
resistance pathways

68.8% [103]

6 AZOX-
AFS-Pec 
nanopar-
ticles (NPs)

Enhance Delivery 
Efficiency and elevate 
SA levels

- [104]
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