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Abstract
Klotho is recognized as an aging-suppressor protein that is implicated in a variety of processes and signaling pathways. 
The anti-inflammatory, anti-apoptotic, anti-oxidant, and anti-tumor bioactivities of klotho have extended its application in 
neurosciences and made the protein popular for its lifespan-extending capacity. Furthermore, it has been demonstrated that 
klotho levels would reduce with aging and numerous pathologies, particularly those related to the central nervous system 
(CNS). Evidence supports the idea that klotho can be a key therapeutic target in CNS diseases such as amyotrophic lateral 
sclerosis, Parkinson’s disease, stroke, and Alzheimer’s disease. Reviewing the literature suggests that the upregulation of 
klotho expression regulates various signaling pathways related to autophagy, oxidative stress, inflammation, cognition, and 
ferroptosis in neurological disorders. Therefore, it has been of great interest to develop drugs or agents that boost or restore 
klotho levels. In this regard, the present review was designed and aimed to gather the delegated documents regarding the 
therapeutic potential of Klotho in CNS diseases focusing on the molecular and cellular mechanisms.
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CSF	� Cerebrospinal fluid
FGF	� Fibroblast growth factor
NMDARs	� N-methyl-d-aspartate receptors
AD	� Alzheimer’s disease
PD	� Parkinson’s disease

LTP	� Long-term potentiation
ALS	� Amyotrophic lateral sclerosis
CNS	� Central nervous system
TGF-β	� Transforming growth factor β
IGF-1	� Insulin-like growth factor 1
NF-ΚB	� Nuclear factor κB
CYT​	� Cytoplasmic
TM	� Transmembrane
FOXO	� Forkhead box protein O
MnSOD	� Manganese superoxide dismutase
SOD2	� Superoxide dismutase
CAT​	� Catalase
ROS	� Reactive oxygen species
IRS	� Insulin receptor substrate
Tet1	� Ten-eleven translocation methylcytosine 

dioxygenase
LPS	� Lipopolysaccharides
PKA	� CAMP-dependent protein kinase
CREB	� CAMP response element binding protein
6-OHDA	� 6-Hydroxydopamin
ACE	� Adenosine-1-converting enzyme
HUVECs	� Human umbilical vascular endothelial cells
AngII	� Angiotensin II
BBB	� Blood-brain barrier
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MCAO	� Middle cerebral artery occlusion
SNC	� Substantia Nigra Pars Compacta
CamKII	� Ca2+/calmodulin-dependent protein kinase II
TLE	� Temporal lobe epilepsy
Nrf2	� Nuclear factor erythroid 2-related factor 2
GBM	� Glioblastoma multiforme
VEGF	� Vascular endothelial growth factor
MBP	� Myelin basic protein
MAG	� Myelin-associated glycoprotein
GFAP	� Glial fibrillary acidic protein

Introduction

Klotho level, a longevity factor, declines with aging, 
renal failure, diabetes, and neurodegenerative disorders. 
Elevating klotho through acute peripheral administration and 
transgenic overexpression attenuates aging-related disorders 
and increases lifespan [1, 2]. Klotho is highly expressed in 
the kidneys and is also found in other tissues such as the 
brain (choroid plexus, cerebrospinal fluid (CSF), Purkinje 
EC cells, cerebral white matter, and neurons) and lungs 
[3]. The most apparent data about klotho activity described 
the enzyme as a regulator for vitamin D, phosphate, and 
calcium, while other physiological roles seem to be 
involved [4]. Klotho is also known to be a membrane-bound 
coreceptor for fibroblast growth factor (FGF) 23 or a soluble 
endocrine mediator that causes various bodily functions [5]. 
Following cleaving from its transmembrane form, α-klotho 
is released into the bloodstream as a hormone and exerts 
effects on insulin, FGF, and Wnt signaling in addition to 
a regulatory role in the correct functioning of N-methyl-
d-aspartate receptors (NMDARs) [6, 7]. The experimental 
studies have claimed that systemic elevation of klotho would 
result in synaptic plasticity, cognition, and neural resilience 
to aging, Alzheimer’s disease (AD), and Parkinson’s disease 
(PD) [8]. Klotho has been known to act against inflammation 
and oxidative stress, and be involved in the regulation of 
autophagy [9]. On the other hand, klotho inadequacy seems 
to significantly impact the process of human aging and 
age-related disorders. The anti-aging protein can augment 
synaptic GluN2B levels in the hippocampus and cortex 
[10] so that an elevation in klotho levels would result in 
an upsurge of NMDAR-dependent genes responsible for 
memory consolidation, namely Fos. Through the activation 
of NMDAR, klotho increases long-term potentiation (LTP), 
which is crucial for acquiring knowledge and memory [1]. A 
large body of studies has proved that klotho plays a vital role 
in the treatment of a wide range of diseases including stroke 
[11], neurodegenerative diseases [12], brain tumor [13], 
and amyotrophic lateral sclerosis (ALS) [14]. This review 
summarizes the applications and possible mechanisms and 
functions of klotho in diseases related to the central nervous 

system (CNS) and reveals the latest research progress in this 
regard.

Structure and functions of Klotho

The klotho gene family includes α-klotho, β-klotho, and 
γ-klotho. The α-Klotho form is located on chromosome 
13q12 and comprises four introns and five exons with a 
molecular weight of 130 kDa [15]. The klotho contains 
a short intracellular domain composed of 10 amino acids 
and an extracellular domain consisting of KL1 and KL2 
catalytic domains. Both of the domains possess a length 
of nearly 450 amino acids and exhibit sequence similarity 
to 1 β-glycosidase family [15]. There are three distinct 
types of α-klotho protein including transmembrane klotho, 
secretory klotho, and soluble klotho (Fig. 1). ADAM10/17 
metalloproteinases (α-secretases) digest the extracellular 
klotho domain so that the soluble α-klotho (s-klotho) 
would be released into CSF, urine, or blood and acts as an 
endocrine, autocrine, and paracrine hormone on the target 
cells [16]. Secretory klotho, having a molecular weight of 
70 kDa, is formed by alternate splicing of klotho exons and 
can be detected in the blood, urine, and CSF [17].

Both β-klotho and γ-klotho belong to the category of 
type 1 single-pass transmembrane proteins [18]. β-Klotho 
is made of a β-glycosidase-like domain and has 42 percent 
amino acid sequence similarity to klotho.  β-Klotho 
is primarily expressed in the liver, followed by the 
gastrointestinal tract, spleen, and kidneys.  γ-Klotho 
comprises a family 1 glycosidase-like extracellular and 
a short intracellular domain. It exhibits a high expression 
level in the kidneys [19], eyes, and brown adipose tissue 
[20]. β-klotho acts as an obligatory co-receptor for 
FGF19 and FGF21 regulating bile acid synthesis and 
energy metabolism [21]. γ-Klotho forms complexes with 
numerous types of FGFR (1b, 1c, 2c, and 4) that increase 
the activity of FGF19. However, the biological functions 
of γ-Klotho remain predominantly elusive [22].

As mentioned, both the membrane-bound and soluble 
forms of klotho act as coreceptors for FGF23. In mice, 
a deficiency in either klotho or FGF23 leads to a rise 
in 1α-hydroxylase activity and a higher production of 
active vitamin D, resulting in hyperphosphatemia and 
hypercalcemia. Accordingly, it has been suggested that 
hypervitaminosis D and hyperphosphatemia are involved 
in the accelerated aging phenotype [23]. Klotho can inhibit 
several aging-related pathways in various ways such as 
transforming growth factor β (TGF-β), insulin-like growth 
factor 1 (IGF-1), nuclear factor κB (NF-κB), and Wnt/β-
catenin, so that apoptosis, immune dysfunction, cellular 
senescence, inflammation, and neoplasia can be caused by 
these pathways [24, 25].
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Intracellular signaling pathways and klotho

Insulin/IGF‑1/PI3K/Akt/FoxO signaling pathway

The insulin/IGF-1 pathway impacts on aging and lifespan. 
Insulin sensitivity is a marker of healthy longevity in 
humans [26]. Furthermore, soluble klotho has a negative 
regulatory effect on IGF-1, leading to a reduction in the 
activity of downstream signaling cascades, including the 
phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB or 
AKT) pathways [27]. Mammalian members of the forkhead 
box protein O (FOXO) class of transcription factors are 
involved in regulating many processes such as oxidative 
stress, cellular differentiation, growth, survival, cell cycle, 
and lipid metabolism [28]. FOXO proteins are negatively 
regulated by the IGF-1/PI3K/AKT signaling pathway. 
Activation of insulin/IGF-1 signaling raises the activity of 
serine-threonine kinase Akt. FOXOs are phosphorylated and 
thus inhibited by activated Akt. Phosphorylated FOXOs are 
excluded from the nucleus and cannot act as transcription 
factors [29]. Furthermore, klotho carries anti-oxidative 
activities through the inhibition IGF-1/PI3K/AKT signaling 
pathway and stimulation of the FOXOs in neurons. Blockade 
of the insulin/IGF-1 pathway releases the inhibition of the 
FOXOs, which leads to their nuclear migration into the 
nucleus and the expression of multiple genes encoding 
antioxidant enzymes. These enzymes include manganese 
superoxide dismutase (MnSOD), superoxide dismutase 
(SOD2), and catalase (CAT). As a result, the reactive oxygen 
species (ROS) are eliminated, and resistance to oxidative 
stress is increased in mammals at both the organismal and 
cellular levels (Fig. 2). Accordingly, it has been found that 
klotho potentially enhanced FOXO-3a activity and CAT 
expression in astrocytes [29]. Klotho’s ability to suppress 

insulin/IGF-1 signaling may be related to klotho’s anti-
aging properties, as extensive genetic evidence indicates that 
moderate inhibition of the insulin-like signaling pathway is 
an evolutionarily conserved mechanism to prevent aging. In 
mammals, increased lifespan has been reported in mice with 
lacking insulin receptors in adipose tissue, heterozygous for 
the null allele of the IGF-1 receptor gene, lacking insulin 
receptor substrate (IRS)-1, and lacking IRS-2 in the brain 
[30, 31].

P53/p21 signaling pathway

Cellular aging is triggered by oxidative stress and 
dysfunction of the mitochondria through the stimulation of 
the p53/p21 pathways. The p53 protein serves as a tumor 
growth suppressor and can be activated by the kinase 
known as ataxia telangiectasia-mutated, which in turn 
activates p21. The activation of p21 effectively hinders 
the proliferation of cells [32]. A deficiency in klotho 
leads to p53/p21 overexpression via inhibiting the new 
cell formation and increasing the population of senescent 
cells [33]. Consequently, the supplementation of klotho 
mitigates cellular senescence by inhibiting the signaling 
pathway of p53/p21 [34]. In an investigation that focused 
on the impact of epigenetics on neuronal cell death, an 
exploration was conducted to examine the involvement 
of DNA methylation and demethylation. As mentioned 
above, the study demonstrated that the prevention of 
apoptosis was noted in cerebellar granule cells and cortical 
neurons due to oxidative stress after the inhibition of DNA 
methyltransferase. It was discovered that the suppression 
of ten-eleven translocation methylcytosine dioxygenase 
(Tet1), an essential catalyst for DNA demethylation, 
prominently enhances the occurrence of apoptosis in 

Fig. 1   Schematic structure 
of αKlotho protein and the 
different forms of secreted 
klotho. The full-length 
transmembrane α-Klotho 
consists of 3 domains: 
cytoplasmic (CYT), 
transmembrane (TM), and 
extracellular which has 2 
internal repeats, KL1 and KL2. 
The extracellular domain of 
it is cleaved by membrane 
proteases such as ADAM10 
and ADAM17 from 2 different 
points to release 3 types of shed 
αKlotho
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cerebellar granule cells provoked by hydrogen peroxide 
[35]. Although the direct or indirect regulation of 
klotho by Tet1 has yet to be determined, there exists a 
correlation inversely between klotho expression and 
CpG hypermethylation of its promoter region [36]. The 
up-regulation of the p53/p21 pathway and the induction 
of premature senescence of human cells were observed 
upon inhibiting klotho expression using klotho shRNA. 
Therefore, the mediation of neuronal protection through 
DNA methylation and demethylation may be facilitated by 
the klotho and p53 pathway. This implies that the klotho 
and p53 pathway may be a potential molecular therapy for 
neurodegenerative disorders and aging [37]. The klotho 
participates in controlling cellular lifespan and chronic 
age-related disorders through the suppression of p53 and 
the decrease in p21 protein levels (Fig. 2) [37]. In the 
HT-22 cells lacking klotho, lipopolysaccharides (LPS) 
induces a state of oxi-nitrosative stress and genomic 
instability accompanied by telomere dysfunctions. This 
leads to the activation of p53/p21 and subsequent cell 
cycle arrest. Therefore, endoplasmic reticulum stress, 
inflammation, and apoptotic cell death occur. Hence, 
these results propose that klotho plays a role as part of 
the cellular defense mechanism that protects neuronal 
cells against LPS-induced neuroinflammation and the 
associated emerging issues related to neurodegenerative 
disorders [38].

cAMP/PKA signaling pathway

The cAMP signaling can be described as a complex system 
consisting of various components. This system involves 
the activation of Gs protein-coupled receptors as well as 
adenylyl cyclase in the membrane. Moreover, it includes the 
generation of cAMP and subsequent activation of cAMP-
dependent protein kinase (PKA) in the cytoplasm. Another 
crucial step is the phosphorylation of the cAMP response 
element binding protein (CREB), which occurs in the 
cytoplasm. In conclusion, this signaling pathway leads to the 
induction of cAMP-dependent gene expression in the nucleus 
[39]. The cAMP signaling pathway modulates a wide array 
of intracellular processes related to the control of cellular 
differentiation, proliferation, and apoptosis via the activation 
of cAMP-dependent PKA [40]. The cascade dependent on 
PKA holds significant importance in maintaining brain 
homeostasis and regulating inflammation. Moreover, 
its malfunctioning leads to the advancement of some 
neurodegenerative disorders such as PD [41]. Consistent 
with previous research findings, it has been demonstrated 
that the activity of cAMP-dependent PKA plays a crucial 
role in providing neuroprotection to dopaminergic neurons 
against oxidative stress induced by 6-Hydroxydopamine 
(6-OHDA). Furthermore, the inhibition of cAMP-dependent 
PKA by H-89 resulted in cellular toxicity [42]. Exogenous 
klotho was administered in the 6-OHDA rat model of PD 

Fig. 2   Schematic representation 
of klotho interactions 
with IGF-1/PI3K/Akt/FoxO, 
P53/p21, and Wnt/β-catenin 
signaling pathways. The IGF-1/
PI3K/Akt inhibition by klotho 
increases FOXO activity and 
promotes antioxidant defense by 
inducing the expression of GPx, 
catalase, and MnSOD. Klotho 
suppresses aging and cell cycle 
arrest by inhibiting P53/p21 
signaling. Moreover, klotho 
inhibits the Wnt/β-catenin 
pathway. GPx: glutathione 
peroxidase, MnSOD: 
Manganese-superoxide 
dismutase, FOXO: forkhead box 
protein O
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for the first time. This was done to observe its potential 
in reducing astrogliosis, apoptosis, and oxidative stress. 
Additionally, it was found that a portion of its protective 
effect is reliant on the PKA/CaMKII/CREB cascade. This 
observation demonstrates that the advantageous impact of 
klotho is more effectively countered when a PKA inhibitor 
is present as compared to a CaMKII inhibitor [42]. Another 
study also described the ability of the circulating klotho 
to upregulate cAMP, specifically within endothelial cells. 
The findings indicated that the klotho protein functions as a 
humoral factor, thereby enhancing the activity of adenosine-
1-converting enzyme (ACE) in human umbilical vascular 
endothelial cells (HUVECs) through a cAMP–PKA-
dependent pathway. They found that the klotho protein 
potentially improves endothelial dysfunction by regulating 
antioxidant and reactive oxygen agents [43]. Wang et al. 
have demonstrated that the transfer of the klotho gene would 
result in a reduction of intracellular superoxide production 
and subsequently oxidative stress in the smooth muscle cells 
of rat aortas (RASM) [44]. The expression of the klotho gene 
also meaningfully mitigated oxidative damage, production of 
superoxide, and apoptosis induced by angiotensin II (AngII). 
Interestingly, the delivery of the klotho gene increased the 
intracellular cAMP levels and PKA activity in RASM cells 
in a dose-dependent manner. Therefore, the findings of this 
study propose a novel mechanism that could potentially 
facilitate the suppression of Nox2 expression by klotho. 
Specifically, this mechanism involves the upregulation of 
klotho, which causes an increase in cAMP levels, activation 
of PKA, and ultimately a reduction in the expression of 
Nox2 protein [44]. It was noted that the deficiency of Nox2 
reduces cellular proliferation, vascular inflammation, and 
neointimal thickening after experimental angioplasty [45].

Wnt signaling pathway

The Wnt signaling pathway in different organisms has 
been related to numerous biological processes, including 
proliferation, differentiation, inflammation, mitosis, 
migration, neurogenesis, and regeneration [46, 47]. 
Several diseases, such as cancer, AD, PD, schizophrenia, 
and diabetes, have been associated with deregulation of 
this signaling pathway. Therefore, Wnt signaling has been 
investigated as a potential treatment strategy for various 
disorders [48–51]. Moreover, in recent years, the Wnt 
pathway has received more attention in neurophysiological 
animal studies [52]. Three Wnt signaling cascades have been 
identified, including a canonical pathway known as Wnt/β-
catenin-dependent, as well as the non-canonical pathways 
such as Wnt/calcium and planar cell polarity (PCP) [53]. 
Although the Wnt signaling pathway was identified about 
30 years ago, the scientists interested in investigating this 
pathway continue to develop rapidly [54]. Changes in Wnt 

signaling are associated with alterations in klotho expression 
or function in several tissues, including the kidneys, blood 
vessels, heart, bones, and brain, particularly the choroid 
plexus [55]. These connections highlight the complex 
interactions between klotho and Wnt signaling pathways in 
diverse physiological and pathological contexts [55]. Klotho 
has been shown to act as an antagonist of Wnt/β-catenin 
signaling, and the absence of klotho can lead to aberrant 
Wnt signaling activity, which can exacerbate cognitive 
deficits and neurodegeneration in mouse models [55, 56]. 
TGF, IGF-1, Wnt, and NF-κB are four pathways that are 
differentially involved in aging and are inhibited by klotho 
[57]. Recent studies indicate that klotho can bind to soluble 
Wnt ligands and inhibit the Wnt pathway [58]. Accordingly, 
soluble forms of several Wnt ligands, including Wnt3a and 
Wnt5a, have been shown to interact with klotho [59]. Also, 
α-Klotho binds to Wnt5A and prevents it from binding to 
its receptors, such as Frizzled receptors (Fig. 2). It has been 
demonstrated that klotho deficiency leads to the activation 
of Wnt signaling which accelerates aging and exhaustion 
of neural stem cells [60].

NF‑κB

NF-κB plays a multifaceted role in the brain and the precise 
effects in the brain depend on the intensity of activation and 
the interplay with other signaling pathways [61]. Klotho has 
a role in the modulation of NF-κB signaling, exhibition of 
anti-inflammatory effects, and contributes to neuroprotection 
[58]. Studies on primary cortical neurons have shown that 
pretreatment with α-klotho modulated the secretion of 
pro-inflammatory cytokines induced by LPS [62]. Klotho 
may exert neuroprotective effects against cerebral ischemic 
injury by inhibiting retinoic-acid-inducible gene-I (RIG-
I)/NF-κB inflammatory signaling following upregulation 
of cerebral klotho expression through gene delivery [63]. 
Also, klotho has a protective effect against neurological and 
psychiatric disorders and may have anti-seizure effects via 
several mechanisms, like RIG-I/NF-kB [64]. Furthermore, 
it was observed that inflammation has a critical role in the 
inhibition of klotho gene expression in colorectal cancer 
cells by activating the Toll-like receptor 4 /NF-κB signal 
pathway [65].

The effects of klotho on neurological disorders

Stroke

Ischemic stroke is one of the leading causes of morbidity and 
mortality in both developed and developing countries [66]. It 
is induced by transient or permanent blockage of the cerebral 
vessels, resulting in neuronal damage and neurological 
deficits, such as learning or memory impairment and 



	 Molecular Biology Reports          (2024) 51:913   913   Page 6 of 13

locomotor dysfunction [67]. The pathophysiology of stroke 
is complex and implicates several processes, including 
energy failure, enhanced intracellular calcium levels, 
acidosis, disruption of the blood–brain barrier (BBB), 
excitotoxicity, activation of glial cells, and infiltration of 
leukocytes [66]. Apoptosis, mitochondrial dysfunction, 
inf lammation, overproduction of ROS, endothelial 
dysfunction, and oxidative damage are thought to be among 
the underlying mechanisms of ischemia–reperfusion injury 
[68].

A large body of research showed that klotho plays a 
critical role in brain ischemia. Several studies reported 
that the levels of klotho mRNA and protein were reduced 
in stroke patients and animal models following cerebral 
ischemia [69, 70]. Moreover, a reduced concentration of 
irisin, as a myokine that is cleaved from fibronectin type 
III domain-containing protein five by proteolytic enzyme, 
and klotho in CSF were reported in stroke patients with 
impaired cognition [11]. Upregulation of klotho by systemic 
administration of exogenous irisin decreases oxidative 
stress and improves cognitive impairment in mice with 
middle cerebral artery occlusion (MCAO). Treatment with 
irisin or swimming for 4 weeks before MCAO improved 
spatial learning and memory as well as visual recognition 
memory. Furthermore, irisin could increase the expression 
of FOXO3a and MnSOD and decrease the expression of 
phosphorylated FOXO3a as well as reduce ROS formation 
in the MCAO group [11]. Besides, the upregulation of 
klotho expression by preconditioning exercise (3 weeks) 
can decrease infarct size and increase MnSOD expression 
in ischemic rats [71].

STAT4-mediated klotho upregulation contributes 
to cerebral ischemic preconditioning-induced cerebral 
ischemic tolerance via inhibition of neuronal pyroptosis. A 
day before induction of ischemia, injection of klotho into 
the lateral ventricle decreased neuronal necrosis. Moreover, 
inhibition of klotho expression enhanced the expression 
of the pyroptosis-associated proteins (Gasdermin D, pro-
caspase-1, NLRP3, and cleaved caspase-1) [72]. Klotho 
upregulation via peroxisome proliferator-activated receptor 
gamma (PPARγ) contributes to the induction of cerebral 
ischemia tolerance by brain ischemic preconditioning [73]. 
In this regard, Jin and colleagues demonstrated that klotho 
knockdown worsens cerebral ischemic damage by increasing 
ROS levels [11].

Amelioration of neurological outcomes and 
neurobehavioral scores, recovery of body weight, and 
increase in the number of surviving neurons was observed 
with lentivirus-mediated overexpression of klotho in the 
area CA1 of hippocampus and caudate putamen (CP) 
three days after cerebral ischemia in mice [74]. Klotho 
overexpression considerably suppressed the post-ischemia 
inflammatory response, reflected by the attenuation of 

microglia and reactive astrocytes activation, inhibition of 
RIG-I/NF-kB signaling, and pro-inflammatory cytokines 
generation (TNF-α and IL-6) in mice following bilateral 
common carotid occlusion model of cerebral ischemia [74]. 
A study conducted by Long et al. showed that Ligustilide, an 
enhancer of klotho, inhibited the RIG-I/NF-κB p65 and Akt/
FoxO1 pathways and prevented neuroinflammation (IL-6 
and TNF-α levels) and oxidative stress following bilateral 
common carotid occlusion model of cerebral ischemia [69]. 
Besides, the ligustilide could prevent the development of 
neurological deficits and protect neurons in the CA1 and CP 
regions against cerebral ischemia [69].

The intracerebral overexpression of Klotho in rats was 
accomplished by the administration of lentivirus carrying 
full-length rat Klotho cDNA into the lateral ventricle of the 
brain, followed by MCAO surgery after a three-day interval. 
This approach led to a decrease in infarction volume and 
amelioration of neurological deficits by suppressing P38-
MAPK activation, thereby downregulating AQP4 expression 
[75]. Overall, these studies illustrate that restoration of 
klotho levels can be an excellent therapeutic target for 
improving stroke.

Parkinson’s diseases

Nearly 1% of people over 60 and 4% of people over 80 
suffer from PD, a common neurological disorder, and is 
associated with a loss of midbrain dopaminergic neurons 
and the appearance of Lewy bodies which are mainly 
composed of α-synuclein [76]. Besides debilitating features 
of PD such as motor (bradykinesia, gait disturbances, 
stooping posture, resting tremor, and rigidity) and non-
motor dysfunctions (anxiety, depression, sleep disorders, 
and cognitive impairment), Parkinsonian patients experience 
comorbidities, including high rate of infections, cardiac and 
gastrointestinal disorders, and fall-related damages [77, 
78]. It has been known that inflammation [79], oxidative 
stress [80], mitochondrial dysfunction [81], and apoptosis 
[82] are implicated in the pathophysiological progress of 
neuronal degeneration in PD [83]. The relevant preclinical 
and clinical models [42] have supported the involvement 
of klotho in PD and highlighted a clinical potential for the 
klotho pathway in PD pathogenesis [82]. Kosakai et al. 
[84] showed that klotho-deficient mice had lower levels 
of striatal dopamine as well as  a significant  reduction 
in mesencephalic dopaminergic neurons from the substantia 
nigra pars compacta (SNC) and ventral tegmental area. In 
contrast, treatment with acute injection of klotho fragment 
reduced motor and cognitive deficits, and increased synaptic 
plasticity in the hippocampus in a PD mouse model 
expressing transgenic α-synuclein [85]. Additionally, the 
intracerebroventricular injection of klotho in the toxin rat 
model of PD alleviated striatal levels of oxidative stress, 
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GFAP, α synuclein, and DNA fragmentation (apoptosis 
marker). In addition, klotho reduced contralateral rotations 
and improved the performance of rats in narrow beam task 
[42]. Tyrosine hydroxylase (TH) is the rate-limiting enzyme 
for the biosynthesis of catecholamines like dopamine, 
noradrenaline, and adrenaline [86]. Exposure of cells to 
neurotoxins such as 6-OHDA causes loss of TH-positive 
neurons in midbrain SNC. Klotho could hinder the 
deterioration of neurons that express tyrosine hydroxylase 
(TH) in the SNC [42]. Besides, administering a PKA 
inhibitor and Ca2+/calmodulin-dependent protein kinase II 
(CamKII) inhibitor diminished the positive impact of klotho. 
This suggests that the ability of klotho to protect neurons 
is mediated by the PKA/CaMKII/CREB signaling pathway 
[42].

PD patients irrespective of gender had reduced CSF 
protein levels of klotho and FGF23 compared to controls. 
Furthermore, low CSF levels of klotho were related to 
higher scores in the Unified PD Rating Scale part III and 
the Hoehn and Yahr Scale [87]. A study found that compared 
to age-matched control, serum klotho levels were reduced 
in PD patients, but CSF klotho levels increased in the same 
patients versus controls [88]. Additional research is needed 
to clarify the function of klotho in PD as indicated by these 
inconsistent results.

Alzheimer’s diseases

AD is a polygenetic neurodegenerative disorder that 
occurs more frequently with age and primarily exhibits 
neuroinflammation, mitochondrial dysfunction, extracellular 
amyloid-beta (Aβ) plaque, and neurofibrillary tangle 
deposition deposits within the cells [89–91]. These factors 
are related to a gradual decline in cognitive function and 
damage to nerve cells [92, 93]. Klotho alleviates cellular 
inflammation by inhibiting the release of cytokines ( IL-1β, 
IL-6, and TNF-α) and enhancing the expression of miR-
29a. IL-10 has been proven to suppress most of the pro-
inflammatory cytokines by the inhibition of NF-κB. Klotho 
triggers the release of IL-10, likely by activating the JAK2/
STAT3 signaling pathway, which results in the suppression 
of NF-κB, a critical transcription factor of pro-inflammatory 
cytokines [94]. Furthermore, klotho modulates the Wnt1/
pCREB signaling cascade in AD patients’ peripheral blood 
mononuclear cells [95].

Recent investigation has suggested that klotho inhibits the 
progression of AD related to aging, by suppressing insulin/
IGF-1 signaling and oxidative stress in the murine model 
of AD [96].

In amyloid precursor protein/presenilin 1(APP/PS1) mice, 
the increase in klotho levels resulted in suppressing NLRP3 
inflammasome activation and promoting Aβ clearance. This 
was achieved through the regulation of Aβ transporters and 

an increase in M2-type microglia [97]. The overexpression 
of klotho through injecting lentivirus that carried full-
length mouse klotho cDNA improved cognitive deficits and 
reduced neuronal injury in aged APP/PS1 mice. Conversely, 
the knockdown of klotho led to a decrease in the transporter-
mediated efflux rate of soluble Aβ1-42 across the human 
blood–CSF barrier in an in vitro monolayer model [97]. In 
this study, a battery of behavioral tests was used to assess 
cognitive function. In passive avoidance (hippocampus- and 
amygdala-dependent fear memory), overexpression of klotho 
significantly decreased step-down error times and increased 
the step-down latency. Moreover, klotho alleviated spatial 
memory impairment in APP/PS1 mice as evaluated by the 
Morris water maze test [97].

In the CNS, neuroinflammation can be initiated 
by inflammasomes, and the NLRP3 inflammasome is 
associated with AD. The inflammasome plays a crucial role 
in the innate immune system, and it mediates inflammatory 
responses and pyroptosis, leading to neurodegeneration 
[98]. In AD, the NLRP3 inflammasome is the most well-
documented among the various types of inflammasomes. 
The activation of the NLRP3 inflammasome results in 
the production of caspase-1-mediated IL-1β and IL-18 in 
microglia cells. Klotho overexpression downregulated the 
IL-1β expression and suppressed activation of the NLRP3/
caspase-1 signaling pathway in AD mice [97].

Autophagy is an important pathway to maintain 
homeostasis in the CNS by removing senescence-related 
proteins and damaged organelles. Studies have shown that 
autophagy is diminished in the brains of animal models of 
AD and AD patients, leading to the accumulation of Aβ [99, 
100]. The enhancement of intracerebral klotho expression 
was associated with a marked decrease in p62 levels and an 
increase in the LC3B II/I ratio and both autophagosomes 
and autolysosomes in AD mice [101]. A study showed that 
upregulation of klotho by intracerebroventricular injection of 
a lentiviral vector that encoded klotho in APP/PS1 mice 
improved cognitive function, tau hyperphosphorylation, 
and brain capillary function at least partially associated with 
activation of the autophagy-mediated clearance of Aβ and 
inhibition of AKT/mTOR signaling [101]. Overexpression 
of klotho improved short-term, and long-term working 
memory, spatial learning and memory abilities as evaluated 
by Y-maze, passive avoidance, and Morris water maze tests 
[101]. They found that klotho mRNA and protein markedly 
reduced in the choroid plexus in 10-month-old APP/PS1 
mice, while this decrease was meaningfully reversed by 
intracerebral administration of Lentiviral vector-mediated 
overexpression of klotho [101].

A similar study reported that a klotho enhancer, 
Ligustilide, decreased cerebral Aβ burden and ameliorated 
memory deficits via inducing alpha-processing of APP and 
klotho and also inhibition of IGF-1/Akt/mTOR [102].
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Lipofuscins consist of oxidized lipid and protein 
complexes that accumulate during cellular and tissue 
senescence and are considered a marker of cellular oxidative 
damage, tissue senescence, and several aging-related 
diseases [103]. The lipofuscin accumulation in the CNS 
is related to neuronal loss, proliferation, and activation of 
glial cells. Overexpression of klotho can alleviate abnormal 
accumulation of lipofuscin in the brain of APP/PS1 mice 
[101]. Another study revealed that elevating klotho in 
human amyloid precursor protein (hAPP) mice increased 
the abundance of the GluN2B subunit of NMDA receptor 
in postsynaptic densities and NMDAR-dependent LTP and 
survival [2]. Klotho elevation in AD mice could prevent 
spatial and nonspatial learning and memory impairments, 
as demonstrated through behavioral tests including the water 
maze, novel object recognition, and passive avoidance tests 
[2].

Kuang and colleagues observed that ligustilide therapy 
(10 and 40  mg/kg, for 2 months) attenuated Aβ1–42 
accumulation, p-Tau level, neuronal loss, and memory 
deficits in aged SAMP8 mice. They found that the 
neuroprotective effects of ligustilide were mediated through 
klotho upregulation, thus inhibiting the IGF-1 pathway, 
induction of FOXO1 activity, and activation of antioxidant 
enzymes in the brain of 10-month-old SAMP8 mice [104]. 
It has been reported that simvastatin administration (5 mg/
kg, for 21  days) was able to increase the hippocampal 
expression of klotho and MnSOD and improve the cognitive 
decline in streptozotocin model of sporadic AD [105]. In 
addition, part of klotho’s beneficial effect in decreasing Aβ 
(1–42)-induced neurotoxicity in SH-SY5Y cells has been 
via inhibition of inflammation, apoptosis, oxidative stress, 
and modulation of Wnt1/pCREB/Nrf2/HO-1 signaling 
pathway [24]. Exogenous klotho could diminish levels of 
inflammatory biomarkers such as NF-kB, IL-1β, and TNF-α 
in Aβ-exposed cells [24]. Collectively, these data show that 
klotho reduces neuropathological alterations in AD animals. 
Further studies will identify the other mechanisms mediating 
the therapeutic effects of klotho in AD.

Amyotrophic lateral sclerosis (ALS)

ALS, known as Lou Gehrig’s disease, begins when motor 
neurons in the spinal cord and brain become dysfunctional 
within weeks or months, leading to muscle atrophy, 
paralysis, and ultimately death [106]. No cure has been 
discovered for this devastating illness. Respiratory failure 
is responsible for most of the deaths in ALS patients within 
3–5 years after various symptoms and signs appear [107]. 
ALS neuropathy is linked to elevated levels of excitotoxicity, 
inflammation, and oxidative stress. In the SOD1 mouse 
model of ALS, klotho overexpression led to delayed onset 
and progression of the disease, while females had longer 

survival rates. The results were not immediately apparent 
but were observed after 2 months [14]. The impact of klotho 
was found to be more significant in the spinal cord compared 
to the motor cortex. The klotho reduced the expression of 
proinflammatory cytokines (TNF-α, 1L-1β, and IL-6)and 
increased anti-oxidative and promyelinating factors in 
both the motor cortex and spinal cord, compared to SOD1 
mice [14]. In the CSF of ALS patients, reduced levels of 
vascular endothelial growth factor (VEGF) are reported 
during the early stages of the disease [108]. Deficiency in 
VEGF is related to the motor neuron death [109]. Zeldich 
et  al. [14] have demonstrated that klotho increased the 
VEGF expression in the spinal cord of SOD1 mice. The 
upregulation of myelin-associated glycoprotein (MAG) 
and myelin basic protein (MBP) mRNA in the spinal 
cord of SOD1 mice with klotho overexpression confirms 
the beneficial influence of klotho on myelin maintenance. 
Besides, klotho overexpression could normalize the number 
of Ionized calcium-binding adaptor molecule 1(Iba1)-
positive cells and increase the number of neuronal nuclei 
(NeuN)-positive cells in the lumbar spinal cord of SOD1 
mice [14]. These findings indicate that klotho enhances 
motor neuronal survival by reducing neuroinflammation in 
the lumbar spinal cord in SOD1 mice.

Epilepsy

Epilepsy is the most common serious brain disorder and is 
characterized by a long-term risk of recurrent unprovoked 
seizures, affecting more than 50 million people worldwide 
[110]. An emerging body of evidence supports the 
relevance of neuroinflammation in the pathophysiology 
of epilepsy, leading to neuronal damage [111]. Clinical 
studies have reported elevated levels of proinflammatory 
cytokines in serum or CSF [63, 112]. In patients or animal 
models with epilepsy, neuroinflammation is  a  crucial 
player  in the pathogenesis of cognitive  impairment 
[113, 114]. Inflammatory factors typically enhance 
the excitability of brain neurons and lead to recurrent 
seizures, which subsequently aggravate neuron injury 
and exacerbate impairment of cognition function in 
temporal lobe epilepsy (TLE). Ferroptosis is associated 
with the accumulation of iron overload-dependent 
lipid peroxidation. Iron overload is a starting factor for 
ferroptosis in neurons. Iron can be stored in or transported 
by ferroportin (FPN) and be released from endosomes into 
the cytoplasm by divalent metal transporter 1 (DMT1), 
thereby avoiding iron overload and iron-related toxicity 
[115]. Also, during ferroptosis glutathione depletion 
causes glutathione peroxidase 4 (GPX4) inactivation 
and oxidative stress. Ferroptosis results in cognitive 
impairments in individuals with TLE [116]. Klotho 
ameliorated cognitive impairments and exhibited 
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neuroprotective properties via inhibiting ferroptosis and 
oxidative stress in lithium-chloride and pilocarpin-induced 
TLE rat models [116]. Overexpression of klotho inhibited 
iron accumulation by upregulation of FPN expression and 
suppression of DMT1 expression in the hippocampus of 
TLE rats. Moreover, klotho overexpression enhanced the 
expression of GPX-4 and GSH and also reduced ROS in 
the hippocampus of TLE rats [116].

Klotho could alleviate NLRP3 inflammasome-mediated 
inflammation by activating the nuclear factor erythroid 
2-related factor 2 (Nrf2) signaling pathway in the TLE rat 
model [117]. TNF-α has been found to reduce the klotho 
level in TLE patients by affecting the NFκB transcription 
pathway [118]. Notably, in a rodent model of chronic 
epilepsy produced by pentylenetetrazol, curcumin-loaded 
nanoparticles are shown to exert a neuroprotective effect 
through downregulation of TNF-α and upregulation of 
klotho and erythropoietin [119].

Glioblastoma multiforme

Glioblastoma multiforme (GBM) is the predominant and 
highly malignant primary tumor of CNS in adults, with a 
median survival rate of less than one year from diagnosis 
[120]. Despite patients undergoing intensive standard 
treatment, such as surgical intervention combined with 
chemotherapy and/or radiotherapy, this rare astrocytoma 
has a very poor prognosis. Between the heterogenous cell 
populations comprising the GBM tumor mass, cancer stem 
cells play a pivotal role in promoting therapy resistance, 
tumor expansion, and recurrence [121]. Klotho gene 
expression was found to be decreased in glioblastoma, 
oligodendroglioma, and astrocytoma in comparison to 
controls [122]. Cell viability is reduced by exogenous klotho 
(1.25-5 ng/mL) in the GBM cell line [123]. Melekhin et al. 
reported that overexpression of the isolated secreted klotho 
could reduce A-172 human glioblastoma cell growth and 
increase the number of caspase-active cells [124] (Table 1).

Table 1   Effects of klotho in neurological disorders

pCREB: phospho-cAMP-response element binding protein, MDA :malondialdehyde, PBMCs: peripheral blood mononuclear cells, GPX-4: 
Glutathione peroxidase-4, TNF-α: Tumor necrosis factor-alpha, IL-12a: Lnterleukin-12 subunit alpha, IL-1β: Interleukin-1 beta, Nrf2: Nuclear 
factor erythroid 2-related factor 2, Iba-1: Ionized calcium-binding adaptor molecule 1, GFAP: Glial fibrillary acid protein, MAG: Myelin-
associated glycoprotein, MBP: Myelin basic protein

Disease Species Outcomes References

Cerebral ischemia Mouse MnSOD and FOXO3a ↑, ROS↓, improved cognition [11]
Rat Improved the neurological scores, brain infarction area↓, MnSOD ↑ [71]
Mouse Inhibited proinflammatory cytokines generation and overactivation of glia, 

suppressed oxidative stress, RIG-I/ NF-κB p65, and Akt/FoxO1 pathways
[69]

Rat Improved neurobehavioral deficits, infarct volume↓, AQP4, and P38 MAPK 
expression ↓

[75]

Parkinson’s diseases Rat Striatal levels of MDA, ROS, GFAP, α synuclein, pCREB, and DNA 
fragmentation↓

[42]

Mouse Motor and cognitive deficits ↓, induced neural resilience [85]
Alzheimer’s diseases PBMCs of AD patients IL-6↓, IL-1β↓, TNF-α↓, Wnt1 expresstion↓, miR-29a expression ↑ [95]

Mouse Cognitive impairment↓, Aβ burden↓, ameliorated neuronal damage, 
inhibited activation of the NLRP3/caspase-1 signaling pathway

[97]

Mouse Cognitive deficits ↓, prevented GluN1 and
GluN2A depletions, GluN2B level↑,

[2]

Mouse Memory impairments ↓, Aβ1-42 accumulation, p-Tau level, and neuronal 
loss ↓, oxidative stress ↓, FoxO1 activation ↑, inhibited IGF-1 signaling

[104]

Mouse Improved cognitive, Aβ1-42 accumulation ↓, LC3II/I↑, p62↓, SYP↑, 
p-AKT/AKT protein↓ level, p-mTOR/mTOR↓

[101]

Human SH-SY5Y 
neuroblastoma cells

NF-kB↓, IL-1β ↓, TNF-α ↓, ROS↓, caspase 3 activity and DNA 
fragmentation↓, SOD ↑, modulation of Wnt1/pCREB/Nrf2/HO-1 
signaling

[24]

Amyotrophic lateral sclerosis Mouse Iba1↓, TNF-α, and IL-6↓, delayed weight loss, rescued motor neuron, 
myelin-related genes such as MBP and MAG expression↑

[14]

Epilepsy Rat GPX-4 and glutathione expression↑, ROS ↓, cognitive deficits ↓ [116]
Rat NLRP3, IL-1β, and caspase-1 expression proteins ↓, Nrf2↑ [117]
Mouse TNF-α ↓ and neuronal loss ↓ [119]

Glioblastoma multiforme Cell line Cell viability↓ [123]
Cell line Cell growth↓, caspase-active cells↑ [124]
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Conclusion and future directions

Findings indicate that overexpression of klotho in the 
CNS could be a potential strategy for the treatment 
of neurological dysfunctions (Fig. 3). Several lines of 
evidence have shown the neuroprotective role of klotho in 
CNS disorders. Its potential therapeutic value derives from 
its ability to improve CNS pathogenesis to reduce cognitive 
deficits, oxidative stress, inflammation, apoptosis, and 
stimulate autophagy. So far, most of the reported research 
on klotho has  been  conducted  using  animal disease 
models, and a significant amount of work must be done 
to introduce klotho therapy into the clinic. In addition, 
further studies are still required to establish the exact 
potential biological roles of klotho levels in neurological 
diseases.
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