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Abstract
Background  Pediatric postoperative cognitive dysfunction (POCD) is a prevalent complication following anesthesia and 
surgery. Hypoxia and propofol are the primary risk factors contributing to pediatric POCD. Our previous in vivo animal 
research has demonstrated that cognitive dysfunction in immature Sprague-Dawley (SD) rats, induced by hypoxia combined 
with propofol (HCWP), is closely associated with hippocampal neuron ferroptosis.
Methods and results  In vivo transcriptome sequencing and KEGG functional analysis revealed significant enrichment of the 
mitophagy pathway. To further elucidate the relationship between mitophagy and ferroptosis, HT22 cells were selected to 
construct an in vitro HCWP model. Our findings indicate that HCWP activates excessive mitophagy in HT22 cells, leading 
to decreased mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS) burst, mitochondrial fragmentation, 
and the induction of ferroptosis. To explore this causal relationship further, we employed Mdivi-1, a mitophagy inhibitor. 
Notably, low-dose Mdivi-1 (10 µM) effectively suppressed excessive mitophagy in HT22 cells, improved mitochondrial 
function and morphology, and mitigated markers associated with ferroptosis. The mechanism by which Mdivi-1 alleviates 
HCWP-induced ferroptosis in HT22 cells is likely due to its inhibition of excessive mitophagy, thereby promoting mitochon-
drial homeostasis.
Conclusions  Our study suggests that mitophagy may be an upstream event in HCWP-induced ferroptosis in HT22 cells. 
Consequently, targeted regulation of mitophagy by Mdivi-1 may represent a promising approach to prevent cognitive dys-
function following HCWP exposure.
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Introduction

Postoperative cognitive dysfunction (POCD) is a preva-
lent complication following anesthesia and surgery, pri-
marily characterized by learning and memory impairment 
and personality disorders, which severely impact patients’ 
quality of life and pose a global threat to human health 
[1, 2]. The pathogenesis of POCD is complex, involving 
increased brain inflammation, exacerbated oxidative stress, 
reduced synaptic connections, and neuronal destruction 
[1, 3, 4]. Children’s brain development is immature, mak-
ing them more susceptible to brain development damage 
when exposed to risk factors, resulting in long-term cogni-
tive impairment and even death [5]. However, the specific 
mechanisms underlying pediatric POCD remain unclear.

Hypoxemia is a common perioperative complication 
prevalent in pathological conditions such as shock, pul-
monary edema, and congenital heart disease shunts in chil-
dren. Additionally, brain-local hypoxia caused by specific 
surgical positions or perioperative drugs is often unde-
tected. Research has indicated that nearly 50% of patients 

in clinical settings experienced varying degrees of hypoxia 
during the perioperative period [6]. Hypoxia can severely 
impact cellular function, slow down drug metabolism, and 
promote cell apoptosis [7]. Propofol is a frequently utilized 
intravenous general anesthetic, is extensively employed for 
anesthesia induction and maintenance, as well as for seda-
tion in the pediatric intensive care unit (ICU). Propofol 
has demonstrated potential neurotoxicity in the developing 
brain, including promoting the release of neuroinflamma-
tory factors, triggering cell apoptosis, and causing extensive 
neurodegeneration [8–10]. Both hypoxia and propofol are 
considered risk factors for pediatric POCD [11].

Ferroptosis, an emerging type of regulated cell death 
(RCD), is characterized by the accumulation of reactive 
oxygen species (ROS) and iron-dependent lipid peroxida-
tion, posing a substantial threat to cellular homeostasis [12]. 
This process differs from other types of cell death, such as 
apoptosis and necrosis, and is increasingly recognized as 
a significant mediator of neurodegenerative diseases and 
various brain injuries [13]. Our previous in vivo research 
has shown that hypoxia combined with propofol (HCWP) 
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leads to cognitive dysfunction in immature SD rats, with 
the mechanism closely connected to hippocampal neuronal 
ferroptosis [14]. However, the role of ferroptosis and its 
upstream pathways and processes in HCWP-induced cogni-
tive impairment remains unknown.

Mitophagy, a type of selective autophagy, maintains 
mitochondrial function and quantity in cells by eliminat-
ing and degrading damaged mitochondria, playing a crucial 
role in maintaining mitochondrial quality control and cellu-
lar redox balance [15]. This degradation can occur through 
both ubiquitin-dependent and ubiquitin-independent path-
ways [16]. In the context of ferroptosis, mitophagy has 
been suggested to be a double-edged sword, exhibiting both 
protective and detrimental roles depending on the degree of 
autophagy flux. On the one hand, during cell damage caused 
by ferroptosis, normal mitophagy may exert a protective 
effect by clearing dysfunctional mitochondria and reduc-
ing their released ROS [17]. On the other hand, excessive 
mitophagy may ultimately provide additional iron and ROS, 
thereby amplifying lipid peroxidation and ferroptosis [18]. 
However, the role of mitophagy in HCWP-induced ferrop-
tosis remains unclear.

Therefore, based on our previous in vivo studies, we 
selected mouse hippocampal neuron cells (HT22) to further 
explore the specific molecular mechanisms among HCWP, 
ferroptosis, and mitophagy in vitro. We aim to provide new 
insights and intervention targets for the prevention and 
treatment of pediatric POCD.

Materials and methods

Cell culture

HT22 mouse hippocampal neuronal cells were obtained from 
the Chinese Academy of Sciences Cell Bank of Type Cul-
ture Collection (Shanghai, China) (RRID: CVCL_0321) and 
cultured in high glucose medium (DMEM, C11995500BT, 
Gibco, Waltham, U.S.) supplemented with 10% fetal bovine 
serum (FBS, 10099-141, Gibco, Waltham, U.S.) and 1% 
penicillin-streptomycin (P0781, Sigma, U.S.). The cells 
were incubated in a humidified incubator (3131, Thermo 
Fisher, U.S.) with 5% CO2 at 37 °C and subcultured after 
reaching 80–90% confluence.

Cell treatment

HT22 cells were divided into 5 groups: CON (blank con-
trol group), CA (lipid emulsion solvent + room air group), 
CH (lipid emulsion solvent + hypoxia group), PA (propo-
fol + room air group), and PH (propofol + hypoxia group). 
HT22 cells received treatment with 100 µM lipid emulsion 

solvent (F18020309, Kelun, Sichuan, China) or 100 µM pro-
pofol (X21062B, AstraZeneca, Italy), respectively, and then 
incubated at room air (21% O2) or in a 1% hypoxia incuba-
tor (3131, Thermo Fisher, U.S.) for 24 h. In the inhibitor-
related experiments, HT22 cells were divided into 4 groups: 
CON, CON + Mdivi-1, PH, and PH + Mdivi-1. Mdivi-1 
(SC8028-10 mM, Beyotime, China) (Lot: 072823231207) 
stock solution was diluted with DMEM medium to reach a 
final concentration of 10 µM for use. HT22 cells were pre-
treated with 10 µM Mdivi-1 for 2 h before modeling.

Cell viability assay

Cell viability was assessed with the Cell Counting Kit-8 
(K1018, CCK-8, APExBIO, USA). HT22 cells were planted 
in 96-well plates (3599, Corning/Costar, U.S.) at a density 
of 5 × 103 cells per well, with six replicate wells set for each 
group. When cells growth density reached about 60% con-
fluence, the cells were intervened for 24 h. After incubating 
HT22 cells with 10% CCK-8 in the dark at 37 °C for 2 h, 
absorbance at 450 nm was measured by a microplate reader 
(Cytation 5, BioTek Instruments, U.S.).

Malondialdehyde (MDA) assay

The Cell MDA Assay Kit (A003-4-1, NanjingJiancheng, 
China) was used to measure the level of MDA. As directed 
by the manufacturer, the absorbance values were measured 
at 530 nm using a microplate reader, and then the protein 
content was determined using the BCA protein assay kit 
(P0010, Beyotime, China). The MDA content was cal-
culated according to the formula and expressed in nmol/
mgprot. MDA content (nmol/mgprot) = [(Measured OD 
value - Blank OD value)/(Standard OD value - Blank OD 
value)]×Standard sample concentration/Tested sample pro-
tein concentration. Each sample was assayed three times.

Iron content detection

The iron content was measured using a Cell Ferrous Iron 
Colorimetric Assay Kit (E-BC-K881-M, Elabscience, 
Wuhan, China). The ferrous ion content standard curve was 
tested using different concentrations of iron standard sam-
ples, as instructed by the manufacturer. The samples to be 
tested were mixed with the chromogenic solution, incubated 
for 10  min at 37  °C, and the OD values at 593  nm were 
measured using the microplate reader. Then the ferrous ion 
contents in the samples were calculated according to the for-
mula in the instructions.
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using Bio-Rad at a constant current of 400  mA. Subse-
quently, the membranes were blocked with 5% skim milk 
(P0216, Beyotime, China) for 2  h. The membranes were 
washed three times with 1 × TBST followed by 12 h incu-
bation with appropriate primary antibodies at 4  °C. After 
the incubation with the primary antibody was completed, 
the membranes were washed three times with 1 × TBST, 
for 10 min each time. The membranes were then incubated 
with appropriate HRP-conjugated secondary antibodies for 
2 h at room temperature. The membranes were washed three 
times with 1 × TBST again. The protein bands were visu-
alized using an ultra-high sensitivity ECL kit (MAO186, 
meilunbio, China) on a Bio-Rad imager (ChemiDoc, Bio-
Rad, U.S.). The expression levels of the target proteins were 
quantitatively analyzed using ImageLab software (version 
6.0, Bio-Rad, USA), with β-actin serving as the reference 
protein for the whole-lysate proteins. The following pri-
mary antibodies were utilized: GPX4 (1:1000, BS90596, 
Bioworld, China) (Lot: CC02181) (RRID: AB_3105959), 
FTH1 (1:1000, ET1610-78, HUABIO, China) (Lot: 
H661963002) (RRID: AB_3069963), ACSL4 (1:1000, 
BS71431, Bioworld, China) (Lot: CN03212) (RRID: 
AB_3105960), p62 (1:5000, T55546F, Abmart, China) 
(Lot: 10,045,859) (RRID: AB_2936967), LC3 (1:2500, 
14600-1-AP, Proteintech, China) (Lot: 00107124) (RRID: 
AB_2137737), PINK1 (1:1000, 23274-1-AP, Proteintech, 
China) (00140989) (RRID: AB_2879244), Parkin (1:2500, 
14060-1-AP, Proteintech, China) (Lot: 00150132) (RRID: 
AB_2878005), β-actin (1:1500, AM1829B, abcepta, China) 
(Lot: SG210714Z01) (RRID: AB_10664137). The fol-
lowing HRP-conjugated secondary antibodies were uti-
lized: Goat Anti-Mouse IgG antibody (1:10000, ASP1613, 
abcepta, China) (Lot: 20,220,621) (RRID: AB_3106369), 
Goat Anti-Rabbit IgG antibody (1:1000, A0208, Beyotime, 
China) (Lot: 051022220718) (RRID: AB_2892644).

Double staining observation of mitochondria and 
lysosomes

HT22 cells were planted in a confocal dish at the above den-
sity, and cell modeling was performed as described above. 
The Mito-Tracker Green (50 nM) (C1048, Beyotime, China) 
and Lyso-Tracker Red (50 nM) (C1046, Beyotime, China) 
were added to the dishes. The cells were then cultured at 
37 °C in a 5% CO2 incubator for 30 min and washed with 1 
× PBS. The 1X Hoechst 33,342 (C1028, Beyotime, China) 
was used to stain nuclei. Cells were imaged at a magnifi-
cation of 900 times under oil microscope using a Nikon 
C2 confocal microscope (Nikon, Japan). The fluorescence 
mean intensity ratio of lysosomes in TRITC channel was 
analyzed by ImageJ software.

Intracellular ROS detection

HT22 cells were cultured in a confocal dish (BS-15-GJM, 
Biosharp, China) with a diameter of 15 mm at a density of 
1 × 104 per dish, with intervention based on cell modeling 
conditions. The ROS levels were determined using the ROS 
Assay Kit (S0033S, Beyotime, China) in accordance with 
the manufacturer’s instructions. The DCFH-DA probe was 
diluted with FBS-free DMEM medium (C11995500BT, 
Gibco, Waltham, U.S.) to a concentration of 10 µM. After 
adding 1 mL of solution per well and incubating at 37 °C 
for 20  min, the dish was rinsed three times, followed by 
nuclei staining with 1X Hoechst 33,342 (C1028, Beyotime, 
China) at 37 °C for 10 min. A Nikon C2 confocal micro-
scope (Nikon, Japan) was used to image cells at a magni-
fication of 300 times, and the fluorescence intensity of the 
FITC channel in the pictures was analyzed using ImageJ 
software (Version 1.53a).

Mitochondrial membrane potential (ΔΨm) detection

HT22 cells were seeded in 15  mm confocal dishes at a 
density of 1 × 104 per dish. Cell modeling was performed 
as previously described. An appropriate amount of JC-1 
(200X) (C2003S, Beyotime, China) was taken, and it was 
diluted with JC-1 buffer to JC-1 working solution (1X), then 
the cells were washed with DMEM medium once. A mix-
ture of 0.5 mL of JC-1 working solution (1X) and 0.5 mL of 
DMEM medium was added to each dish. The cells were then 
cultured at 37 °C in a 5% CO2 incubator for 30 min before 
being rinsed twice with JC-1 buffer. Cells were imaged at 
a magnification of 600 times using a Nikon C2 confocal 
microscope (Nikon, Japan). JC-1 monomer fluorescence 
was excited using a 488 nm laser and JC-1 aggregate fluo-
rescence was excited using a 561 nm laser. The ImageJ soft-
ware was used to analyze the fluorescence intensity ratio of 
FITC and TRITC channels of the image.

Western blotting

Proteins were extracted from the HT22 cells using the 
Whole-Protein Extraction Kit (KGP250, KeyGEN Biotech, 
China) and the proteins’ concentration was measured using 
the BCA Protein Concentration Determination Kit (P0010, 
Beyotime, China). The PAGE Gel Fast Preparation Kit 
(PG112/PG113, Epizyme, China) was selected according 
to the molecular weight of the target protein to prepare the 
10% or 12.5% PAGE gel. Equal protein amounts were then 
separated in a Tris-Glycine buffer system using Bio-Rad 
(PowerPac™ Universal Power Supply, U.S.) at a constant 
voltage of 80 V. Then, the proteins were transferred onto 
a 0.2 μm PVDF membrane (ISEQ00010, Millipore, U.S.) 
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the CON group, with MDA and Fe2+ levels increasing by 
about 2.88 and 4.05 times, respectively. These data indi-
cated that HCWP treatment resulted in excessive lipid per-
oxidation and iron accumulation in cells. Furthermore, we 
detected the expression of ferroptosis-related proteins in 
each group using Western blot analysis. The results dem-
onstrated that, compared to CON, protein expression of 
glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 
(FTH1) was significantly decreased in the PH group, while 
protein expression of acyl-CoA synthetase long-chain fam-
ily member 4 (ACSL4) increased (p < 0.05) (Fig.  1F-K). 
Collectively, these data suggested that HCWP treatment 
may trigger ferroptosis in HT22 cells.

HCWP activates excessive mitophagy in HT22 cells

In our previous HCWP animal model experiment, transcrip-
tome sequencing (RNA-seq) results revealed significant 
KEGG pathway enrichment of the mitophagy in the PH 
group compared to the CH group (Fig. 2A). These data led 
us to hypothesize that mitophagy may also play a crucial role 
in HCWP-treated cell models. Therefore, we first examined 
the protein expression levels of autophagy-associated mark-
ers LC3 and p62. Western blot (WB) analysis demonstrated 
an increase in the expression of LC3-II protein in each 
propofol group (PA and PH) compared to the correspond-
ing lipid emulsion solvent group (CA and CH) (p < 0.05). 
Additionally, the PH group showed a significantly elevated 
expression of LC3-II protein compared to the CON group 
(p < 0.05). Conversely, the expression of p62 protein exhib-
ited an opposite trend (p < 0.05) (Fig. 2B-E), indicating that 
autophagy was induced following HCWP exposure.

To further investigate the specific types of autophagy, we 
examined the expression of key proteins PINK1 and Par-
kin in the ubiquitin-dependent mitophagy pathway in each 
group. We found that, compared to the corresponding lipid 
emulsion solvent group (CA and CH), protein expression 
levels of PINK1 and Parkin were increased in the propofol 
group (PA and PH) (p < 0.05). Additionally, compared to the 
CON group, the protein levels of PINK1 and Parkin showed 
a significant increase in the PH group (p < 0.05) (Fig. 2F-
I). Mitophagy typically involves the formation of autopha-
gosomes around damaged mitochondria, which then fuse 
with lysosomes to facilitate their degradation [20]. Conse-
quently, to further demonstrate the occurrence of mitoph-
agy, we performed double staining targeting mitochondria 
and lysosomes, followed by confocal microscopy. Initially, 
we observed abnormal mitochondrial morphology in HT22 
cells, characterized by extensive fragmentation, indicating 
possible mitochondrial damage. Additionally, we observed 
extensive lysosome aggregation around fragmented mito-
chondria and noted the engulfment of mitochondria by 

Mitochondrial morphological analysis

After Mito-tracker Green was used to tack mitochondria, the 
images of mitochondria were obtained at a magnification of 
900 times under the oil microscope of Nikon C2 confocal 
microscope (Nikon, Japan). The mitochondrial skeleton was 
analyzed using the Fiji software (Version 2.14.0), and the 
length of mitochondrial branches was analyzed using the 
MiNA plugin (Version 3.0.1).

Statistical analysis

Data were analyzed using GraphPad Prism 8.0 software 
(San Diego, USA) and were presented as means ± standard 
deviation (SD). Each experiment included at least 3 repli-
cates. The normality of data was assessed using the Shapiro-
Wilk test, and all data met normal distribution. Differences 
among three or more groups were compared using one-way 
analysis of variance (ANOVA) followed by Tukey’s mul-
tiple comparisons tests, with statistical significance defined 
as p ≤ 0.05.

Results

HCWP triggers ferroptosis in HT22 cells

Initially, we conducted CCK-8 cell viability assays to inves-
tigate the effects of propofol concentration, oxygen con-
centration, and intervention duration. We determined that 
treatment with 100 µM propofol under 1% oxygen concen-
tration for 24 h was the optimal modeling condition (Fig. 1A 
and B). Subsequently, under these conditions, we assessed 
the cell viability of 5 groups (CON, CA, CH, PA and PH). We 
observed a decrease in cell viability in the propofol groups 
(PA and PH) compared to the corresponding lipid emulsion 
solvent groups (CA and CH) (p < 0.05). The PA and PH 
groups exhibited a statistically significant difference, with 
the cell viability of the PH group reduced by approximately 
40.7% compared to the CON group (Fig. 1C). These data 
indicated a significant toxic effect of HCWP treatment on 
HT22 cells.

To determine whether HCWP-induced cytotoxicity is 
related to ferroptosis, we examined relevant ferroptosis 
indicators. Malondialdehyde (MDA), a product of mem-
brane lipid peroxidation, and intracellular iron (Fe2+) levels 
are crucial biomarkers for detecting and assessing ferrop-
tosis [19]. As shown in Fig. 1D and E, MDA and Fe2+ lev-
els in the propofol group (PA and PH) were significantly 
increased compared to the corresponding lipid emulsion 
solvent groups (CA and CH) (p < 0.05). Notably, the PH 
group exhibited the most significant increase compared to 
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Mitochondrial dysfunction and morphological 
abnormalities occurred in HT22 cells after HCWP 
treatment

The observed fragmentation of mitochondria in the PH group 
(Fig. 2J) prompted us to further analyze the mitochondrial 

lysosomes. Further analysis of fluorescence intensity 
revealed that, compared to the CON group, the mean fluo-
rescence intensity of lysosomes significantly increased in 
the PH group (p < 0.05) (Fig. 2J and K). These findings col-
lectively suggested that mitophagy may be overactivated in 
HCWP-exposed HT22 cells.

Fig. 1  HCWP triggers ferroptosis in HT22 cells. (A) The effects of dif-
ferent propofol concentrations and intervention times on the viability 
of HT22 cells under air condition. (B) The effect of 24 h intervention 
with different propofol concentrations under different oxygen concen-
trations on the viability of HT22 cells. (C) The effects of 100 µM pro-
pofol and 1% oxygen on the viability of HT22 cells in different groups. 

(D, E) Malondialdehyde (MDA) and Ferrous Iron (Fe2+) contents in 
different groups. (F-K) Protein expression of ferroptosis-related mark-
ers GPX4, FTH1 and ACSL4, with β-actin as a reference protein 
(n = 3). Data are presented as mean ± standard deviation; *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, n.s., not significant

 

1 3

  870   Page 6 of 15



Molecular Biology Reports          (2024) 51:870 

with our previous observations. Analysis and statistics 
of mitochondrial branch length using the MiNA plugin 
revealed that the average length of mitochondrial branches 
was 0.933 μm in the CON group, whereas in the PH group, 
it was 0.631  μm, indicating a reduction of about 1.48 
times (p < 0.05) (Fig.  3B). These findings suggested that 

skeleton using Fiji software. Upon observation, we noted 
that following HCWP treatment, the mitochondrial mor-
phology in the PH group transitioned from rod-shaped and 
filamentous to punctate and fragmented, with apparent dis-
ruption of the mitochondrial network structure compared 
to the CON group (Fig. 3A). These findings are consistent 

Fig. 2  HCWP activates excessive mitophagy in HT22 cells. (A) KEGG 
analysis based on hippocampal tissues RNA-seq showed enrichment 
of mitophagy pathway. (B-E) Protein expression of autophagy-related 
markers LC3 and p62, with β-actin as a reference protein (n = 3). (F-I) 
Protein expression of Mitophagy-related markers PINK1 and Parkin, 

with β-actin as a reference protein (n = 3). (J, K) Confocal images of 
the mitophagy in HT22 cells (scale bar, 10 μm). Data are presented 
as mean ± standard deviation; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, 
****p ≤ 0.0001, n.s., not significant
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Fig. 3  HCWP activates excessive mitophagy in HT22 cells. (A) 
Morphological images analysis of mitochondrial skeleton using Fiji 
software (scale bar, 10 μm). (B) Mitochondrial branch length analy-
sis using MiNA plugin. (C, D) Confocal images of the mitochondrial 

membrane potential in HT22 cells (scale bar, 20 μm) (n = 4). (E, F) 
Confocal images of intracellular ROS in HT22 cells (scale bar, 25 μm) 
(n = 6). Data are presented as mean ± standard deviation; *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, n.s., not significant
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These findings collectively suggested that pretreatment with 
Mdivi-1 reduced the autophagic flux in HCWP-exposed 
HT22 cells and effectively inhibited excessive mitophagy.

Mdivi-1 improves mitochondrial dysfunction and 
morphological abnormalities in HT22 cells treated 
with HCWP

The balance of mitophagy plays a crucial role in main-
taining mitochondrial morphology and function. Mdivi-1 
pretreatment effectively inhibited excessive mitophagy in 
HT22 cells. Can it improve mitochondrial morphology and 
function? Through analysis of the mitochondrial skeleton, 
we observed that Mdivi-1 pretreatment reduced mitochon-
drial fragmentation and restored mitochondrial network 
structure (Fig.  5A). The average length of mitochondrial 
branches increased from 0.733 μm to 1.406 μm (p < 0.05) 
(Fig. 5B). Regarding mitochondrial function, we found that 
Mdivi-1 pretreatment rescued the decreased MMP level (the 
JC-1 ratio of aggregates/monomers in the PH + Mdivi-1 
group increased by about 5.06 times compared to the PH 
group, p < 0.05) (Fig. 5C and D), while also reducing ROS 
levels (the ROS level in the PH + Mdivi-1 group decreased 
by about 3.02 times compared to the PH group, p < 0.05) 
(Fig.  5E and F). These results collectively indicated that 
pretreatment with Mdivi-1 improved mitochondrial mor-
phological abnormalities and dysfunction in HT22 cells 
exposed to HCWP.

Mdivi-1 alleviates ferroptosis in HT22 cells triggered 
by HCWP

To explore the relationship between mitophagy and ferrop-
tosis, we re-evaluated ferroptosis-related biomarkers after 
Mdivi-1 pretreatment. The results revealed that Mdivi-1 pre-
treatment increased HT22 cell viability (the PH + Mdivi-1 
group exhibited a 21.8% increase compared to the PH 
group, p < 0.05) (Fig. 6A). Additionally, Mdivi-1 pretreat-
ment decreased MDA and Fe2+ levels (p < 0.05) (Fig.  6B 
and C). Western blot analysis demonstrated that, compared 
to the PH group, Mdivi-1 pretreatment increased the expres-
sion of GPX4 and FTH1 proteins in the PH + Mdivi-1 group, 
while reducing the expression of ACSL4 protein (p < 0.05) 
(Fig.  6D-I). These findings suggested that Mdivi-1 pre-
treatment alleviated ferroptosis in HT22 cells triggered by 
HCWP.

mitochondria in cells treated with HCWP exhibited a more 
rounded and fragmented morphology compared to those in 
the CON group.

A normal structure is crucial for maintaining mitochon-
drial function, and typically mitochondrial elongation, 
increased membrane potential, and improved mitochon-
drial function are consistent [21]. Conversely, an increase in 
ROS and mitochondrial disruption may indicate functional 
impairment [22]. Therefore, we further tested relevant indi-
cators of mitochondrial function. We used a JC-1 probe to 
detect mitochondrial membrane potential (MMP). In cells 
with normal MMP, JC-1 forms aggregates and emits red flu-
orescence, while in cells with decreased MMP, JC-1 exists 
as monomers and emits green fluorescence. As shown in 
Fig. 3C and D, compared to the corresponding lipid emul-
sion solvent groups (CA and CH), the MMP of the propofol 
groups (PA and PH) decreased (the JC-1 aggregate/mono-
mer ratio decreased by about 3.06 and 3.08 times, respec-
tively, p < 0.05). Additionally, compared to the CON group, 
HCWP reduced MMP in HT22 cells (the JC-1 aggregates/
monomers ratio decreased by about 6.92 times, p < 0.05). 
Using the DCFH-DA method to detect intracellular ROS, 
we found that, compared to the corresponding lipid emul-
sion solvent groups (CA and PA), the intracellular ROS 
levels in the propofol groups (CH and PH) increased by 
about 5.31 and 2.75 times, respectively. Furthermore, the 
PH group exhibited a notable increase in ROS levels, about 
10.13 times higher than the CON group (p < 0.05) (Fig. 3E 
and F). These results suggested the occurrence of mitochon-
drial dysfunction in HCWP-treated HT22 cells.

Mdivi-1 inhibits excessive mitophagy induced by 
HCWP in HT22 cells

To further explore the potential causal relationship between 
mitophagy and HCWP-induced ferroptosis, we conducted 
experiments using Mdivi-1 (a mitochondrial fission initia-
tion protein inhibitor known to effectively inhibit mitoph-
agy). The CCK-8 experiment showed that cell viability 
decreased with increasing concentration of Mdivi-1, and 
treatment with 20 µM Mdivi-1 resulted in significant cell 
damage (p < 0.05) (Fig. 4A). To eliminate the interference 
of high inhibitor concentrations on cells, we chose 10 µM 
Mdivi-1 for cell pretreatment. As shown in Fig. 4B-E, com-
pared to the PH group, the expression of the autophagy-
related protein LC3-II decreased, and the expression of 
p62 protein increased in the PH + Mdivi-1 group (p < 0.05). 
Additionally, compared to the PH group, the expression of 
mitophagy-related proteins PINK1 and Parkin significantly 
decreased in the PH + Mdivi-1 group (p < 0.05) (Fig.  4F-
I). Moreover, Mdivi-1 pretreatment notably reduced lyso-
somal fluorescence intensity (p < 0.05) (Fig.  4J and K). 
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Fig. 4  Mdivi-1 inhibits excessive mitophagy induced by HCWP in 
HT22 cells. (A) The effect of different concentrations of Mdivi-1 on the 
viability of HT22 cells. (B-E) The effects of Mdivi-1 pretreatment on 
LC3 and p62 protein expression in HCWP-induced HT22 cells (n = 3). 
(F-I) The effects of Mdivi-1 pretreatment on PINK1 and Parkin pro-

tein expression in HCWP-induced HT22 cells (n = 3). (J, K) Confocal 
images examining the effect of Mdivi-1 pretreatment on mitophagy in 
HT22 cells (scale bar, 10 μm). Data are presented as mean ± standard 
deviation; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, n.s., 
not significant
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Fig. 5  Mdivi-1 improves mitochondrial dysfunction and morphologi-
cal abnormalities in HT22 cells treated with HCWP. (A) The effect 
of Mdivi-1 pretreatment on the morphology of mitochondrial skel-
eton (scale bar, 10 μm). (B) The effect of Mdivi-1 pretreatment on the 
mitochondrial branch length. (C, D) Confocal images examining the 
effect of Mdivi-1 pretreatment on mitochondrial membrane potential 

in HT22 cells (scale bar, 20 μm) (n = 4). (E, F) Confocal images exam-
ining the effect of Mdivi-1 pretreatment on intracellular ROS in HT22 
cells (scale bar, 25 μm) (n = 6). Data are presented as mean ± standard 
deviation; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, n.s., 
not significant
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abilities [24]. Zhang et al. reported that chronic hypoxia 
exposure could induce pathological changes in neurons [25]. 
Hypoxia can lead to neuronal apoptosis through oxidative 
stress, inflammatory response, and excitatory toxicity [26]. 
Propofol, a widely used anesthetic, is closely scrutinized 
for its safety in pediatric patients. Current research has not 
reached a consensus on the impact of propofol on cogni-
tive function [9, 27]. In fact, these two factors often coex-
ist in pediatric patients. Our observation in clinical practice 
indicates that children with perioperative hypoxemia exhibit 
significant long-term cognitive impairment after receiving 
propofol anesthesia. To elucidate the mechanism by which 
exposure to general anesthesia affects long-term cognitive 
function in children with hypoxemia, we conducted this 
study.

In 2012, Dixon et al. first introduced the concept of 
ferroptosis, a form of programmed cell death that is iron-
dependent and characterized by the accumulation of lipid 
reactive oxygen species (ROS) [12]. Recent studies have 

Discussion

In the current study, we first constructed the HCWP model 
on HT22 cells and detected biomarkers related to ferroptosis 
and mitophagy, confirming the presence of both phenotypes. 
Pretreatment with Mdivi-1 inhibited excessive mitophagy 
and effectively alleviated HCWP-induced ferroptosis in 
HT22 cells. These findings suggest that mitophagy may 
be a key upstream event in HCWP-induced ferroptosis. In 
addition, mitochondrial morphological abnormalities and 
dysfunction caused by HCWP were rescued by Mdivi-1, 
indicating that the balance of mitophagy is crucial for nor-
mal mitochondrial function and morphology, which may 
also be a key mechanism for Mdivi-1 to improve ferroptosis.

Oxygen is a crucial determinant of cellular function in 
tissues, and the hippocampus is one of the brain regions 
most sensitive to variations in oxygen content [23]. It also 
serves as the main structural basis for learning and memory 

Fig. 6  Mdivi-1 alleviates ferroptosis in HT22 cells triggered by 
HCWP. (A) The effect of Mdivi-1 pretreatment on the HT22 cell activ-
ity. (B, C) The effect of Mdivi-1 pretreatment on MDA and Fe2+ levels 
in HT22 cells. (D-I) The effects of Mdivi-1 pretreatment on GPX4, 

FTH1 and ACSL4 protein expression in HCWP-exposed HT22 cells 
(n = 3). Data are presented as mean ± standard deviation; *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, n.s., not significant
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Furthermore, multiple studies have reported that Mdivi-1 
attenuates the dissipation of MMP, prevents ATP depletion, 
corrects abnormalities in electron transport chain complexes 
I-V, and inhibits both mitochondrial fission and mitophagy 
in ischemia-reperfusion (I/R)-induced brain injury [43]. Our 
research demonstrated that Mdivi-1 effectively mitigated 
mitochondrial fragmentation and attenuated mitophagy flux 
by inhibiting the process of mitochondrial fission. Mdivi-1 
pretreatment effectively improved the mitochondrial dys-
function in HT22 cells induced by HCWP, including restor-
ing MMP and reducing ROS levels. Our results, consistent 
with previous research, suggested that Mdivi-1 may have a 
protective effect on mitochondrial function. The improve-
ment of mitochondrial function and morphology in HCWP-
treated HT22 cells by Mdivi-1 may be its mechanism for 
alleviating ferroptosis.

Conclusion

In summary, our combined in vitro and in vivo research 
findings demonstrated that the hypoxia combined with pro-
pofol (HCWP) induced ferroptosis in hippocampal neurons, 
resulting in cognitive impairment in immature SD rats. 
The overactivation of mitophagy appeared to be a pivotal 
upstream mechanism triggering ferroptosis. Therefore, 
targeted modulation of mitophagy by Mdivi-1 might pres-
ent a new therapeutic target for the prevention of cognitive 
impairment associated with HCWP.
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shown that ferroptosis is involved in the occurrence and 
development of various neurological diseases. Zhang et al. 
reported that the overexpression and hyperphosphorylation 
of tau protein in Alzheimer’s disease (AD) mice can induce 
neuronal loss via ferroptosis, thereby leading to a decline in 
cognitive function [28]. Tang et al. found that Ferrostatin-1 
improved diabetes-related cognitive dysfunction by inhibit-
ing ferroptosis [29]. Our previous research has demonstrated 
that ferroptosis plays an important role in HCWP animal 
models, and that inhibiting ferroptosis can alleviate cogni-
tive impairment in immature rats induced by HCWP [14].

As research on ferroptosis has advanced, recent stud-
ies have increasingly shown a crucial interaction between 
ferroptosis and autophagy: ferroptosis requires autophagy 
mechanisms to execute [30, 31]. Mitophagy, a form of 
selective autophagy, is crucial for maintaining mitochon-
drial quality control and homeostasis, and it significantly 
contributes to the regulation of ferroptosis. Lin et al. dis-
covered that ferroptosis in renal tubular epithelial cells 
exacerbated cisplatin-induced acute kidney injury (AKI), 
whereas mitophagy alleviated cisplatin-induced ferroptosis 
and kidney injury through the ROS/HO-1/GPX4 axis [32]. 
Li et al. observed that the activation of mitophagy allevi-
ated ferroptosis induced by the knockdown of the mitochon-
drial localization protein CISD3, by eliminating damaged 
mitochondria [33]. These studies indicated the inhibitory 
effect of mitophagy on ferroptosis. Conversely, Rademaker 
et al. reported that compound WJ460 targeting oncoprotein 
Myoferlin, in combination with ferroptosis activators eras-
tin and RSL3, promoted mitophagy and ROS accumula-
tion in pancreatic cancer cells, leading to ferroptosis [18]. 
Similarly, Fan et al. found that the main nutrient sensor for 
glucose flow (protein O-GlcNAcylation) played a critical 
coordinating role in ferroptosis and mitophagy, and inhibit-
ing mitophagy can alleviate ferroptosis [34]. These studies 
indicated the promoting effect of mitophagy on ferropto-
sis. The findings from previous research collectively indi-
cated that the regulatory relationship between mitophagy 
and ferroptosis was complex. Our research suggested that 
mitophagy promoted ferroptosis in HCWP-treated HT22 
cells, potentially due to mitochondrial dysfunction caused 
by excessive activation of mitophagy.

Mdivi-1 is a selective inhibitor of dynamin-related pro-
tein 1 (Drp1), that can inhibit mitochondrial fission [35]. 
Since mitochondrial fission is a prerequisite for mitophagy, 
Mdivi-1 can inhibit mitophagy by regulating mitochondrial 
fission [36]. Recent reports have suggested that Mdivi-1 
shows potential therapeutic benefits in various diseases, 
such as Alzheimer’s disease [37], traumatic brain injury 
[38], acute myocardial infarction [39], ischemia-reperfu-
sion [40, 41], and autoimmune encephalomyelitis [42], 
owing to its protective effects on mitochondrial activity. 

1 3

Page 13 of 15    870 



Molecular Biology Reports          (2024) 51:870 

(2017) Ferroptosis: a regulated cell death Nexus linking metabo-
lism, Redox Biology, and Disease. Cell 171(2):273–285

20.	 Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, 
Jiang X (2019) Role of Mitochondria in Ferroptosis. Mol Cell 
73(2):354–363 e353

21.	 Gao G, Wang Z, Lu L, Duan C, Wang X, Yang H (2017) Mor-
phological analysis of mitochondria for evaluating the toxicity of 
alpha-synuclein in transgenic mice and isolated preparations by 
atomic force microscopy. Biomed Pharmacother 96:1380–1388

22.	 Kam WW, Banati RB (2013) Effects of ionizing radiation on 
mitochondria. Free Radic Biol Med 65:607–619

23.	 Zhang K, Zhu L, Fan M (2011) Oxygen, a key factor regulating 
cell behavior during Neurogenesis and Cerebral diseases. Front 
Mol Neurosci 4:5

24.	 Langston RF, Stevenson CH, Wilson CL, Saunders I, Wood ER 
(2010) The role of hippocampal subregions in memory for stimu-
lus associations. Behav Brain Res 215(2):275–291

25.	 Zhang YQ, Zhang WJ, Liu JH, Ji WZ (2022) Effects of Chronic 
Hypoxic Environment on cognitive function and neuroimaging 
measures in a high-Altitude Population. Front Aging Neurosci 
14:788322

26.	 Berger HR, Nyman AKG, Morken TS, Vettukattil R, Brubakk 
AM, Wideroe M (2017) Early metabolite changes after mela-
tonin treatment in neonatal rats with hypoxic-ischemic brain 
injury studied by in-vivo1H MR spectroscopy. PLoS ONE 
12(9):e0185202

27.	 Zeng K, Long J, Li Y, Hu J (2023) Preventing postoperative 
cognitive dysfunction using anesthetic drugs in elderly patients 
undergoing noncardiac surgery: a systematic review and meta-
analysis. Int J Surg 109(1):21–31

28.	 Zhang YH, Wang DW, Xu SF, Zhang S, Fan YG, Yang YY, Guo 
SQ, Wang S, Guo T, Wang ZY et al (2018) Alpha-lipoic acid 
improves abnormal behavior by mitigation of oxidative stress, 
inflammation, ferroptosis, and tauopathy in P301S tau transgenic 
mice. Redox Biol 14:535–548

29.	 Tang W, Li Y, He S, Jiang T, Wang N, Du M, Cheng B, Gao W, 
Li Y, Wang Q (2022) Caveolin-1 alleviates Diabetes-Associated 
Cognitive Dysfunction through modulating neuronal ferroptosis-
mediated mitochondrial homeostasis. Antioxid Redox Signal 
37(13–15):867–886

30.	 Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D (2020) 
Autophagy-dependent ferroptosis: Machinery and Regulation. 
Cell Chem Biol 27(4):420–435

31.	 Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2020) 
Ferroptosis is a type of autophagy-dependent cell death. Semin 
Cancer Biol 66:89–100

32.	 Lin Q, Li S, Jin H, Cai H, Zhu X, Yang Y, Wu J, Qi C, Shao X, Li 
J et al (2023) Mitophagy alleviates cisplatin-induced renal tubu-
lar epithelial cell ferroptosis through ROS/HO-1/GPX4 axis. Int J 
Biol Sci 19(4):1192–1210

33.	 Li Y, Wang X, Huang Z, Zhou Y, Xia J, Hu W, Wang X, Du J, 
Tong X, Wang Y (2021) CISD3 inhibition drives cystine-depriva-
tion induced ferroptosis. Cell Death Dis 12(9):839

34.	 Yu F, Zhang Q, Liu H, Liu J, Yang S, Luo X, Liu W, Zheng H, 
Liu Q, Cui Y et al (2022) Dynamic O-GlcNAcylation coordinates 
ferritinophagy and mitophagy to activate ferroptosis. Cell Discov 
8(1):40

35.	 Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, 
Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR et al 
(2008) Chemical inhibition of the mitochondrial division dyna-
min reveals its role in Bax/Bak-dependent mitochondrial outer 
membrane permeabilization. Dev Cell 14(2):193–204

36.	 Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat 
Rev Mol Cell Biol 12(1):9–14

References

1.	 Granger KT, Barnett JH (2021) Postoperative cognitive dysfunc-
tion: an acute approach for the development of novel treatments 
for neuroinflammation. Drug Discov Today 26(5):1111–1114

2.	 Zhao Q, Wan H, Pan H, Xu Y (2024) Postoperative cognitive 
dysfunction-current research progress. Front Behav Neurosci 
18:1328790

3.	 Lin X, Chen Y, Zhang P, Chen G, Zhou Y, Yu X (2020) The poten-
tial mechanism of postoperative cognitive dysfunction in older 
people. Exp Gerontol 130:110791

4.	 Le Y, Liu S, Peng M, Tan C, Liao Q, Duan K, Ouyang W, Tong J 
(2014) Aging differentially affects the loss of neuronal dendritic 
spine, neuroinflammation and memory impairment at rats after 
surgery. PLoS ONE 9(9):e106837

5.	 Zhu S, Sai X, Lin J, Deng G, Zhao M, Nasser MI, Zhu P (2020) 
Mechanisms of perioperative brain damage in children with con-
genital heart disease. Biomed Pharmacother 132:110957

6.	 Moller JT (1994) Anesthesia related hypoxemia. The effect of 
pulse oximetry monitoring on perioperative events and postop-
erative complications. Dan Med Bull 41(5):489–500

7.	 Snyder CM, Chandel NS (2009) Mitochondrial regulation of 
cell survival and death during low-oxygen conditions. Antioxid 
Redox Signal 11(11):2673–2683

8.	 Bosnjak ZJ, Logan S, Liu Y, Bai X (2016) Recent insights into 
Molecular mechanisms of Propofol-Induced Developmental 
Neurotoxicity: implications for the protective strategies. Anesth 
Analg 123(5):1286–1296

9.	 Huang J, Jing S, Chen X, Bao X, Du Z, Li H, Yang T, Fan X (2016) 
Propofol Administration during early postnatal life suppresses 
hippocampal neurogenesis. Mol Neurobiol 53(2):1031–1044

10.	 Milanovic D, Pesic V, Loncarevic-Vasiljkovic N, Pavkovic Z, 
Popic J, Kanazir S, Jevtovic-Todorovic V, Ruzdijic S (2016) The 
Fas Ligand/Fas Death receptor pathways contribute to Propofol-
Induced apoptosis and neuroinflammation in the brain of neonatal 
rats. Neurotox Res 30(3):434–452

11.	 Wang Y, Chen Z, Zhao Y, Shi R, Wang Y, Xu J, Wu A, Johns RA, 
Yue Y (2013) Epigenetics as a new therapeutic target for postop-
erative cognitive dysfunction. Med Hypotheses 80(3):249–251

12.	 Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, 
Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS et al 
(2012) Ferroptosis: an iron-dependent form of nonapoptotic cell 
death. Cell 149(5):1060–1072

13.	 Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang 
G (2020) Ferroptosis: past, present and future. Cell Death Dis 
11(2):88

14.	 Liu L, Gao W, Yang S, Yang F, Li S, Tian Y, Yang L, Deng Q, Gan 
Z, Tu S (2024) Ferritinophagy-mediated Hippocampus Ferropto-
sis is involved in cognitive impairment in immature rats Induced 
by Hypoxia Combined with Propofol. Neurochem Res

15.	 Shen ZF, Li L, Zhu XM, Liu XH, Klionsky DJ, Lin FC (2023) Cur-
rent opinions on mitophagy in fungi. Autophagy 19(3):747–757

16.	 Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: 
the Yin and Yang of cell death control. Circ Res 111(9):1208–1221

17.	 Granata S, Votrico V, Spadaccino F, Catalano V, Netti GS, Ran-
ieri E, Stallone G, Zaza G (2022) Oxidative stress and Ischemia/
Reperfusion Injury in kidney transplantation: focus on Ferropto-
sis, Mitophagy and New Antioxidants. Antioxid (Basel) 11(4)

18.	 Rademaker G, Boumahd Y, Peiffer R, Anania S, Wissocq T, Lieg-
eois M, Luis G, Sounni NE, Agirman F, Maloujahmoum N et al 
(2022) Myoferlin targeting triggers mitophagy and primes ferrop-
tosis in pancreatic cancer cells. Redox Biol 53:102324

19.	 Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad 
M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE et al 

1 3

  870   Page 14 of 15



Molecular Biology Reports          (2024) 51:870 

42.	 Li YH, Xu F, Thome R, Guo MF, Sun ML, Song GB, Li RL, 
Chai Z, Ciric B, Rostami AM et al (2019) Mdivi-1, a mitochon-
drial fission inhibitor, modulates T helper cells and suppresses the 
development of experimental autoimmune encephalomyelitis. J 
Neuroinflammation 16(1):149

43.	 Nhu NT, Li Q, Liu Y, Xu J, Xiao SY, Lee SD (2021) Effects of 
Mdivi-1 on neural mitochondrial dysfunction and mitochondria-
mediated apoptosis in Ischemia-Reperfusion Injury after Stroke: 
a systematic review of Preclinical studies. Front Mol Neurosci 
14:778569

Publisher’s Note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

37.	 Oliver D, Reddy PH (2019) Dynamics of Dynamin-Related Pro-
tein 1 in Alzheimer’s Disease and Other Neurodegenerative Dis-
eases. Cells 8(9)

38.	 Wu Q, Gao C, Wang H, Zhang X, Li Q, Gu Z, Shi X, Cui Y, Wang 
T, Chen X et al (2018) Mdivi-1 alleviates blood-brain barrier dis-
ruption and cell death in experimental traumatic brain injury by 
mitigating autophagy dysfunction and mitophagy activation. Int J 
Biochem Cell Biol 94:44–55

39.	 Ong SB, Kwek XY, Katwadi K, Hernandez-Resendiz S, Crespo-
Avilan GE, Ismail NI, Lin YH, Yap EP, Lim SY, Ja K et al (2019) 
Targeting mitochondrial fission using Mdivi-1 in a clinically rel-
evant large animal model of Acute myocardial infarction: a pilot 
study. Int J Mol Sci 20(16)

40.	 Rosdah AA, Bond ST, Sivakumaran P, Hoque A, Oakhill JS, Drew 
BG, Delbridge LMD, Lim SY (2017) Mdivi-1 protects human 
W8B2(+) cardiac stem cells from oxidative stress and simulated 
ischemia-reperfusion Injury. Stem Cells Dev 26(24):1771–1780

41.	 Yang M, Linn BS, Zhang Y, Ren J (2019) Mitophagy and mito-
chondrial integrity in cardiac ischemia-reperfusion injury. Bio-
chim Biophys Acta Mol Basis Dis 1865(9):2293–2302

1 3

Page 15 of 15    870 


	﻿Mdivi-1 alleviates ferroptosis induced by hypoxia combined with propofol in HT22 cells by inhibiting excessive mitophagy
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Cell culture
	﻿Cell treatment
	﻿Cell viability assay
	﻿Malondialdehyde (MDA) assay
	﻿Iron content detection
	﻿Intracellular ROS detection
	﻿Mitochondrial membrane potential (ΔΨm) detection
	﻿Western blotting
	﻿Double staining observation of mitochondria and lysosomes
	﻿Mitochondrial morphological analysis
	﻿Statistical analysis

	﻿Results
	﻿HCWP triggers ferroptosis in HT22 cells
	﻿HCWP activates excessive mitophagy in HT22 cells
	﻿Mitochondrial dysfunction and morphological abnormalities occurred in HT22 cells after HCWP treatment
	﻿Mdivi-1 inhibits excessive mitophagy induced by HCWP in HT22 cells
	﻿Mdivi-1 improves mitochondrial dysfunction and morphological abnormalities in HT22 cells treated with HCWP
	﻿Mdivi-1 alleviates ferroptosis in HT22 cells triggered by HCWP

	﻿Discussion
	﻿Conclusion
	﻿References


