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Abstract
Glucagon-like Peptide-1 (GLP-1) receptor agonists (GLP-1RAs) emerged as a primary treatment for type-2 diabetes mel-
litus (T2DM), however, their multifaceted effects on various target organs beyond glycemic control opened a new era of 
treatment. We conducted a comprehensive literature search using databases including Scopus, Google Scholar, PubMed, 
and the Cochrane Library to identify clinical, in-vivo, and in-vitro studies focusing on the diverse effects of GLP-1 receptor 
agonists. Eligible studies were selected based on their relevance to the varied roles of GLP-1RAs in T2DM management 
and their impact on other physiological functions. Numerous studies have reported the efficacy of GLP-1RAs in improving 
outcomes in T2DM, with demonstrated benefits including glucose-dependent insulinotropic actions, modulation of insulin 
signaling pathways, and reductions in glycemic excursions. Additionally, GLP-1 receptors are expressed in various tissues 
and organs, suggesting their widespread physiological functions beyond glycemic control potentially include neuroprotective, 
anti-inflammatory, cardioprotective, and metabolic benefits. However, further scientific studies are still underway to maximize 
the benefits of GLP-1RAs and to discover additional roles in improving health benefits. This article sought to review not 
only the actions of GLP1RAs in the treatment of T2DM but also explore its effects on potential targets in other disorders.

Keywords GLP-1 receptor agonists · Diabetes · Stroke · Neuroprotective · Cardioprotective · Hepatoprotective · 
Renoprotective
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Introduction

Type-2 diabetes mellitus (T2DM) is primarily recognized 
by the inability of the human body to control the quantity 
of glucose (sugar) present in the blood with the help of 
insulin hormone [1]. Shockingly, the incidences of diabetes 
are expected to rise from 415 million (2015) to 640 million 
(2040) worldwide [2]. The incretin hormonal axis is cre-
ated by the combination of gastrointestinal and endocrine 
pathways, and any abnormalities in this axis can potentially 
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initiate the onset of T2DM [3]. A majority of the incretin 
function is constituted by GLP-1 and gastro-inhibitory 
intestinal peptide (GIP) [3]. GLP-1 exerts its mechanism of 
action through GLP-1 receptor (GLP-1R), a G-protein cou-
pled receptor (GPCR), generally found extensively in organs 
including the brain, lung, pancreatic islets, lung, heart, vas-
cular smooth cells, pancreas, macrophages, endothelial cells, 
central nervous system, kidney, peripheral chemoreceptors 
such as carotid body, and GI tract [4–6].

Glucagon-like peptide-1 (GLP-1) is a peptide hormone, 
typically composed of 30 amino acids, released from lower 
intestinal enteroendocrine L-cells and specific neurons 
located within the solitary tract in the brainstem, primar-
ily in response to food intake [7]. The active structure of 
the GLP-1 protein includes two α-helices spanning amino 
acid positions 13–20 and 24–35, separated by a linker region 
[3, 8, 9]. Naturally occurring GLP-1 is rapidly cleaved at 
position 2 (alanine) by dipeptidyl peptidase-4 (DPP-4) 
along with neutral endopeptidase 24.11 (NEP 24.11) and 
renal clearance. Hence, this degradation of GLP-1 leads to 
a short half-life of about 2 min, resulting in only a small 
fraction (10–15%) of intact GLP-1 reaching circulation, 
resulting in fasting plasma levels typically within the range 
of 0–15 pmol/l [7, 9]. To preserve the concentrations of 
GLP-1, DPP-4 inhibitors are periodically used in patients 
with Type-2 diabetes mellitus (T2DM) [10]. To address this 
limitation and maximize the utilization, GLP-1 receptor ago-
nists (GLP-1RAs) and DPP-4 inhibitors were developed to 
enhance GLP-1 efficacy.

In contrast to conventional treatments like insulin and 
sulfonylureas, GLP-1-based therapies have been linked to 
weight loss and a reduced risk of hypoglycemia, making 
them particularly advantageous for diabetic patients [11]. 
Currently, the efficacy of GLP-1RAs is most commonly 

associated with their pivotal role in managing T2DM [12]. 
The ability of GLP-1RAs to enhance insulin secretion, sup-
press glucagon release, slow gastric emptying, and promote 
satiety fundamentally transformed the landscape of diabetes 
care [13] and is currently, considered a potential ally in the 
ongoing battle against the global epidemic of diabetes [14]. 
From the clinical point of view, the narrative of GLP-1RAs 
has taken an unexpected twist; GLP-1RAs are now captivat-
ing the attention of clinicians, researchers, and patients by 
revealing an astonishing array of their multifaceted roles 
extending far beyond diabetes [11]. This review embarks on 
an exciting and transformative journey of GLP-1RAs and 
their gradual increase in diverse applications in a spectrum 
of treatments. We delve into the expanding body of knowl-
edge that uncovers the potential of these agents in metabolic 
health, cardiovascular wellness, hepatic and renal functions, 
and even the enigmatic scope of neuroprotection. Hence, we 
aim to explore the latest research findings, clinical insights, 
and emerging trends that underscore the multifaceted roles 
of GLP-1RAs in reshaping the future of medicine, offering 
new hope and possibilities to individuals facing a spectrum 
of health challenges. GLP-1RA can exhibit various roles 
beyond just treating T2DM and some of these functions are 
elucidated in Fig. 1 and discussed in this review.

Current clinical guidelines for diabetes 
management

The current treatment guidelines are based on a large 
number of evidence-based information and expert opin-
ions on achieving end glucose level goals [Normal range: 
fasting plasma glucose < 5.5 mmol/l; Glycosylated hemo-
globin (HbA1c: < 5.6%); Prediabetic range: fasting plasma 

Fig. 1  A diagrammatic 
representation of the diverse 
functions of GLP-1RAs across 
multiple organs. GLP-1RAs 
characterize the improvement 
of several conditions, such as 
fibrosis, neuroinflammation, 
non-alcoholic steatohepatitis, 
and weight loss via independent 
mechanisms in different organs
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glucose—5.5 to 7 mmol/l (HbA1c: 5.7 to 6.4%); Diabetic 
range: fasting plasma glucose > 7 mmol/l (HbA1c: > 6.5%)]. 
To minimize complications, the treatment goal is to achieve 
glycated hemoglobin (HbA1c) of 6.5% or less, recognizing 
the need to reduce the chances of hypoglycemia. Current 
types of anti-diabetic therapies include monotherapy, dual 
therapy, and triple therapy, which incorporates eight major 
classes of medications (biguanides, DPP-4 inhibitors, thia-
zolidinediones, sulfonylureas, incretin mimetics, bile acid 
sequestrants, α-glucosidase inhibitors, meglitinides), and 
insulin-based therapy [15]. Management of hyperglycemia in 
T2DM recommends a patient-centered approach for select-
ing appropriate pharmacologic treatment recommended by 
clinicians. Traditionally, metformin is a safe, effective, and 
inexpensive start at diagnosis and is considered the first-line 
treatment. However, if hyperglycemia is severe or any cata-
bolic features (weight loss, hypertriglyceridemia, ketosis) 
are present, insulin can be used as part of any combination 
regimen. When blood glucose levels are above 300 mg/dL 
or HbA1C > 10% or any of the above two characteristics are 
present, then insulin therapy should be generally initiated 
[16]. Similarly, sulfonylurea, considered second-line agents, 
reduces HbA1c by 1–2%. Non-sulfonyl urea secretagogues 
(repaglinide and nateglinide) can be used in patients with 
renal insufficiency. The other class, α-glucosidase inhibi-
tors, reduces postprandial blood glucose (PPBG); however, 
its long-term compliance and higher cost are significant 
issues. Thiazolidinediones (rosiglitazone and pioglitazone) 
reduce insulin resistance and HbA1c by 0.5–1.4% when 
used as monotherapy. DPP-4 inhibitors are the newer class 
of medicines in which sitagliptin is the only Food and Drugs 
Administration (FDA)-approved drug showing a reduction in 
HbA1c by 0.5–0.8%. Patients treated with sodium-glucose 
cotransporter-2 (SGLT2) inhibitors (empagliflozin, canagli-
flozin, dapagliflozin) or GLP-1RAs (liraglutide, semaglu-
tide, dulaglutide) have shown a reduction in cardiovascular 
events along with improvements in glucose levels [17, 18]. 
As T2DM is a progressive disease, monotherapy with met-
formin is not sufficient in many patients, and other drugs are 
optimized stepwise to achieve the ideal HbA1c target [19].

How GLP‑1RAs reduce high blood sugar?

GLP-1RAs are available as injectables and in oral form to 
achieve glycemic targets in diabetic patients [20]. GLP-
1RAs are designed to mimic the actions of the naturally 
occurring GLP-1 hormone, which plays a crucial role in 
blood glucose homeostasis and satiety [3]. Upon GLP-
1RA administration, they stimulate the GLP-1 receptor on 
pancreatic beta cells, prompting the secretion of insulin in 
a glucose-dependent manner without risking hypoglyce-
mia [21–25]. Furthermore, GLP-1RAs slow down gastric 

emptying and suppress glucagon secretion, which eventu-
ally controls post-meal glucose spikes [26–29]. Beyond their 
immediate impact on glycemic control, these analogs have 
demonstrated benefits for weight management due to their 
appetite-suppressing effects and promotion of satiety via 
modifying eating behavior, which leads to reducing energy 
intake by approximately 12% interacting with the peripheral 
nervous system [13]. With these dual actions on both glu-
cose regulation and weight management, GLP-1RAs can be 
a versatile and attractive option for individuals with T2DM, 
particularly those who struggle with obesity [30]. These ben-
efits of GLP-1 analogs set the stage for a deeper exploration 
of their clinical applications and the evolving landscape of 
diabetes care [3].

GLP-1 directly suppresses glucagon secretion in the pan-
creas and indirectly enhances meal-induced insulin secre-
tion in synergy with the glycemic stimulus, which modulates 
glucose levels [7]. The presence of histidine at position 7 
in the GLP-1 amino acid structure is essential for the hor-
mone's ability to stimulate insulin production and inhibit 
the secretion of glucagon [3, 11]. As shown in Fig. 2, the 
insulinotropic effect mainly comes from increased intracel-
lular cAMP levels and then followed by serine/threonine 
kinase protein kinase A (PKA), cyclic adenosine monophos-
phate (cAMP)-regulated guanine nucleotide exchange factor 
2 (cAMP-GEF2) also called EPAC2 and activated protein 
kinase A. PKA leads to the closure of Adenosine triphos-
phate (ATP)-sensitive  K+ channels, causing membrane 
depolarization, and activation of L-type voltage-dependent 
calcium channel (VDCC) leads to an increase in intracellular 
 Ca2+ causing insulin release [23]. EPAC2 activates Rap1 
leading to calcium-induced calcium release, all of which 
increases  Ca2+ thereby inducing mitochondrial ATP syn-
thesis and exocytotic insulin release from insulin granules 
[31, 32]. The insulinotropic effect of GLP-1, mediated by 
increased intracellular cAMP levels and subsequent activa-
tion of PKA and EPAC2 pathways, is depicted in Fig. 2. 
multiple intracellular pathways, including protein kinase B 
and extracellular signal-related kinase (Erk), and epidermal 
growth factor receptor (EGFR) transactivation through the 
c-src kinase are responsible for the proliferative effects of 
GLP-1 [33, 34].

GLP‑1RAs—An emerging superclass of drugs 
for diabetes management

Exenatide was the first GLP-1RA approved for clinical use 
in 2005 by the USFDA and in 2006 by the European Union 
(EU) for the treatment of T2DM. It is a synthetic form of 
exendin-4, a naturally occurring peptide in Gila monster 
[35]. A triple-blind, placebo-controlled study, AMIGO, 
showed that exenatide maintained the long-term HbA1c 
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below ≤ 7 and optimum body weight reduction [36]. Lixi-
senatide showed a greater reduction in body weight and 
2-h post-prandial glucose when compared with sitaglip-
tin. However, more frequent gastrointestinal (GI) side 
effects, such as nausea, were seen with lixisenatide than 
with sitagliptin [37]. Liraglutide, another GLP-1RA, is 
an acylated analog of GLP-1, with a plasma half-life of 
10–18 h, [55] showed HbA1c reduction of up to 1.6% and 
weight loss of up to 2.5 kg over 30 weeks [38]. Liraglu-
tide has been approved for reducing T2DM and has shown 
promising evidence in the reduction of risk of major car-
diovascular (CV) events, obesity, liver disease, and other 
metabolic dysfunctions [39, 40]. American Diabetes 
Association (ADA) recommended liraglutide as a second-
line drug after metformin for patients suffering from ath-
erosclerotic cardiovascular disease [41]. Semaglutide is 
structurally similar to liraglutide but has less susceptibil-
ity to DPP-4 degradation. These structural modifications 
improved its binding with albumin and extended its half-
life up to 7 days, allowing for once-weekly administration 

given subcutaneously [42]. SUSTAIN-1, a 30-week clini-
cal study comparing semaglutide with placebo, showed a 
significant reduction in HbA1c and 0.2% weight reduc-
tion than the placebo group [43]. Albiglutide, a long-act-
ing GLP-1 mimetic, is currently in phase 3 trials and is 
expected to provide a more patient-friendly dosing profile 
compared to available GLP-1 analogs [44]. Albiglutide 
has the characteristic to fuse with human albumin with 
DPP-4 resistant properties which increases its half-life up 
to 5–8 days and makes it suitable for once-weekly dos-
ing as well [45]. Dulaglutide, a long-acting and large-size 
GLP-1RA, has a slower renal clearance which results from 
its prolonged half-life for 5–6 days allowing its once-a-
week administration [46, 47]. The AWARD trial, using 
dulaglutide, showed an HbA1c reduction of 0.7% to 1.6% 
from its baseline. In the AWARD-1 study, dulaglutide 
was compared with twice-daily exenatide over 52 weeks 
which showed superior HbA1c reductions at 26 weeks 
with no significant difference in weight loss [48]. Overall, 
these promising evidence and characteristics suggest that 

Fig. 2  A figure depicting the intracellular mechanism of GLP-1RAs 
on insulin secretion Insulin release takes place after several pro-
cesses: (1) Closure of  KATP channels; (2) Opening of L-type VDC 
channels; (3) Inhibition of voltage-gated K+ channels; (4) PKA- and 
EAPC2-dependent mechanisms increases the intracellular  Ca2+ con-
centrations; (5)  Ca2+-induced  Ca2+ mobilization stimulates ATP syn-
thesis intracellularly which further enhances  KATP  channel closure; 

(6) accumulation of insulin-containing granules near the plasma 
membrane, ultimate insulin secretion into the circulation. ATP adeno-
sine triphosphate, cAMP cyclic adenosine monophosphate, EPAC2 
exchange protein activated by cAMP, ER endoplasmic reticulum, Kv 
voltage-gated K+ channels, PKA protein kinase A, RYR  ryanodine 
receptors
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GLP-1RAs have the efficiency to play a major role in dia-
betic management. Next, we explore the emerging role of 
GLP-1RAs and their potential benefits in other disorders.

GLP‑1RAs in obesity management

In the ever-evolving landscape of obesity management, 
GLP-1 analogs have emerged as a revolutionary therapeu-
tic option. While initially developed to address the com-
plexities of diabetes care, these drugs have shown remark-
able potential in the battle against obesity [49]. Unlike 
traditional weight loss medications that often come with 
a range of side effects and limited efficacy, GLP-1RAs 
offer a multifaceted approach to weight management [50]. 
GLP-1RAs have been documented to induce weight loss 
in a dose-dependent and progressive manner. An average 
weight reduction of 5.8 pounds (lbs.) is seen with long-
acting exenatide [3]. The Liraglutide Effect and Action in 
Diabetes (LEAD) program observed weight reductions in 
more than 4000 participants, suggesting its potency in obe-
sity management [51, 52]. Along with weight loss, GLP-
1RAs have been demonstrated to reduce body mass index 
(BMI) and waist circumference in overweight or obese 
people with or without diabetes [53, 54]. Other GLP-1RA 
potentially works similarly in weight reduction; however, 
more systematic clinical studies need to be conducted to 
determine their extended role in weight reduction [55]. 
A novel dual GIP and GLP-1 receptor agonist Tirzepa-
tide (15 mg) demonstrated dose-dependent reductions in 
body weight, with a significant difference of − 10.7 kg 
(SE 0.4; -13.9% reduction) outperforming dulaglutide in 
glycemic control and body weight reduction in Japanese 
patients with T2DM [56]. Conclusively, the majority of 
patients were able to get higher benefits with less adverse 
responses caused by GLP-1RAs, making them the pre-
ferred medication for the treatment of obesity.

Appetite regulation and weight loss effects 
in obesity management

The central nervous system, which regulates satiety, 
receives information from the digestive tract via affer-
ent impulses to control eating behavior [57]. GLP-1 has 
been shown to reduce gut motility and stomach empty-
ing, through which its association has been proposed 
in appetite regulation. Intravenous infusion of GLP-1 
in male Sprague–Dawley rats effectively inhibits food 
intake in a dose-dependent manner. Neuroimaging stud-
ies demonstrated that peripherally injected GLP-1 alters 
brain activity in regions implicated in the control of food. 

Several studies in animals have revealed that administra-
tion of GLP-1RAs (Dulaglutide, Exenatide, Liraglutide, 
Exendin-4) resulted in the suppression of food intake 
mediated by direct GLP-1R activation in the brain and 
vagal afferents through several signaling pathways [58]. 
For instance, they stimulate adipocyte development by 
activating the Wnt signaling pathway and rely on SIRT1 
to mediate lipolysis and fatty acid oxidation in adipose 
tissues [14]. GLP-1RAs encourage the transformation of 
visceral white adipose tissue (WAT) into brown adipose 
tissue (BAT), enhancing the thermogenesis of BAT and 
hence increasing energy expenditure under the control 
of AMP-activated protein kinase (AMPK) in the ventral 
medial hypothalamus [14]. These mechanisms are to be 
investigated further to accurately determine the precise 
role of GLP-1RAs and food intake in weight reduction.

Clinical trials and real‑world evidence

Three notable clinical trials shed light on the interplay 
between pharmaceutical interventions and patient well-
being. The first study (Phase-4; NCT03361098), a rand-
omized and placebo-controlled trial on 65 participants, 
was conducted to investigate the effect of a dual approach 
involving exenatide and dapagliflozin (SGLT2 inhibitor) on 
appetite regulation. This study found that responsiveness 
to palatable food consumption underscores the synergistic 
effects of combining these agents, offering great insight 
into novel approaches for managing T2DM [59]. The com-
bination therapy of GLP-1RAs with SGLT-2 inhibitors has 
progressively shown improvement in patients suffering 
from T2DM. Another trial (NCT00375492), a randomized, 
placebo-controlled trial involving 196 participants, focused 
on weight loss in diabetic patients. By administering exena-
tide alongside lifestyle modifications, this study examined 
the improvement in weight management in individuals with 
T2DM, measuring the impact on calorie intake and par-
ticipant weight [60]. Lastly, the third trial (NCT05136287) 
presents a multicentric, randomized clinical trial assessing 
the weight loss outcomes with 140 participants investigating 
the efficacy of various GLP-1RAs (dulaglutide, exenatide, 
liraglutide, and lixisenatide) found significant reduction in 
body weight with minimizing adverse events [61]. Addition-
ally, the combination therapy of liraglutide with sulfonylu-
rea analog (glimepiride) was found to be effective in weight 
reduction compared to that of a placebo when given over 
26 weeks [62]. If GLP-1RAs monotherapy or combination 
therapy with other anti-diabetic agents fails to provide sat-
isfactory glycemic control and weight modulation, the addi-
tion of basal insulin to GLP-1RAs had been recommended 
and evaluated in late randomized control trials (RCTs). It 
was observed that the insulin titration used in conjunction 
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with the GLP-1RAs had a beneficial impact on glycemic and 
appetite control and weight reduction [63, 64].

Table 1 shows the result of several clinical investigations 
performed to evaluate the role of GLP-1RAs to modulate 
weight and appetite. Such insights provide reasonable evi-
dence to healthcare practitioners with valuable options to 
tailor treatments for individuals living with T2DM, ulti-
mately improving their quality of life.

Evolution of GLP‑1 analogs beyond diabetes 
and obesity

GLP-1 analogs, such as exenatide and liraglutide, were pri-
marily designed to aid in glycemic control with the vision 
of a growing global diabetes epidemic. Patients taking these 
medications started experiencing unexpected weight loss, 
prompting further investigation [11, 70]. Additionally, stud-
ies began to highlight their cardiovascular benefits, particu-
larly in reducing the risk of major adverse cardiovascular 
events (MACE). These serendipitous discoveries led to 
investigations into the therapeutic potential of GLP-1RAs 
in conditions beyond diabetes [71]. Subsequent regulatory 
approvals and label expansions reflected the shift in the med-
ical paradigm, recognizing these agents as versatile tools 
in the arsenal of modern medicine. This historical context 
justifies the need for the review and highlights the urgency 
of synthesizing the latest research and clinical insights into 
the evolving landscape of GLP-1RA applications beyond 
diabetes.

Cardiovascular benefits of GLP‑1RAs

The cardiovascular benefits associated with GLP-1RAs 
have emerged as a groundbreaking revelation in recent 
years. Beyond their primary function of glycemic control, 
GLP-1RAs have demonstrated a remarkable capacity to miti-
gate cardiovascular risk factors and reduce the incidence of 
MACE in individuals with T2DM [64]. In this discussion, 
we will delve into the multifaceted cardiovascular advan-
tages offered by GLP-1RAs, exploring the mechanisms 
behind these benefits, the clinical evidence supporting their 
use, and the broader implications for the management of 
T2DM and cardiovascular disease.

Reduction of major adverse cardiovascular events 
(MACE)

Patients suffering from T2DM are at an increased suscep-
tibility to developing cardiovascular complications that can 
also prove to be fatal. Hence, the prevention of these com-
plications should be considered while choosing a course of 

treatment [72]. Most GLP-1RAs have shown benefits in low-
ering cardiovascular disease (CVD) complications such as 
dyslipidemia and high blood pressure (BP) [73]. GLP-1RAs 
were found to cause a decrease in the systolic blood pres-
sure (SBP) by 2 to 6 mmHg and eventually a considerable 
reduction in MACE [74, 75]. Liraglutide and Semaglutide 
were observed to benefit CV outcomes in clinical studies; 
however, the precise mechanisms behind this benefit are yet 
to be discovered [76–79]. Clinical trials such as LEADER, 
SUSTAIN-6, and EXSCEL demonstrated that GLP-1RAs 
reduced cardiovascular events in CV patients with acute 
coronary syndrome and T2DM [80]. In the LEADER trial, 
liraglutide exhibited a 13% reduction in MACE with a haz-
ard ratio (HR) of 0.87 (95% CI: 0.78; 0.97) compared to 
placebo, involving 8,121 patients with T2DM. Similarly, 
in the SUSTAIN-6 trial, semaglutide demonstrated a 26% 
reduction in MACE with an HR of 0.74 (95% CI: 0.58; 0.95) 
among 3,297 patients with T2DM, showcasing significant 
cardiovascular risk reduction [78, 81] Other trial using Lixi-
senatide, Liraglutide, and Semaglutide lowers the MACE 
symptoms and promotes positive CV outcomes in patients 
with T2DM [82].

Impact on atherosclerosis and vascular health

The majority of the population of patients suffering from 
diabetes may develop myocardial ischemia and heart fail-
ure in the future [74]. The SOUL trial revealed improve-
ments using GLP-1Ras in heart failure outcomes, including 
reduced hospitalization rates and enhanced cardiac function 
[83]. In clinical practice, the implications of these findings 
are profound and encouraging. GLP-1RAs are now consid-
ered a critical component in individuals who have T2DM 
with established cardiovascular disease or those at high risk 
of cardiovascular events [11, 84]. Findings from animal 
studies revealed that GLP-1RAs had been shown to reduce 
atherosclerotic plaque development by exerting their anti-
inflammatory effects in the endothelial cells and vascular 
smooth muscle cells and causing a more stabilized and less 
vulnerable plaque [85]. Based on the data received from 
clinical trials to evaluate the impact of GLP-1RAs in CV 
events, a consistent decrease in atherothrombotic events 
was observed which suggests the beneficial outcomes using 
GLP-1RAs in patients suffering from T2DM and athero-
sclerosis [75, 85].

Potential mechanisms of GLP‑1RAs to reduce 
cardiovascular risks

GLP-1RAs have emerged as a pivotal component in man-
aging T2DM due to their multifaceted implications for 
cardiovascular risk reduction via key mechanisms con-
tributing to the regulation of BP (Fig. 3) [11]. GLP-1RAs 
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have been associated with a consistent reduction in SBP 
and diastolic blood pressure (DBP), primarily by influ-
encing the central nervous system possibly by reducing 
sympathetic nervous system activity [5, 6, 86]. These BP-
lowering effects alleviate the strain on the heart and fur-
ther reduce the risk of adverse cardiovascular events [86]. 
Furthermore, GLP-1RAs contribute to favorable changes 
in lipid profiles, characterized by lowered triglyceride 
levels and increased high-density lipoprotein cholesterol. 
These alterations promote a more cardioprotective lipid 
profile, reducing the risk of atherosclerosis and related 
cardiovascular complications [87, 88]. As discussed ear-
lier, weight loss, often observed as a secondary effect of 
GLP-1RAs, plays a pivotal role in mitigating associated 
cardiovascular risk. Weight reduction improves insulin 
sensitivity, reduces inflammation, and contributes to over-
all cardiovascular well-being [89]. In essence, the cardio-
vascular benefits of GLP-1RAs have ushered in a new era 
of diabetes management, focusing on glucose regulation 
and the holistic health of individuals with associated dis-
orders [90].

Pre‑clinical and clinical findings

Here, we discuss the pre-clinical evidence (Table 2) that 
serves as the foundational knowledge upon which clinical 
trials are built, providing a strong rationale for testing these 
compounds in humans [86].

Table 3 depicts clinical findings that support the imple-
mentation of GLP-1RAs in cardiovascular disorders.

GLP‑1RAs in non‑alcoholic fatty liver disease 
(NAFLD)

In recent years, GLP-1RA has emerged as a promising 
avenue of research and treatment in the context of NAFLD 
[102]. NAFLD encompasses a spectrum of liver conditions, 
ranging from simple steatosis to non-alcoholic steatohepa-
titis (NASH), characterized by inflammation and liver cell 
damage, which can progress to fibrosis, cirrhosis, and even 
hepatocellular carcinoma [103]. With the global prevalence 
of NAFLD on the rise, investigations into the potential 
therapeutic role of GLP-1RAs have gained momentum for 
their potential to mitigate liver fat accumulation, inflamma-
tion, and fibrosis. We assess the intricate interplay between 
GLP-1RAs and NAFLD by exploring the mechanisms, 

Fig. 3  Schematic illustration 
of the effects of GLP-1RAs 
on satiety, cardiovascular 
outcomes, and non-alcoholic 
fatty liver disease (NAFLD). 
GLP-1RAs enhance satiety 
by reducing body weight and 
caloric intake along with caus-
ing improvements in cardio-
vascular parameters including 
blood pressure, heart rate, 
and myocardial contractility. 
These effects thereby facilitate 
improved blood flow to the 
heart and mitigate the risk of 
atherosclerosis, stroke, and 
major adverse cardiovascular 
events (MACE). Furthermore, 
they yield favorable outcomes in 
non-alcoholic fatty liver disease 
(NAFLD) by optimizing liver 
fat utilization and diminishing 
inflammatory markers within 
the liver
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pre-clinical and clinical evidence, and the evolving treat-
ment landscape for complex liver disorders.

Effects on liver fat accumulation

Currently, lifestyle modifications, including weight loss, 
remain the existing alternatives to cure NAFLD; however, 
these alternatives are difficult to maintain in patients who 
cannot adhere to them [104]. The prevalence of NAFLD 
significantly increased in patients pre-existing with T2DM, 
with up to 65% in patients suffering from Non-alcoholic 
steatohepatitis (NASH) [105]. It has been observed that 
liraglutide also improves the hepatic enzyme lipase activ-
ity, thereby modulating liver fat to improve the outcome of 
liver fatty disease [106]. Recent research has shown that 
GLP-1RAs influence liver fat processing either directly 
(impacting hepatocyte fat metabolism) or indirectly (incretin 
action) due to the ultimate effect of reversing insulin resist-
ance [107, 108]. Another study utilizing exendin-4 revealed 
that the liver fat content was decreased when this drug was 
administered to NAFLD-induced mice, along with improved 
insulin signaling [109]. A recent meta-analysis of 25 tri-
als concluded that GLP-1RAs caused at least 2.8 kg weight 
reduction in people with or without diabetes, contributing 
to reducing NAFLD symptoms. Therefore, GLP-1RAs may 
play a crucial role in regulating liver fat accumulation and, 
contribute to the treatment of NAFLD.

Improvement in liver function

GLP-1RAs may lead to improvements in liver function for 
a variety of reasons. They decrease the de novo lipogenesis, 
which further reduces the lipolysis-induced free fatty acid 
formation and toxic substances due to triglycerides (Fig. 3) 
[110]. Several animal studies using GLP-1RAs showed 
the repair of the dysfunctional adipose tissue, regulate the 
destructive effects of hepatic fatty acids by maintaining their 
oxidative processes via controlling the effects of acetyl-CoA 
carboxylase and fatty acid synthase, and ultimately, alleviat-
ing the hepatic toxicity [111, 112]. GLP-1RAs also modulate 
the liver inflammation in NAFLD by decreasing the levels of 
inflammatory mediators, including c-Jun-N-terminal kinase 
(JNK), Interleukin-1 (IL-1), Intracellular cell adhesion mol-
ecule (ICAM-1) in the liver and preventing processes such 
as liver fibrosis, necrosis [91, 113]. However, clinical studies 
into this context are currently lacking, and further insights 
may help to adequately prove the role of GLP-1RAs in liver 
function restoration [104]. Gu and colleagues carried out a 
meta-analysis combining the results of nine RCTs compar-
ing the effects of GLP-1RAs in contrast to other antidiabetic 
drugs (pioglitazone) considered as placebo in the improve-
ment of liver histology from steatosis, inflammation, fibro-
sis, or necrosis [114]. Further clinical investigation may be 

required to understand more benefits to support the clinical 
significance of GLP-1RAs in liver disease with or without 
T2DM [115, 116].

Reno‑protective effects of GLP‑1RAs

GLP-1RAs have also unveiled a remarkable facet of their 
pharmacological prowess in renoprotection [3]. Chronic 
kidney disease (CKD) is a prevalent and debilitating com-
plication of T2DM, with a substantial impact on patient 
morbidity and mortality [117]. In this discussion, we delve 
into the link between GLP-1RAs and renal protection with 
evolving underlying mechanisms in published articles and 
the promising implications for individuals at risk of diabetic 
nephropathy and other renal disorders.

Impact on kidney function using GLP‑1RAs

Diabetic nephropathy is most commonly associated with 
patients with T2DM whose kidney functions are negatively 
affected [118]. In models of diabetic nephropathy, exendin-4 
treatment prevented glomerular macrophage infiltration in 
glomeruli, significantly decreased oxidative stress, inflam-
mation in tubular cells, and gene expression of cluster of 
differentiation 14 (CD14), ICAM-1, and transforming 
growth factor-1 (TGF-1) in the renal cortex in streptozotocin 
(STZ)-induced diabetic rats [119]. Therefore, by lowering 
renal leukocyte infiltration and proinflammatory mediators, 
GLP-1RAs may benefit in improving nephropathy [120]. 
GLP-1R is expressed in the proximal tubules [121], and this 
expression possibly leads to the inhibition of renal inflam-
mation and oxidative stress using GLP-1 therapy on diabetic 
nephropathy and acute kidney damage [122]. The direct and 
indirect effects of GLP-1RAs are illustrated in Fig. 44.

Studies suggest that the reno-protective effects of GLP-1 
may be mediated by two signaling pathways: (1) Increasing 
natriuresis and diuresis in a dose-dependent manner by func-
tioning on the gut-renal (natriuretic) axis, and (2) Reduc-
ing the activity of the Na+ /H+ exchanger isoform NHE3 
to reduce proximal sodium reabsorption, and possibly by 
boosting glomerular filtration rate. A study also showed that 
glomerular mesangial proliferation, a characteristic feature 
of diabetic patients, was remarkably reduced by GLP-1RAs 
[123]. Recombinant human GLP-1 reduces oxidative stress 
in the glomeruli and glomerular microvascular endothelial 
cells in diabetic rats by inhibiting protein kinase C and acti-
vating PKA [124]. Another study reported that liraglutide 
significantly decreased albuminuria and oxidative stress in 
Type-1 DM rats produced by STZ [125].
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Clinical studies of GLP‑1RAs impacting renal 
outcomes

A journey through the clinical investigations using GLP-
1RAs on renal outcomes has been categorized in Yin W 
et al. studied recombinant human GLP-1RAs' effect on kid-
ney function and revealed that these agents improved renal 
tubules and tubulointerstitial lesions in diabetic nephropathy 
rats [127]. GLP-1 also inhibits the activity of multiple pro-
teins that have been associated with diabetic nephropathy, 
notably collagen I, alpha-smooth muscle actin (a-SMA), 
fibronectin (FN), and tubulointerstitial TNF-α [127, 128]. 
It also effectively inhibits the level of C-peptide, which is 
majorly responsible for the inflammation of tubulointersti-
tial fibrosis [129, 130]. In patients with diabetic kidney dis-
ease, GLP-1RAs, namely liraglutide, and lixisenatide, were 
observed to prolong the decline of renal function towards 
end-stage renal disease along with a reduction in albumi-
nuria [40, 131]. This response was due to increased cAMP 
levels and PKA activity while decreasing NADPH oxidase 
activity, interfering with the expression of advanced gly-
cation end product (AGE) receptors, and suppressing the 
NF-κβ mediated signaling pathway. This mechanism pre-
vents oxidative damage and the production of reactive oxy-
gen species (ROS). This mechanistic view indicates that 
GLP-1RAs play a sensible role in renal protection.

Table 4 In the majority of trials, GLP-1 analogs dem-
onstrated enhanced effectiveness in improving serum cre-
atinine (Sr.Cr) levels and glomerular filtration rate (GFR) 
in patients with T2DM who were at risk of developing 
CKD or already diagnosed with CKD. Yin W et al. studied 
recombinant human GLP-1RAs' effect on kidney function 
and revealed that these agents improved renal tubules and 
tubulointerstitial lesions in diabetic nephropathy rats [127]. 
GLP-1 also inhibits the activity of multiple proteins that 
have been associated with diabetic nephropathy, notably 
collagen I, alpha-smooth muscle actin (a-SMA), fibronec-
tin (FN), and tubulointerstitial TNF-α [127, 128]. It also 
effectively inhibits the level of C-peptide, which is majorly 
responsible for the inflammation of tubulointerstitial fibrosis 
[129, 130]. In patients with diabetic kidney disease, GLP-
1RAs, namely liraglutide, and lixisenatide, were observed to 
prolong the decline of renal function towards end-stage renal 
disease along with a reduction in albuminuria [40, 131]. 
This response was due to increased cAMP levels and PKA 
activity while decreasing NADPH oxidase activity, interfer-
ing with the expression of advanced glycation end product 
(AGE) receptors, and suppressing the NF-κβ mediated sign-
aling pathway. This mechanism prevents oxidative damage 
and the production of reactive oxygen species (ROS). This 
mechanistic view indicates that GLP-1RAs play a sensible 
role in renal protection.

Fig. 4  A figure displaying the mechanisms through which GLP-1RAs 
can cause renoprotection. Stimulating GLP-1 receptors by GLP-1RAs 
potentially be directly or indirectly involved in the restoration of kid-
ney functions leading to reno-protective effects. The direct effects 

include maintenance or reduction of oxidative stress, inflammation, 
natriuresis, and glomerular hypertension, whereas the indirect effects 
include regulation of hypertension, dyslipidemia, and other CV risk 
factors [126]



 Molecular Biology Reports (2024) 51:835835 Page 14 of 23

Exploring the neuroprotective potential 
of GLP‑1RAs

GLP-1RAs have emerged as a beacon of hope, offering a 
potential advantage for neuroprotection in neurodegenerative 
diseases. Neurodegenerative disorders, such as Alzheimer’s 
disease (AD), and Parkinson’s disease (PD) represent some 
of the most challenging and devastating health conditions in 
the modern era [138, 139]. As the global population ages, 
the burden of these diseases continues to grow, underscoring 
the urgent need for innovative therapies. GLP-1RAs have 
expanded their therapeutic role from T2DM and obesity to 
preserving and restoring neuronal health [11].

Pre‑clinical and clinical findings 
in neurodegenerative disorders

GLP-1R is known to be expressed in the brain, primarily 
affecting the brain function regarding satiety and appetite 
via the autonomic nervous system [140]. GLP-1 plays an 
important role in a variety of neural functions, including 
hippocampus circuit activity, neurite outgrowth stimulation, 
cell survival enhancement, and up-regulation of enzyme 
and neurotransmitter production (Fig. 5) [7, 141]. GLP-1R 
expressions have been identified on neurons, specifically 
pyramidal neurons in the hippocampus and neocortex, where 
they are found on dendrites and cell bodies. This indicates 
that these receptors are crucial for the movement of synaptic 
signals among neurons [142, 143]. Novel GLP-1RAs have 
a significantly greater biological half-life (Val8GLP-1, lira-
glutide, exendin-4) and have been demonstrated to impact 
memory formation and synaptic plasticity in the brain signif-
icantly. Also, along with such effects, GLP-1RAs can cross 
the blood–brain barrier, imparting CNS effects unlike most 
neuroprotective growth factors [138, 144, 145]. Addition-
ally, mice that overexpressed GLP-1R in the hippocampus 
displayed enhanced learning and increased neurite develop-
ment [146]. Recent findings show that co-activation of GIP 
and GLP-1 receptors is neuroprotective in a model of PD 
and enhances cognitive performance in a rat model of AD 
[147]. GLP-1R has been found in astrocytes and microglia, 
suggesting that the glia may be crucial in the inflammatory 
reactions of the central nervous system [148]. The patho-
genesis of both the 1-methyl-4-phenyl-1,2,3,6-tetrahydropy-
idine (MPTP)-induced PD model and human PD is strongly 
influenced by microglial activation [149, 150]. In this study, 
exendin-4 (50mcg/kg) showed significant effectiveness in 
mitigating the activation of microglial cells induced by 
MPTP. Moreover, it effectively curbed the production of 
inflammatory cytokines such as TNF-α and IL-1 triggered 
by MPTP. A study was conducted with results that showed 
that the usage of GLP-1RA for more than 3–6 months helped 

individuals with PD and AD with their motor and cognitive 
symptoms, respectively. GLP-1 injections daily for eight 
weeks showed a substantial improvement in the recogni-
tion index in mice measuring with an object recognition 
test, indicating improved learning and memory, while mice 
feeding on a high-fat diet led to a decline in cognitive per-
formance [151]. These findings suggest that the inhibitory 
impact of exendin-4 on microglial activation holds prom-
ise as a therapeutic approach for the management of PD. In 
summary, GLP-1RAs exhibit protection in synaptogenesis, 
neurogenesis, cell repair, and reduced inflammation in the 
brain [152].

Therapeutic potential of GLP‑1RAs in stroke

As the global population ages, the prevalence of stroke 
continues to rise, necessitating novel and effective inter-
ventions. GLP-1RAs recently emerged as promising can-
didates for stroke therapy due to their multifaceted neuro-
protective properties [153].

GLP‑1RAs reduce neuroinflammation and improve 
cognition in stroke

GLP-1R expression within the brain increases the level of 
intracellular cAMP via its signaling pathways, which also 
serve as the target for neuroprotection in ischemic stroke 
[154]. It has been hypothesized that the effect of GLP-
1RAs via cAMP/PKA signaling stimulation may contrib-
ute to the anti-neuroinflammatory activity, given that brain 
inflammation is an immunological response mediated by 
microglia and astrocytes [155].

GLP-1R expression was found when embryonic pri-
mary cerebral cortical and ventral mesencephalic (dopa-
minergic) neurons were experimentally studied. Hypoxia 
and formation of 6-hydroxydopamine cause cell death, 
and GLP-1 and exendin-4 protected hypoxia-induced cell 
death, and this effect disappeared in the cells from GLP-
1R knockout (−/−) mice [156]. These findings show that 
exendin-4 can defend neurons from oxidative and meta-
bolic stresses and provide therapeutic potential in the 
management of stroke. Exendin-4 had a strong dilatory 
effect on cortical arterioles in acute brain slices of the rat 
cerebral cortex and effectively reversed arteriolar constric-
tions brought on by metabolite lactate and glucose depri-
vation in an ex-vivo model of ischemic stroke. Exendin-4 
caused significant increases in brain tissue  pO2, a sign of 
elevated cerebral blood flow via strong dilation of cortical 
arterioles, in rats under anesthesia. These findings show 
that a pathway involving GLP-1R signaling mediates the 
neuroprotection against ischemic stroke created by distant 
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ischemia training [157]. Another study utilizing liraglu-
tide prevented brain edema, and neurologic deficits and 
reduced the inflammatory response produced by intrac-
erebral hemorrhage (ICH) in mice. This protection was 
mechanistically medicated via activation of AMPK, which 
can reduce the expression of proinflammatory mediators 
like ICAM-1 and E-selectin [158–160]. In a rat model of 
middle cerebral artery occlusion (MCAO) stroke, liraglu-
tide exhibited comparable protective qualities by reducing 
apoptosis and oxidative stress in the affected brain region 
[161]. In another study, animals treated with semaglutide 
had lower neurological impairment scores on a variety 
of motor and grip strength measures along with reduced 
extent of cerebral infarction [159, 162]. GLP-1RAs exhibit 
neuroprotection, but the definite mechanism that mediates 
this response is yet to be known, which invites further 
studies [163]. The effect of GLP-1RAs in improving cog-
nitive behavior, motor skills, and neuroprotection in neu-
rodegenerative diseases and stroke opened up new ways to 
repurpose drugs as therapeutic interventions for neurologi-
cal diseases [164].

Safety profile and adverse effects 
of GLP‑1RAs

During clinical trials using GLP-1RAs, gastrointestinal 
issues were the most reported side effects among all partic-
ipants. Vomiting, constipation, abdominal discomfort, and 
dyspepsia were all reasonably prevalent (1/10 to 1/100), 
but nausea and diarrhea were highly common (1/10) [165]. 
At the onset of the therapy, these side effects appeared 
more frequent, but as the therapy proceeded, gastrointes-
tinal issues gradually subsided. The peak of the GLP-1 
effects, which is visible in conjunction with the injection, 
is thought to be the cause of the activation of the brain 
regions responsible for controlling appetite, satiety, and 
nausea [166, 167]. Transient nausea may be clinically 
insignificant but attributed to about 15% of the cases upon 
administration of GLP-1RAs, which can be due to delayed 
emptying of gastric contents. When compared exenatide 
with liraglutide, exenatide shows 15% more cases of nau-
sea and gastric discomfort [168]. Diarrhea may also result 
using GLP-1RAs in 10% to 20% of patients [169]. It is also 
postulated that continuous usage of these agents can cause 
a significant decrease in gastric acid and lipase secretion. 
Along with gastric disturbances, usage of GLP-1RAs in 
animals and humans has reported several long-term safety 
concerns although there are few reliable epidemiological 
data available on the prevalence of acute pancreatitis in 
people with T2DM. Exenatide patients suffered pancreati-
tis at the incidence of 27 occurrences per 100,000 patients 
[170]. A numerically higher incidence of benign adenomas Ta
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was seen in preclinical experiments on female rats exposed 
to exenatide. It was not statistically different when this 
increase in adenoma incidence was corrected for the rat 
life span. In humans, only five thyroid neoplasm cases in 
the clinical studies were reported [171]. Regarding GLP-1 
effects on the colon, GLP-1 may decrease intestinal motil-
ity via reduced circular contractions in full-thickness mus-
cular colon strips. Hence, gastrointestinal symptoms are 
common but short-lived, and they do not pose a significant 
barrier or risks to using these drugs comparing their ben-
efits [172].

Conclusion and future perspectives

GLP-1RAs emerged as a great hope for individuals grappling 
with the intricate relation of chronic glucose regulation. GLP-
1RAs have recently gained global attention for their role in 
blood glucose control in diabetes, as well as their impact on 
other diseases. It is well-known that diabetes and other comor-
bidities may increase the likelihood of other complications, 
including cardiovascular, hepatic, renal, and cerebrovascular 
diseases in the patients, and the multifaceted roles of GLP-
1RAs in these pathologies have been highlighted in the present 
review. However, the amount of evidence that supports the 
comprehensive roles of GLP-1RAs and their mechanisms has 

not yet been fully explored. Further investigations are war-
ranted considering the expansion of GLP-1RAs in potential 
benefits from diabetes and associated disorders.

Acknowledgement Dr. Prajapati, extends his sincere appreciation 
to the Faculty of Pharmacy, Silpakorn University, Thailand, for their 
generous financial support that enabled the completion of this work.

Author contributions PT initiated the topic conception and design of 
the index of this paper. PT and BGP provided constructive feedback, 
some new ideas edited the text, and approved the final version of the 
manuscript. MRC, BPD, IVS, NNS, and SUB drafted and subsequently 
revised the review article with significant literature data collection, and 
figures. All authors have read and approved the final version of this 
manuscript and agree to be accountable for all aspects of the work in 
ensuring that questions related to the accuracy or integrity of any part 
of the work are appropriately investigated and resolved. All persons 
designated as authors qualify for authorship, and all those who qualify 
for authorship are listed.

Funding This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors.

Data availability The datasets generated during and/or analyzed during 
the current study are available from the corresponding author upon 
reasonable request.

Code availability We confirm that EndNote Version 9, a freely avail-
able software application, was utilized for reference management, and 
Biorender, another freely available tool, was employed for the creation 
of figures in this manuscript.

Fig. 5  Visual representation of 
the beneficial roles of GLP-1RA 
in neuroprotection. GLP-1RAs 
facilitate neuronal repair by 
regulating hippocampal circuit 
activity, stimulating neurite out-
growth, enhancing cell survival, 
and increasing the production of 
enzymes and neurotransmitters. 
They inhibit neuronal apoptosis, 
the release of proinflammatory 
cytokines, and oxidative stress. 
Conversely, they promote the 
synaptic formation and improve 
mitochondrial function, thereby 
supporting neurogenesis
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