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Abstract

Glucagon-like Peptide-1 (GLP-1) receptor agonists (GLP-1RAs) emerged as a primary treatment for type-2 diabetes mel-
litus (T2DM), however, their multifaceted effects on various target organs beyond glycemic control opened a new era of
treatment. We conducted a comprehensive literature search using databases including Scopus, Google Scholar, PubMed,
and the Cochrane Library to identify clinical, in-vivo, and in-vitro studies focusing on the diverse effects of GLP-1 receptor
agonists. Eligible studies were selected based on their relevance to the varied roles of GLP-1RAs in T2DM management
and their impact on other physiological functions. Numerous studies have reported the efficacy of GLP-1RAs in improving
outcomes in T2DM, with demonstrated benefits including glucose-dependent insulinotropic actions, modulation of insulin
signaling pathways, and reductions in glycemic excursions. Additionally, GLP-1 receptors are expressed in various tissues
and organs, suggesting their widespread physiological functions beyond glycemic control potentially include neuroprotective,
anti-inflammatory, cardioprotective, and metabolic benefits. However, further scientific studies are still underway to maximize
the benefits of GLP-1RAs and to discover additional roles in improving health benefits. This article sought to review not
only the actions of GLP1RAs in the treatment of T2DM but also explore its effects on potential targets in other disorders.
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Type-2 diabetes mellitus (T2DM) is primarily recognized
by the inability of the human body to control the quantity
of glucose (sugar) present in the blood with the help of
insulin hormone [1]. Shockingly, the incidences of diabetes
are expected to rise from 415 million (2015) to 640 million
(2040) worldwide [2]. The incretin hormonal axis is cre-
ated by the combination of gastrointestinal and endocrine
pathways, and any abnormalities in this axis can potentially
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initiate the onset of T2DM [3]. A majority of the incretin
function is constituted by GLP-1 and gastro-inhibitory
intestinal peptide (GIP) [3]. GLP-1 exerts its mechanism of
action through GLP-1 receptor (GLP-1R), a G-protein cou-
pled receptor (GPCR), generally found extensively in organs
including the brain, lung, pancreatic islets, lung, heart, vas-
cular smooth cells, pancreas, macrophages, endothelial cells,
central nervous system, kidney, peripheral chemoreceptors
such as carotid body, and GI tract [4—6].

Glucagon-like peptide-1 (GLP-1) is a peptide hormone,
typically composed of 30 amino acids, released from lower
intestinal enteroendocrine L-cells and specific neurons
located within the solitary tract in the brainstem, primar-
ily in response to food intake [7]. The active structure of
the GLP-1 protein includes two a-helices spanning amino
acid positions 13-20 and 2435, separated by a linker region
[3, 8, 9]. Naturally occurring GLP-1 is rapidly cleaved at
position 2 (alanine) by dipeptidyl peptidase-4 (DPP-4)
along with neutral endopeptidase 24.11 (NEP 24.11) and
renal clearance. Hence, this degradation of GLP-1 leads to
a short half-life of about 2 min, resulting in only a small
fraction (10-15%) of intact GLP-1 reaching circulation,
resulting in fasting plasma levels typically within the range
of 0—15 pmol/l [7, 9]. To preserve the concentrations of
GLP-1, DPP-4 inhibitors are periodically used in patients
with Type-2 diabetes mellitus (T2DM) [10]. To address this
limitation and maximize the utilization, GLP-1 receptor ago-
nists (GLP-1RAs) and DPP-4 inhibitors were developed to
enhance GLP-1 efficacy.

In contrast to conventional treatments like insulin and
sulfonylureas, GLP-1-based therapies have been linked to
weight loss and a reduced risk of hypoglycemia, making
them particularly advantageous for diabetic patients [11].
Currently, the efficacy of GLP-1RAs is most commonly

Fig.1 A diagrammatic
representation of the diverse
functions of GLP-1RAs across
multiple organs. GLP-1RAs
characterize the improvement
of several conditions, such as
fibrosis, neuroinflammation,
non-alcoholic steatohepatitis,
and weight loss via independent
mechanisms in different organs
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associated with their pivotal role in managing T2DM [12].
The ability of GLP-1RAs to enhance insulin secretion, sup-
press glucagon release, slow gastric emptying, and promote
satiety fundamentally transformed the landscape of diabetes
care [13] and is currently, considered a potential ally in the
ongoing battle against the global epidemic of diabetes [14].
From the clinical point of view, the narrative of GLP-1RAs
has taken an unexpected twist; GLP-1RAs are now captivat-
ing the attention of clinicians, researchers, and patients by
revealing an astonishing array of their multifaceted roles
extending far beyond diabetes [11]. This review embarks on
an exciting and transformative journey of GLP-1RAs and
their gradual increase in diverse applications in a spectrum
of treatments. We delve into the expanding body of knowl-
edge that uncovers the potential of these agents in metabolic
health, cardiovascular wellness, hepatic and renal functions,
and even the enigmatic scope of neuroprotection. Hence, we
aim to explore the latest research findings, clinical insights,
and emerging trends that underscore the multifaceted roles
of GLP-1RAs in reshaping the future of medicine, offering
new hope and possibilities to individuals facing a spectrum
of health challenges. GLP-1RA can exhibit various roles
beyond just treating T2DM and some of these functions are
elucidated in Fig. 1 and discussed in this review.

Current clinical guidelines for diabetes
management

The current treatment guidelines are based on a large
number of evidence-based information and expert opin-
ions on achieving end glucose level goals [Normal range:
fasting plasma glucose < 5.5 mmol/l; Glycosylated hemo-
globin (HbAlc: <5.6%); Prediabetic range: fasting plasma
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glucose—5.5 to 7 mmol/l (HbAlc: 5.7 to 6.4%); Diabetic
range: fasting plasma glucose >7 mmol/l (HbAlc: > 6.5%)].
To minimize complications, the treatment goal is to achieve
glycated hemoglobin (HbA1c) of 6.5% or less, recognizing
the need to reduce the chances of hypoglycemia. Current
types of anti-diabetic therapies include monotherapy, dual
therapy, and triple therapy, which incorporates eight major
classes of medications (biguanides, DPP-4 inhibitors, thia-
zolidinediones, sulfonylureas, incretin mimetics, bile acid
sequestrants, a-glucosidase inhibitors, meglitinides), and
insulin-based therapy [15]. Management of hyperglycemia in
T2DM recommends a patient-centered approach for select-
ing appropriate pharmacologic treatment recommended by
clinicians. Traditionally, metformin is a safe, effective, and
inexpensive start at diagnosis and is considered the first-line
treatment. However, if hyperglycemia is severe or any cata-
bolic features (weight loss, hypertriglyceridemia, ketosis)
are present, insulin can be used as part of any combination
regimen. When blood glucose levels are above 300 mg/dL
or HbA1C > 10% or any of the above two characteristics are
present, then insulin therapy should be generally initiated
[16]. Similarly, sulfonylurea, considered second-line agents,
reduces HbAlc by 1-2%. Non-sulfonyl urea secretagogues
(repaglinide and nateglinide) can be used in patients with
renal insufficiency. The other class, a-glucosidase inhibi-
tors, reduces postprandial blood glucose (PPBG); however,
its long-term compliance and higher cost are significant
issues. Thiazolidinediones (rosiglitazone and pioglitazone)
reduce insulin resistance and HbAlc by 0.5-1.4% when
used as monotherapy. DPP-4 inhibitors are the newer class
of medicines in which sitagliptin is the only Food and Drugs
Administration (FDA)-approved drug showing a reduction in
HbAlc by 0.5-0.8%. Patients treated with sodium-glucose
cotransporter-2 (SGLT2) inhibitors (empagliflozin, canagli-
flozin, dapagliflozin) or GLP-1RAs (liraglutide, semaglu-
tide, dulaglutide) have shown a reduction in cardiovascular
events along with improvements in glucose levels [17, 18].
As T2DM is a progressive disease, monotherapy with met-
formin is not sufficient in many patients, and other drugs are
optimized stepwise to achieve the ideal HbA1c target [19].

How GLP-1RAs reduce high blood sugar?

GLP-1RAs are available as injectables and in oral form to
achieve glycemic targets in diabetic patients [20]. GLP-
1RAs are designed to mimic the actions of the naturally
occurring GLP-1 hormone, which plays a crucial role in
blood glucose homeostasis and satiety [3]. Upon GLP-
IRA administration, they stimulate the GLP-1 receptor on
pancreatic beta cells, prompting the secretion of insulin in
a glucose-dependent manner without risking hypoglyce-
mia [21-25]. Furthermore, GLP-1RAs slow down gastric

@ Springer

emptying and suppress glucagon secretion, which eventu-
ally controls post-meal glucose spikes [26—-29]. Beyond their
immediate impact on glycemic control, these analogs have
demonstrated benefits for weight management due to their
appetite-suppressing effects and promotion of satiety via
modifying eating behavior, which leads to reducing energy
intake by approximately 12% interacting with the peripheral
nervous system [13]. With these dual actions on both glu-
cose regulation and weight management, GLP-1RAs can be
a versatile and attractive option for individuals with T2DM,
particularly those who struggle with obesity [30]. These ben-
efits of GLP-1 analogs set the stage for a deeper exploration
of their clinical applications and the evolving landscape of
diabetes care [3].

GLP-1 directly suppresses glucagon secretion in the pan-
creas and indirectly enhances meal-induced insulin secre-
tion in synergy with the glycemic stimulus, which modulates
glucose levels [7]. The presence of histidine at position 7
in the GLP-1 amino acid structure is essential for the hor-
mone's ability to stimulate insulin production and inhibit
the secretion of glucagon [3, 11]. As shown in Fig. 2, the
insulinotropic effect mainly comes from increased intracel-
lular cAMP levels and then followed by serine/threonine
kinase protein kinase A (PKA), cyclic adenosine monophos-
phate (cAMP)-regulated guanine nucleotide exchange factor
2 (cAMP-GEF2) also called EPAC2 and activated protein
kinase A. PKA leads to the closure of Adenosine triphos-
phate (ATP)-sensitive K channels, causing membrane
depolarization, and activation of L-type voltage-dependent
calcium channel (VDCC) leads to an increase in intracellular
Ca”* causing insulin release [23]. EPAC2 activates Rapl
leading to calcium-induced calcium release, all of which
increases Ca’* thereby inducing mitochondrial ATP syn-
thesis and exocytotic insulin release from insulin granules
[31, 32]. The insulinotropic effect of GLP-1, mediated by
increased intracellular cAMP levels and subsequent activa-
tion of PKA and EPAC2 pathways, is depicted in Fig. 2.
multiple intracellular pathways, including protein kinase B
and extracellular signal-related kinase (Erk), and epidermal
growth factor receptor (EGFR) transactivation through the
c-src kinase are responsible for the proliferative effects of
GLP-1 [33, 34].

GLP-1RAs—An emerging superclass of drugs
for diabetes management

Exenatide was the first GLP-1RA approved for clinical use
in 2005 by the USFDA and in 2006 by the European Union
(EU) for the treatment of T2DM. It is a synthetic form of
exendin-4, a naturally occurring peptide in Gila monster
[35]. A triple-blind, placebo-controlled study, AMIGO,
showed that exenatide maintained the long-term HbAlc
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Fig.2 A figure depicting the intracellular mechanism of GLP-1RAs
on insulin secretion Insulin release takes place after several pro-
cesses: (1) Closure of K,rp channels; (2) Opening of L-type VDC
channels; (3) Inhibition of voltage-gated K+ channels; (4) PKA- and
EAPC2-dependent mechanisms increases the intracellular Ca>* con-
centrations; (5) Ca’*-induced Ca>* mobilization stimulates ATP syn-
thesis intracellularly which further enhances K,rp channel closure;

below <7 and optimum body weight reduction [36]. Lixi-
senatide showed a greater reduction in body weight and
2-h post-prandial glucose when compared with sitaglip-
tin. However, more frequent gastrointestinal (GI) side
effects, such as nausea, were seen with lixisenatide than
with sitagliptin [37]. Liraglutide, another GLP-1RA, is
an acylated analog of GLP-1, with a plasma half-life of
10-18 h, [55] showed HbA 1c reduction of up to 1.6% and
weight loss of up to 2.5 kg over 30 weeks [38]. Liraglu-
tide has been approved for reducing T2DM and has shown
promising evidence in the reduction of risk of major car-
diovascular (CV) events, obesity, liver disease, and other
metabolic dysfunctions [39, 40]. American Diabetes
Association (ADA) recommended liraglutide as a second-
line drug after metformin for patients suffering from ath-
erosclerotic cardiovascular disease [41]. Semaglutide is
structurally similar to liraglutide but has less susceptibil-
ity to DPP-4 degradation. These structural modifications
improved its binding with albumin and extended its half-
life up to 7 days, allowing for once-weekly administration

?*}v Ca

(6) accumulation of insulin-containing granules near the plasma
membrane, ultimate insulin secretion into the circulation. ATP adeno-
sine triphosphate, cAMP cyclic adenosine monophosphate, EPAC2
exchange protein activated by cAMP, ER endoplasmic reticulum, Kv
voltage-gated K+ channels, PKA protein kinase A, RYR ryanodine
receptors

given subcutaneously [42]. SUSTAIN-1, a 30-week clini-
cal study comparing semaglutide with placebo, showed a
significant reduction in HbAlc and 0.2% weight reduc-
tion than the placebo group [43]. Albiglutide, a long-act-
ing GLP-1 mimetic, is currently in phase 3 trials and is
expected to provide a more patient-friendly dosing profile
compared to available GLP-1 analogs [44]. Albiglutide
has the characteristic to fuse with human albumin with
DPP-4 resistant properties which increases its half-life up
to 5-8 days and makes it suitable for once-weekly dos-
ing as well [45]. Dulaglutide, a long-acting and large-size
GLP-1RA, has a slower renal clearance which results from
its prolonged half-life for 5-6 days allowing its once-a-
week administration [46, 47]. The AWARD trial, using
dulaglutide, showed an HbAlc reduction of 0.7% to 1.6%
from its baseline. In the AWARD-1 study, dulaglutide
was compared with twice-daily exenatide over 52 weeks
which showed superior HbAlc reductions at 26 weeks
with no significant difference in weight loss [48]. Overall,
these promising evidence and characteristics suggest that

@ Springer
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GLP-1RAs have the efficiency to play a major role in dia-
betic management. Next, we explore the emerging role of
GLP-1RAs and their potential benefits in other disorders.

GLP-1RAs in obesity management

In the ever-evolving landscape of obesity management,
GLP-1 analogs have emerged as a revolutionary therapeu-
tic option. While initially developed to address the com-
plexities of diabetes care, these drugs have shown remark-
able potential in the battle against obesity [49]. Unlike
traditional weight loss medications that often come with
a range of side effects and limited efficacy, GLP-1RAs
offer a multifaceted approach to weight management [50].
GLP-1RAs have been documented to induce weight loss
in a dose-dependent and progressive manner. An average
weight reduction of 5.8 pounds (Ibs.) is seen with long-
acting exenatide [3]. The Liraglutide Effect and Action in
Diabetes (LEAD) program observed weight reductions in
more than 4000 participants, suggesting its potency in obe-
sity management [51, 52]. Along with weight loss, GLP-
1RAs have been demonstrated to reduce body mass index
(BMI) and waist circumference in overweight or obese
people with or without diabetes [53, 54]. Other GLP-1RA
potentially works similarly in weight reduction; however,
more systematic clinical studies need to be conducted to
determine their extended role in weight reduction [55].
A novel dual GIP and GLP-1 receptor agonist Tirzepa-
tide (15 mg) demonstrated dose-dependent reductions in
body weight, with a significant difference of — 10.7 kg
(SE 0.4; -13.9% reduction) outperforming dulaglutide in
glycemic control and body weight reduction in Japanese
patients with T2DM [56]. Conclusively, the majority of
patients were able to get higher benefits with less adverse
responses caused by GLP-1RAs, making them the pre-
ferred medication for the treatment of obesity.

Appetite regulation and weight loss effects
in obesity management

The central nervous system, which regulates satiety,
receives information from the digestive tract via affer-
ent impulses to control eating behavior [57]. GLP-1 has
been shown to reduce gut motility and stomach empty-
ing, through which its association has been proposed
in appetite regulation. Intravenous infusion of GLP-1
in male Sprague—Dawley rats effectively inhibits food
intake in a dose-dependent manner. Neuroimaging stud-
ies demonstrated that peripherally injected GLP-1 alters
brain activity in regions implicated in the control of food.

@ Springer

Several studies in animals have revealed that administra-
tion of GLP-1RAs (Dulaglutide, Exenatide, Liraglutide,
Exendin-4) resulted in the suppression of food intake
mediated by direct GLP-1R activation in the brain and
vagal afferents through several signaling pathways [58].
For instance, they stimulate adipocyte development by
activating the Wnt signaling pathway and rely on SIRT1
to mediate lipolysis and fatty acid oxidation in adipose
tissues [14]. GLP-1RAs encourage the transformation of
visceral white adipose tissue (WAT) into brown adipose
tissue (BAT), enhancing the thermogenesis of BAT and
hence increasing energy expenditure under the control
of AMP-activated protein kinase (AMPK) in the ventral
medial hypothalamus [14]. These mechanisms are to be
investigated further to accurately determine the precise
role of GLP-1RAs and food intake in weight reduction.

Clinical trials and real-world evidence

Three notable clinical trials shed light on the interplay
between pharmaceutical interventions and patient well-
being. The first study (Phase-4; NCT03361098), a rand-
omized and placebo-controlled trial on 65 participants,
was conducted to investigate the effect of a dual approach
involving exenatide and dapagliflozin (SGLT2 inhibitor) on
appetite regulation. This study found that responsiveness
to palatable food consumption underscores the synergistic
effects of combining these agents, offering great insight
into novel approaches for managing T2DM [59]. The com-
bination therapy of GLP-1RAs with SGLT-2 inhibitors has
progressively shown improvement in patients suffering
from T2DM. Another trial (NCT00375492), a randomized,
placebo-controlled trial involving 196 participants, focused
on weight loss in diabetic patients. By administering exena-
tide alongside lifestyle modifications, this study examined
the improvement in weight management in individuals with
T2DM, measuring the impact on calorie intake and par-
ticipant weight [60]. Lastly, the third trial (NCT05136287)
presents a multicentric, randomized clinical trial assessing
the weight loss outcomes with 140 participants investigating
the efficacy of various GLP-1RAs (dulaglutide, exenatide,
liraglutide, and lixisenatide) found significant reduction in
body weight with minimizing adverse events [61]. Addition-
ally, the combination therapy of liraglutide with sulfonylu-
rea analog (glimepiride) was found to be effective in weight
reduction compared to that of a placebo when given over
26 weeks [62]. If GLP-1RAs monotherapy or combination
therapy with other anti-diabetic agents fails to provide sat-
isfactory glycemic control and weight modulation, the addi-
tion of basal insulin to GLP-1RAs had been recommended
and evaluated in late randomized control trials (RCTs). It
was observed that the insulin titration used in conjunction
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with the GLP-1RAs had a beneficial impact on glycemic and
appetite control and weight reduction [63, 64].

Table 1 shows the result of several clinical investigations
performed to evaluate the role of GLP-1RAs to modulate
weight and appetite. Such insights provide reasonable evi-
dence to healthcare practitioners with valuable options to
tailor treatments for individuals living with T2DM, ulti-
mately improving their quality of life.

Evolution of GLP-1 analogs beyond diabetes
and obesity

GLP-1 analogs, such as exenatide and liraglutide, were pri-
marily designed to aid in glycemic control with the vision
of a growing global diabetes epidemic. Patients taking these
medications started experiencing unexpected weight loss,
prompting further investigation [11, 70]. Additionally, stud-
ies began to highlight their cardiovascular benefits, particu-
larly in reducing the risk of major adverse cardiovascular
events (MACE). These serendipitous discoveries led to
investigations into the therapeutic potential of GLP-1RAs
in conditions beyond diabetes [71]. Subsequent regulatory
approvals and label expansions reflected the shift in the med-
ical paradigm, recognizing these agents as versatile tools
in the arsenal of modern medicine. This historical context
justifies the need for the review and highlights the urgency
of synthesizing the latest research and clinical insights into
the evolving landscape of GLP-1RA applications beyond
diabetes.

Cardiovascular benefits of GLP-1RAs

The cardiovascular benefits associated with GLP-1RAs
have emerged as a groundbreaking revelation in recent
years. Beyond their primary function of glycemic control,
GLP-1RAs have demonstrated a remarkable capacity to miti-
gate cardiovascular risk factors and reduce the incidence of
MACE in individuals with T2DM [64]. In this discussion,
we will delve into the multifaceted cardiovascular advan-
tages offered by GLP-1RAs, exploring the mechanisms
behind these benefits, the clinical evidence supporting their
use, and the broader implications for the management of
T2DM and cardiovascular disease.

Reduction of major adverse cardiovascular events
(MACE)

Patients suffering from T2DM are at an increased suscep-
tibility to developing cardiovascular complications that can
also prove to be fatal. Hence, the prevention of these com-
plications should be considered while choosing a course of

@ Springer

treatment [72]. Most GLP-1RAs have shown benefits in low-
ering cardiovascular disease (CVD) complications such as
dyslipidemia and high blood pressure (BP) [73]. GLP-1RAs
were found to cause a decrease in the systolic blood pres-
sure (SBP) by 2 to 6 mmHg and eventually a considerable
reduction in MACE [74, 75]. Liraglutide and Semaglutide
were observed to benefit CV outcomes in clinical studies;
however, the precise mechanisms behind this benefit are yet
to be discovered [76—79]. Clinical trials such as LEADER,
SUSTAIN-6, and EXSCEL demonstrated that GLP-1RAs
reduced cardiovascular events in CV patients with acute
coronary syndrome and T2DM [80]. In the LEADER trial,
liraglutide exhibited a 13% reduction in MACE with a haz-
ard ratio (HR) of 0.87 (95% CI: 0.78; 0.97) compared to
placebo, involving 8,121 patients with T2DM. Similarly,
in the SUSTAIN-6 trial, semaglutide demonstrated a 26%
reduction in MACE with an HR of 0.74 (95% CI: 0.58; 0.95)
among 3,297 patients with T2DM, showcasing significant
cardiovascular risk reduction [78, 81] Other trial using Lixi-
senatide, Liraglutide, and Semaglutide lowers the MACE
symptoms and promotes positive CV outcomes in patients
with T2DM [82].

Impact on atherosclerosis and vascular health

The majority of the population of patients suffering from
diabetes may develop myocardial ischemia and heart fail-
ure in the future [74]. The SOUL trial revealed improve-
ments using GLP-1Ras in heart failure outcomes, including
reduced hospitalization rates and enhanced cardiac function
[83]. In clinical practice, the implications of these findings
are profound and encouraging. GLP-1RAs are now consid-
ered a critical component in individuals who have T2DM
with established cardiovascular disease or those at high risk
of cardiovascular events [11, 84]. Findings from animal
studies revealed that GLP-1RAs had been shown to reduce
atherosclerotic plaque development by exerting their anti-
inflammatory effects in the endothelial cells and vascular
smooth muscle cells and causing a more stabilized and less
vulnerable plaque [85]. Based on the data received from
clinical trials to evaluate the impact of GLP-1RAs in CV
events, a consistent decrease in atherothrombotic events
was observed which suggests the beneficial outcomes using
GLP-1RAs in patients suffering from T2DM and athero-
sclerosis [75, 85].

Potential mechanisms of GLP-1RAs to reduce
cardiovascular risks

GLP-1RAs have emerged as a pivotal component in man-
aging T2DM due to their multifaceted implications for
cardiovascular risk reduction via key mechanisms con-
tributing to the regulation of BP (Fig. 3) [11]. GLP-1RAs
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Fig.3 Schematic illustration
of the effects of GLP-1RAs
on satiety, cardiovascular
outcomes, and non-alcoholic
fatty liver disease (NAFLD).
GLP-1RAs enhance satiety
by reducing body weight and
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have been associated with a consistent reduction in SBP
and diastolic blood pressure (DBP), primarily by influ-
encing the central nervous system possibly by reducing
sympathetic nervous system activity [5, 6, 86]. These BP-
lowering effects alleviate the strain on the heart and fur-
ther reduce the risk of adverse cardiovascular events [86].
Furthermore, GLP-1RAs contribute to favorable changes
in lipid profiles, characterized by lowered triglyceride
levels and increased high-density lipoprotein cholesterol.
These alterations promote a more cardioprotective lipid
profile, reducing the risk of atherosclerosis and related
cardiovascular complications [87, 88]. As discussed ear-
lier, weight loss, often observed as a secondary effect of
GLP-1RAs, plays a pivotal role in mitigating associated
cardiovascular risk. Weight reduction improves insulin
sensitivity, reduces inflammation, and contributes to over-
all cardiovascular well-being [89]. In essence, the cardio-
vascular benefits of GLP-1RAs have ushered in a new era
of diabetes management, focusing on glucose regulation
and the holistic health of individuals with associated dis-
orders [90].

ER stressi
Stellate cell activation !

Pre-clinical and clinical findings

Here, we discuss the pre-clinical evidence (Table 2) that
serves as the foundational knowledge upon which clinical
trials are built, providing a strong rationale for testing these
compounds in humans [86].

Table 3 depicts clinical findings that support the imple-
mentation of GLP-1RAs in cardiovascular disorders.

GLP-1RAs in non-alcoholic fatty liver disease
(NAFLD)

In recent years, GLP-1RA has emerged as a promising
avenue of research and treatment in the context of NAFLD
[102]. NAFLD encompasses a spectrum of liver conditions,
ranging from simple steatosis to non-alcoholic steatohepa-
titis (NASH), characterized by inflammation and liver cell
damage, which can progress to fibrosis, cirrhosis, and even
hepatocellular carcinoma [103]. With the global prevalence
of NAFLD on the rise, investigations into the potential
therapeutic role of GLP-1RAs have gained momentum for
their potential to mitigate liver fat accumulation, inflamma-
tion, and fibrosis. We assess the intricate interplay between
GLP-1RAs and NAFLD by exploring the mechanisms,

@ Springer
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pre-clinical and clinical evidence, and the evolving treat-
ment landscape for complex liver disorders.

Effects on liver fat accumulation

Currently, lifestyle modifications, including weight loss,
remain the existing alternatives to cure NAFLD; however,
these alternatives are difficult to maintain in patients who
cannot adhere to them [104]. The prevalence of NAFLD
significantly increased in patients pre-existing with T2DM,
with up to 65% in patients suffering from Non-alcoholic
steatohepatitis (NASH) [105]. It has been observed that
liraglutide also improves the hepatic enzyme lipase activ-
ity, thereby modulating liver fat to improve the outcome of
liver fatty disease [106]. Recent research has shown that
GLP-1RAs influence liver fat processing either directly
(impacting hepatocyte fat metabolism) or indirectly (incretin
action) due to the ultimate effect of reversing insulin resist-
ance [107, 108]. Another study utilizing exendin-4 revealed
that the liver fat content was decreased when this drug was
administered to NAFLD-induced mice, along with improved
insulin signaling [109]. A recent meta-analysis of 25 tri-
als concluded that GLP-1RAs caused at least 2.8 kg weight
reduction in people with or without diabetes, contributing
to reducing NAFLD symptoms. Therefore, GLP-1RAs may
play a crucial role in regulating liver fat accumulation and,
contribute to the treatment of NAFLD.

Improvement in liver function

GLP-1RAs may lead to improvements in liver function for
a variety of reasons. They decrease the de novo lipogenesis,
which further reduces the lipolysis-induced free fatty acid
formation and toxic substances due to triglycerides (Fig. 3)
[110]. Several animal studies using GLP-1RAs showed
the repair of the dysfunctional adipose tissue, regulate the
destructive effects of hepatic fatty acids by maintaining their
oxidative processes via controlling the effects of acetyl-CoA
carboxylase and fatty acid synthase, and ultimately, alleviat-
ing the hepatic toxicity [111, 112]. GLP-1RAs also modulate
the liver inflammation in NAFLD by decreasing the levels of
inflammatory mediators, including c-Jun-N-terminal kinase
(JNK), Interleukin-1 (IL-1), Intracellular cell adhesion mol-
ecule (ICAM-1) in the liver and preventing processes such
as liver fibrosis, necrosis [91, 113]. However, clinical studies
into this context are currently lacking, and further insights
may help to adequately prove the role of GLP-1RAs in liver
function restoration [104]. Gu and colleagues carried out a
meta-analysis combining the results of nine RCTs compar-
ing the effects of GLP-1RAs in contrast to other antidiabetic
drugs (pioglitazone) considered as placebo in the improve-
ment of liver histology from steatosis, inflammation, fibro-
sis, or necrosis [114]. Further clinical investigation may be

required to understand more benefits to support the clinical
significance of GLP-1RAs in liver disease with or without
T2DM [115, 116].

Reno-protective effects of GLP-1RAs

GLP-1RAs have also unveiled a remarkable facet of their
pharmacological prowess in renoprotection [3]. Chronic
kidney disease (CKD) is a prevalent and debilitating com-
plication of T2DM, with a substantial impact on patient
morbidity and mortality [117]. In this discussion, we delve
into the link between GLP-1RAs and renal protection with
evolving underlying mechanisms in published articles and
the promising implications for individuals at risk of diabetic
nephropathy and other renal disorders.

Impact on kidney function using GLP-1RAs

Diabetic nephropathy is most commonly associated with
patients with T2DM whose kidney functions are negatively
affected [118]. In models of diabetic nephropathy, exendin-4
treatment prevented glomerular macrophage infiltration in
glomeruli, significantly decreased oxidative stress, inflam-
mation in tubular cells, and gene expression of cluster of
differentiation 14 (CD14), ICAM-1, and transforming
growth factor-1 (TGF-1) in the renal cortex in streptozotocin
(STZ)-induced diabetic rats [119]. Therefore, by lowering
renal leukocyte infiltration and proinflammatory mediators,
GLP-1RAs may benefit in improving nephropathy [120].
GLP-1R is expressed in the proximal tubules [121], and this
expression possibly leads to the inhibition of renal inflam-
mation and oxidative stress using GLP-1 therapy on diabetic
nephropathy and acute kidney damage [122]. The direct and
indirect effects of GLP-1RAs are illustrated in Fig. 44.

Studies suggest that the reno-protective effects of GLP-1
may be mediated by two signaling pathways: (1) Increasing
natriuresis and diuresis in a dose-dependent manner by func-
tioning on the gut-renal (natriuretic) axis, and (2) Reduc-
ing the activity of the Na+/H+ exchanger isoform NHE3
to reduce proximal sodium reabsorption, and possibly by
boosting glomerular filtration rate. A study also showed that
glomerular mesangial proliferation, a characteristic feature
of diabetic patients, was remarkably reduced by GLP-1RAs
[123]. Recombinant human GLP-1 reduces oxidative stress
in the glomeruli and glomerular microvascular endothelial
cells in diabetic rats by inhibiting protein kinase C and acti-
vating PKA [124]. Another study reported that liraglutide
significantly decreased albuminuria and oxidative stress in
Type-1 DM rats produced by STZ [125].

@ Springer



Molecular Biology Reports (2024) 51:835

835 Page120f23

JNAZL JO SISouSeIp powIguoo e

S[ELI) QWOJINO JB[NISBAOIPIRD yIm Suofe ‘9seasIp paysIqelsd Jo
SYUT-d'TO T30 Ul PAAIISqO Q0UdSqE 9} UT SI0JIBJ YSII Je[NoseA
SINSAI YIIM JUI)SISUOD ST YOIym -OIpJed )M JOP[O IO SIeak ()9 page NdZL
‘0qaoe[d 0) paredwod uaym sa[y 0qade[{ [0nu0) 9S01} JO ‘9SBaSIp AQUPDY OIUOIYD [y sjuenyed ur oprnjSewog €10
-01d YSLI Te[NOSEAOIPIRD JOLIQJUT syyuow 71 10§ A[rep Sw ¢ JO Je[NOSEAOIPIED PAJUSWNIOP A[TEP-90U0 JO SOWOIINO JR[NISEA 9 YFANOId
[1o1] -uou pIqIYXd opNN[ewas [e10 opnn[Sewas [ (UONUAIANU]  [IIM JOPJO IO SIBdA ()G pade sjuaned €81¢ -OIpIeD $SAsSE 0] [BL [BIIUID V  9]/769Z0LON
onel [:] & UI A[wop
-UBI PAJEOO[[E 9IoMm ‘SI0)OeJ SII sjuoned
KI0)STY JB[NOSBAOIPIRD IIY) IR[NOSBAOIPIED PA)IQIYXS JO JUIAD INAZL JO suawIdar o1wuordA[3
Jo 2Anoadsalr ‘sofewaj pue sofew 0qaoe[d :[oNuo) Ie[ndsesorpied Jord e paousrradxe -1odAy-niue Sunsixa ay) o) pappe
10q 10J SJUAD JR[NISBAOIPIED Appoom pey oym ‘NCZL WM pasouerp uayMm gOVIA Uo apnn[Senp jo
[ooT1] ur uononpar e 03 pof apunSeng DS Sw ¢’ opnnjSen :uonuIAINU] ‘I9p[0 Jo s1edK ()G pasSe sjuened 1066 19910 9y} SSISSE 0) [BLI) [RIIUI[D Y ANIMNTYT
s9ssao01d K10} /10w ¢
-ewwreyur Supensar £q SISOIQOS ueyp ss9f opndad—) ‘Apmys
-019yJe Jo Juawrdo[oAap oY) pIejar oy ur 3xed oxey 03 urim pue sajoqeIp | 2dA) woiy Surogns
0) umoys sem pue sjuaned oy syjuowr 9 10§ A[rep sajoqelp | 2d£) yyim pasouderp syuaned ur oprn[3eIr jo 9[o1 AY)
[66]  £Aq pae1o[o) Afoyes sem opnnjSen] DS Sw g ] 9pHIN[SLII] :UOTIUSAI] pIo s1eak ()9 03 G| paSe syuaned GE 9JenyeAd 0) JNO PaLLIEd sem ApMIS V  #1S.9%S0LON
syuened onjoqerp JISIA JO QW)
ur 0oqooe[d 0y paredwod swnjoa 10309(ur ) B SIBAK () < 93 ‘Apnis oy} syuaned INQZL
anbe|d onjors[osorayie A18U0I00 -uad ‘[w '] 0qadeld :[onuo)  ur edronied o) Surim ‘a10W 10 Ul SISOIQ[OSOIdYIe JO uorssargord
paygrores-uou jo uorssarSord oy uonnos DS [W ¢ /Sw g 9%0°L 9TVQH Sutaey ‘INJZL Woij KIeuoIod uo apnnjSewog jo
[86] 90npPaI 0] PAJou Sem dpnN[Sewas opnn[Sewoas :UOHUIAIIU] Surreyyns 19puas JOYIIL Jo sjudned orl1 199JJ0 AU} QUIWLINAP 0) APMIS ¥V $8€S86E0LON
Apmys 9y JOJ JUISUOD PIULIOJUT
ap1aoid 03 ur[[Im ‘%0 6—%0'9 SONIPIQIOWIOd Te[nd
s9ssao01d K10jetuuRUI DS paosfur-oqaoeld ;[onuo)) STVAH ‘W/3Y 6'6€ uey) ssof 1o -SeAOIpIRD )M sjuaned oneqerp
Surromor £q anbed oy jo az1s Syoam 03 renba (TN g) Xoput ssew Apoq ur uonewoj anbeyd eworoyie Jur
JU) pPUB SJUIAI A D UI UOIONPAI B IOAO WNWIXeW (SW [) Joom B Suraey ‘s1eak 0G 01 g1 UsaMmIeq -UsIunuIp ur opnnjewas jo Loed
[L6] )M POJEIOOSSE Sem opnN[SewaS  90uo0 DS IpNN[SEWS [UOUIAIU] paSe ‘Topuas 1o11e Jo sjusned 101 -1jJo oy Surssasse [eln) [BIUIP YV L61ZE070LON
syuedron
SQOUAIRYY s3urpuy Apm§ Apms 9y} Jo suLry e ANIqisnyg  -red Jo oN ugisop Apm§  Ioqunu [DN

SIOPIOSIP (JAD IOYIO PUE SISOII[OSOIYIE JO UONB[NPOW UI Y [-J 1O Jo sSurpuy [ern feorur)) ¢ ajqel

pringer

AQs



Molecular Biology Reports (2024) 51:835

Page 130f23 835

Clinical studies of GLP-1RAs impacting renal
outcomes

A journey through the clinical investigations using GLP-
1RAs on renal outcomes has been categorized in Yin W
et al. studied recombinant human GLP-1RAs' effect on kid-
ney function and revealed that these agents improved renal
tubules and tubulointerstitial lesions in diabetic nephropathy
rats [127]. GLP-1 also inhibits the activity of multiple pro-
teins that have been associated with diabetic nephropathy,
notably collagen I, alpha-smooth muscle actin (a-SMA),
fibronectin (FN), and tubulointerstitial TNF-a [127, 128].
It also effectively inhibits the level of C-peptide, which is
majorly responsible for the inflammation of tubulointersti-
tial fibrosis [129, 130]. In patients with diabetic kidney dis-
ease, GLP-1RAs, namely liraglutide, and lixisenatide, were
observed to prolong the decline of renal function towards
end-stage renal disease along with a reduction in albumi-
nuria [40, 131]. This response was due to increased cAMP
levels and PKA activity while decreasing NADPH oxidase
activity, interfering with the expression of advanced gly-
cation end product (AGE) receptors, and suppressing the
NF-kp mediated signaling pathway. This mechanism pre-
vents oxidative damage and the production of reactive oxy-
gen species (ROS). This mechanistic view indicates that
GLP-1RAs play a sensible role in renal protection.

[ Indirect effects

~—

Table 4 In the majority of trials, GLP-1 analogs dem-
onstrated enhanced effectiveness in improving serum cre-
atinine (Sr.Cr) levels and glomerular filtration rate (GFR)
in patients with T2DM who were at risk of developing
CKD or already diagnosed with CKD. Yin W et al. studied
recombinant human GLP-1RAs' effect on kidney function
and revealed that these agents improved renal tubules and
tubulointerstitial lesions in diabetic nephropathy rats [127].
GLP-1 also inhibits the activity of multiple proteins that
have been associated with diabetic nephropathy, notably
collagen I, alpha-smooth muscle actin (a-SMA), fibronec-
tin (FN), and tubulointerstitial TNF-a [127, 128]. It also
effectively inhibits the level of C-peptide, which is majorly
responsible for the inflammation of tubulointerstitial fibrosis
[129, 130]. In patients with diabetic kidney disease, GLP-
1RAs, namely liraglutide, and lixisenatide, were observed to
prolong the decline of renal function towards end-stage renal
disease along with a reduction in albuminuria [40, 131].
This response was due to increased cCAMP levels and PKA
activity while decreasing NADPH oxidase activity, interfer-
ing with the expression of advanced glycation end product
(AGE) receptors, and suppressing the NF-«xf3 mediated sign-
aling pathway. This mechanism prevents oxidative damage
and the production of reactive oxygen species (ROS). This
mechanistic view indicates that GLP-1RAs play a sensible
role in renal protection.

[ )

[ GLP-1 receptor agonist

o

#/‘, =R & \
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¥ Oxidative Stress
Inflammation
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1 Glomerular hypertension
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Fig.4 A figure displaying the mechanisms through which GLP-1RAs
can cause renoprotection. Stimulating GLP-1 receptors by GLP-1RAs
potentially be directly or indirectly involved in the restoration of kid-
ney functions leading to reno-protective effects. The direct effects

include maintenance or reduction of oxidative stress, inflammation,
natriuresis, and glomerular hypertension, whereas the indirect effects
include regulation of hypertension, dyslipidemia, and other CV risk
factors [126]
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Exploring the neuroprotective potential
of GLP-1RAs

GLP-1RAs have emerged as a beacon of hope, offering a
potential advantage for neuroprotection in neurodegenerative
diseases. Neurodegenerative disorders, such as Alzheimer’s
disease (AD), and Parkinson’s disease (PD) represent some
of the most challenging and devastating health conditions in
the modern era [138, 139]. As the global population ages,
the burden of these diseases continues to grow, underscoring
the urgent need for innovative therapies. GLP-1RAs have
expanded their therapeutic role from T2DM and obesity to
preserving and restoring neuronal health [11].

Pre-clinical and clinical findings
in neurodegenerative disorders

GLP-1R is known to be expressed in the brain, primarily
affecting the brain function regarding satiety and appetite
via the autonomic nervous system [140]. GLP-1 plays an
important role in a variety of neural functions, including
hippocampus circuit activity, neurite outgrowth stimulation,
cell survival enhancement, and up-regulation of enzyme
and neurotransmitter production (Fig. 5) [7, 141]. GLP-1R
expressions have been identified on neurons, specifically
pyramidal neurons in the hippocampus and neocortex, where
they are found on dendrites and cell bodies. This indicates
that these receptors are crucial for the movement of synaptic
signals among neurons [142, 143]. Novel GLP-1RAs have
a significantly greater biological half-life (ValSGLP-1, lira-
glutide, exendin-4) and have been demonstrated to impact
memory formation and synaptic plasticity in the brain signif-
icantly. Also, along with such effects, GLP-1RAs can cross
the blood-brain barrier, imparting CNS effects unlike most
neuroprotective growth factors [138, 144, 145]. Addition-
ally, mice that overexpressed GLP-1R in the hippocampus
displayed enhanced learning and increased neurite develop-
ment [146]. Recent findings show that co-activation of GIP
and GLP-1 receptors is neuroprotective in a model of PD
and enhances cognitive performance in a rat model of AD
[147]. GLP-1R has been found in astrocytes and microglia,
suggesting that the glia may be crucial in the inflammatory
reactions of the central nervous system [148]. The patho-
genesis of both the 1-methyl-4-phenyl-1,2,3,6-tetrahydropy-
idine (MPTP)-induced PD model and human PD is strongly
influenced by microglial activation [149, 150]. In this study,
exendin-4 (50mcg/kg) showed significant effectiveness in
mitigating the activation of microglial cells induced by
MPTP. Moreover, it effectively curbed the production of
inflammatory cytokines such as TNF-a and IL-1 triggered
by MPTP. A study was conducted with results that showed
that the usage of GLP-1RA for more than 3—6 months helped

@ Springer

individuals with PD and AD with their motor and cognitive
symptoms, respectively. GLP-1 injections daily for eight
weeks showed a substantial improvement in the recogni-
tion index in mice measuring with an object recognition
test, indicating improved learning and memory, while mice
feeding on a high-fat diet led to a decline in cognitive per-
formance [151]. These findings suggest that the inhibitory
impact of exendin-4 on microglial activation holds prom-
ise as a therapeutic approach for the management of PD. In
summary, GLP-1RAs exhibit protection in synaptogenesis,
neurogenesis, cell repair, and reduced inflammation in the
brain [152].

Therapeutic potential of GLP-1RAs in stroke

As the global population ages, the prevalence of stroke
continues to rise, necessitating novel and effective inter-
ventions. GLP-1RAs recently emerged as promising can-
didates for stroke therapy due to their multifaceted neuro-
protective properties [153].

GLP-1RAs reduce neuroinflammation and improve
cognition in stroke

GLP-1R expression within the brain increases the level of
intracellular cAMP via its signaling pathways, which also
serve as the target for neuroprotection in ischemic stroke
[154]. It has been hypothesized that the effect of GLP-
1RAs via cAMP/PKA signaling stimulation may contrib-
ute to the anti-neuroinflammatory activity, given that brain
inflammation is an immunological response mediated by
microglia and astrocytes [155].

GLP-1R expression was found when embryonic pri-
mary cerebral cortical and ventral mesencephalic (dopa-
minergic) neurons were experimentally studied. Hypoxia
and formation of 6-hydroxydopamine cause cell death,
and GLP-1 and exendin-4 protected hypoxia-induced cell
death, and this effect disappeared in the cells from GLP-
1R knockout (—/—) mice [156]. These findings show that
exendin-4 can defend neurons from oxidative and meta-
bolic stresses and provide therapeutic potential in the
management of stroke. Exendin-4 had a strong dilatory
effect on cortical arterioles in acute brain slices of the rat
cerebral cortex and effectively reversed arteriolar constric-
tions brought on by metabolite lactate and glucose depri-
vation in an ex-vivo model of ischemic stroke. Exendin-4
caused significant increases in brain tissue pO,, a sign of
elevated cerebral blood flow via strong dilation of cortical
arterioles, in rats under anesthesia. These findings show
that a pathway involving GLP-1R signaling mediates the
neuroprotection against ischemic stroke created by distant



Page 150f23 835

Molecular Biology Reports (2024) 51:835

i
uonouny reuas paxreduwr 0y Sl
quoid syuaned (gL, ur SJUA
9SIQAPE UI 9SBAIOUT OU PIMOYS
opun[Se[np IOWIYIIN] (08S9ZTTO.LON
"KoeoyJo pasearoulr s)1 Suned ‘897161 T0LDON
-tput ‘dnoIs apuniSe[np oy ur ‘T8TSLOTOLON
MOV JO [0A9] 10481y APYSIs sjudwoImbar Apmis oty “YL7EL00LON
B Sem 219} ‘IoAdmoH “sdnoid s Aidwos 0y Surim orom ‘£89+90T0LON
opnnSenp pue oqaoerd oy 0QooR[d 17 UONUQAION]  ‘opnn[Se[np SUIATEOaI ‘OSeasIp Azl Y syuaned ur ‘12v6¥T1TO0LON
U99M)9q PIJOU Sem SIN[eA syeam 9z 0 dn ‘Sw '] Koupry urdojoaap 03 9qndad uonounj AQupry uo apnnj3e[np “40T110010LDON
MAD-2 pue QUIUNEAId WIS pue G/°0 opunj3enp ur  -Sns AI9M pue gL YIM pIsou JO S)09JJ9 2Y) SUIULIAIAP O} INO ‘6LYT16L00LON
[ogT] UT 90UQIOIP JUBOYIUSIS ON  -ATOOI SJUSNEJ (] . UOTJUSAIIU] -Serp-oxd a10m oym sjuoneq S009 POLIIED SEM SISATRUB-B)OW ‘SZ80€900.LON)
yoom 1od
Q0UO0 DS PAIISIUTWPE IpNN[3
-e[n( Sw ¢'] :¢ UOTIUSAINU]
oom 1ad @D 219498 0) 9JBIOPOIN
Q0UO0 DS pIRISIuIupe 2pnnj3 yIm NAZL Y sjuaned ur
@D wo Surrayns NI, JO -e[n(q SW G/°() :7 UOTIUAIU] [011U0D OTWRIA[S UO JuISIe[D)
syuaned ur [01nuod JIIBIAIF aunpaq %S°01 > PUe %6 L <9 VIH urnsuy yim apnnisen ared
Jo swI) ur QuIdre[S urmnsur oy 18 DS PRIdISIUIWIPE Sem ‘uonedIpaw dNageIP-NUE 10 -wod 0} Apm§ WIy-[o[[ered
[sc1] Aprermurs powroprod opnn3e[n(  QUISIE[D UINSU] :] UOTJUSAIIU]  UI[NSUI [BIO UO ‘SIBIK Q] < 9Ty LLS ‘1oqe1-uadQ ‘paziwopuey v 8L1129T0LDON
SANIPIGIOWOd INAZL Jo sisougeip
Pale[aI-AD JO Juawdo[oAap JuUEaIn) PoWLIJuOd © SUIARY ‘SYIUOW ¢ KouaroLynsur [eual woij
oy} pajuanald pue uonouny s1sATerp oqooeld A[re(q ;Jonuo)  JOJ Juowjean) SISATRIp OTUOIYD Surreyns NI yim sjuoned
[BUSI PUE [9AJ] SUIUTIEAIO JuSUIEaI) SISARIP OTUOIYO uo ‘@YSH woij Suroyns ur apnnjSeIry Jo s109)9 oY)
[rer] oy) pasordwi opnn[Serr]  Yim OpHN[SeIIT (UONUAAION]  ‘SIeaA G8—8] pade sjuedionreq oy Qjen[ead 01 Apnjs [eOIUID Y 17€P6€T0LON
sistuoejue 10)dodox
uorjounj reuar suraordur QUOId)SOp[e—UuIsud)oIue
SNy ‘SIoyIew AJOJewtueul —UTUQI SB Yons ‘uonouny [eual
WNIos pue AIeULIn pue ‘oIns urejurew o) sSnip prepuels 1018013 OSBOSIp [BUAI O130qEIp
-sa1d [er1o)Ie UBQW ‘Xopul SUIAI909I S)uANe ] [[0NU0D 10 Zwy/3Y 7 TING ‘sTedk ¢ yim syuaned ur apnni3er jo
ssewl Apoq UBSW Ul SUOTIONPAI sypuow 9 J0y AJrep anoqe 33e ‘%6-9 DI VIH Koeo1yy0 pue A1oJes At} ssasse
lecT] JUEOYIUSTS PalIqIYXa siuened  Sur 9°() OPUN[SLIr] :UONUdAINU]  SurAey IO WATL Wi siudled ¥C 0} [e10) [eOIUl[d paZIWopuel €1ELY8TOLON
soqooe[d 0y paredwod
dd PIOMO] OS[e PUR S[9AJ]
urunge paonpar apunfsewes (s1onqryut (@)
UYOTYM UI ((SH) 9Seasip -1 IDS ‘urnsul feseq) sjuoge syuowaIbar Apms 9seasIp Aoupry o1uoIy) pue
[euar a3e)s-pud Jurdo[oadp oneqeIp-NuUE IAY)Q [[oNuo)  yim A[dwod 03 Surim ‘@D NAZL ym syuaned ur apn
10§ YSLI IIoY) MOUS 0} PIIpNIs 8y pue INQZL s pasousSerp -nSewog Jo s109%9 oy} Apmis
QIoMm S[OAQ[ BLINUTWING[EOI /3w | ‘3y/Fw ¢°( ‘3y/3w G7°0) (gL T/utuwy/Tur G < el 0] [eL1) [BDIUIO [RUONBAIISQO
[zen] -OBW PASLIOUI 1M SIUdled ApNN[SeWwas UONUAAINU] YD ‘SIeAA [ <) YIIM sjuaned el ‘aAndadsonal Ormudonnu Y UQAIS J0U Joquinu [ ON
syuedron
SQOUAIJIY sSurpuy Apms Apms 2y} Jo sury e ANTIqiSg  -red jo oN u3isap Apm§ oqunu JON

uonoajoxd [eudr ur vy [-d'TO JO sSuIpuy [ewn [edmur) ¢ 3jqel



835 Page 16 of 23

Molecular Biology Reports (2024) 51:835

Table 4 (continued)
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and placebo

ischemia training [157]. Another study utilizing liraglu-
tide prevented brain edema, and neurologic deficits and
reduced the inflammatory response produced by intrac-
erebral hemorrhage (ICH) in mice. This protection was
mechanistically medicated via activation of AMPK, which
can reduce the expression of proinflammatory mediators
like ICAM-1 and E-selectin [158-160]. In a rat model of
middle cerebral artery occlusion (MCAO) stroke, liraglu-
tide exhibited comparable protective qualities by reducing
apoptosis and oxidative stress in the affected brain region
[161]. In another study, animals treated with semaglutide
had lower neurological impairment scores on a variety
of motor and grip strength measures along with reduced
extent of cerebral infarction [159, 162]. GLP-1RAs exhibit
neuroprotection, but the definite mechanism that mediates
this response is yet to be known, which invites further
studies [163]. The effect of GLP-1RAs in improving cog-
nitive behavior, motor skills, and neuroprotection in neu-
rodegenerative diseases and stroke opened up new ways to
repurpose drugs as therapeutic interventions for neurologi-
cal diseases [164].

Safety profile and adverse effects
of GLP-1RAs

During clinical trials using GLP-1RAs, gastrointestinal
issues were the most reported side effects among all partic-
ipants. Vomiting, constipation, abdominal discomfort, and
dyspepsia were all reasonably prevalent (1/10 to 1/100),
but nausea and diarrhea were highly common (1/10) [165].
At the onset of the therapy, these side effects appeared
more frequent, but as the therapy proceeded, gastrointes-
tinal issues gradually subsided. The peak of the GLP-1
effects, which is visible in conjunction with the injection,
is thought to be the cause of the activation of the brain
regions responsible for controlling appetite, satiety, and
nausea [166, 167]. Transient nausea may be clinically
insignificant but attributed to about 15% of the cases upon
administration of GLP-1RAs, which can be due to delayed
emptying of gastric contents. When compared exenatide
with liraglutide, exenatide shows 15% more cases of nau-
sea and gastric discomfort [168]. Diarrhea may also result
using GLP-1RAs in 10% to 20% of patients [169]. It is also
postulated that continuous usage of these agents can cause
a significant decrease in gastric acid and lipase secretion.
Along with gastric disturbances, usage of GLP-1RAs in
animals and humans has reported several long-term safety
concerns although there are few reliable epidemiological
data available on the prevalence of acute pancreatitis in
people with T2DM. Exenatide patients suffered pancreati-
tis at the incidence of 27 occurrences per 100,000 patients
[170]. A numerically higher incidence of benign adenomas
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Fig.5 Visual representation of
the beneficial roles of GLP-1RA
in neuroprotection. GLP-1RAs
facilitate neuronal repair by
regulating hippocampal circuit
activity, stimulating neurite out-
growth, enhancing cell survival,

Insulin/
neurotransmitter
release
Channel
activation T
Voltage gated

Ca*2 channel

and increasing the production of
enzymes and neurotransmitters.
They inhibit neuronal apoptosis,
the release of proinflammatory

cytokines, and oxidative stress.
Conversely, they promote the
synaptic formation and improve
mitochondrial function, thereby
supporting neurogenesis

Inhibits/reduces:
Apoptosis
Pro-inflammatory cytokine release
Tau phophorylation
Oxidative stress

T: Increase
{: Decrease

was seen in preclinical experiments on female rats exposed
to exenatide. It was not statistically different when this
increase in adenoma incidence was corrected for the rat
life span. In humans, only five thyroid neoplasm cases in
the clinical studies were reported [171]. Regarding GLP-1
effects on the colon, GLP-1 may decrease intestinal motil-
ity via reduced circular contractions in full-thickness mus-
cular colon strips. Hence, gastrointestinal symptoms are
common but short-lived, and they do not pose a significant
barrier or risks to using these drugs comparing their ben-
efits [172].

Conclusion and future perspectives

GLP-1RAs emerged as a great hope for individuals grappling
with the intricate relation of chronic glucose regulation. GLP-
1RAs have recently gained global attention for their role in
blood glucose control in diabetes, as well as their impact on
other diseases. It is well-known that diabetes and other comor-
bidities may increase the likelihood of other complications,
including cardiovascular, hepatic, renal, and cerebrovascular
diseases in the patients, and the multifaceted roles of GLP-
1RAs in these pathologies have been highlighted in the present
review. However, the amount of evidence that supports the
comprehensive roles of GLP-1RAs and their mechanisms has

Facilitates:

Synapse formation
Mitochondrial function
Neurogenesis

not yet been fully explored. Further investigations are war-
ranted considering the expansion of GLP-1RAs in potential
benefits from diabetes and associated disorders.
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