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Abstract
Background  In Bangladesh, only a fraction of prostate cancer patients are diagnosed annually due to lack of symptom 
awareness and screening challenges, resulting in high mortality. Aiming to improve screening methods, we evaluated X-ray 
cross-complementing gene 1 (XRCC1) Arg194Gln and Xeroderma pigmentosum group D (XPD) Lys751Gln polymor-
phisms to determine their relevance as potential markers for predicting prostate cancer risk, severity and clinical parameters 
in Bangladeshi population.
Methods and results  This study included 132 prostate cancer patients and 135 healthy controls. Genotype analysis was done 
from blood samples by the PCR-RFLP method. The XRCC1 Trp/Trp genotype was associated with prostate cancer (ORadj = 
5.51; 95% CI = 1.13–26.78; p-value = 0.03) compared to Arg/Arg genotype. No significant association was found between 
the XPD variants and prostate cancer risk. The XRCC1 Trp/Trp genotype increased prostate cancer risk in smokers and non-
smokers but was statistically non-significant. In individuals without a family history of cancer, the XRCC1 Trp/Trp genotype 
had a non-significant 4.64-fold higher risk (ORadj=4.64; 95% CI = 0.88–24.36; p-value = 0.07), while the XPD Gln/Gln had 
a 2.66-fold non-significant higher risk (ORadj=2.66; 95% CI = 0.88–8.10; p-value = 0.09). The XRCC1 Trp/Trp variant was 
associated with hematuria risk, higher mean serum creatinine, and mean prostate-specific antigen (PSA) levels in prostate 
cancer patients. The XPD Gln/Gln variant was only associated with higher mean serum creatinine levels.
Conclusion  Our findings suggest that XRCC1 screening may be used as a biomarker for prostate cancer to improve early 
diagnosis in Bangladesh.

Keywords  DNA repair genes · Polymorphism · XRCC1 · XPD · Prostate Cancer

Received: 8 April 2024 / Accepted: 6 June 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

XRCC1 and XPD polymorphisms: clinical outcomes and risk of prostate 
cancer in Bangladeshi population

Nafisa Ahmed1  · Md. Ariful Islam2,3  · M. Mahboob Hossain1  · Yearul Kabir2

1 3

http://orcid.org/0000-0001-5584-0910
http://orcid.org/0000-0003-3565-4891
http://orcid.org/0000-0001-8307-0028
http://orcid.org/0000-0002-0242-9199
http://crossmark.crossref.org/dialog/?doi=10.1007/s11033-024-09707-y&domain=pdf&date_stamp=2024-8-7


Molecular Biology Reports          (2024) 51:893 

XPD	 �Xeroderma pigmentosum group D
XRCC1	 �X-ray cross-complementing gene 1

Introduction

Prostate cancer (PCa) remains the second most prevalent 
carcinoma and the fifth leading cause of male cancer death 
[1]. Current therapeutic approaches for high-risk non-met-
astatic PCa patients include the combination of abiraterone 
with prednisolone and androgen deprivation therapy (ADT) 
[2]. In the metastatic setting, enzalutamide and abiraterone 
should not be combined for those starting long-term ADT, 
as recently reported by Attard et al. (2023) [2]. Despite the 
excellent outcomes in the trials, there remains concerns 
regarding the risks of harm from continuous treatment to 
progression [2]. Thus, novel therapeutic approaches are 
needed. These advances in therapy also underscore the 
importance of early detection and proper screening, as 
available treatment options can significantly improve sur-
vival rates if the disease is diagnosed early. The occur-
rence of PCa in developing countries is much lower, yet 
survival rates are low [3, 4]. Developing countries account 
for a significant proportion of PCa incidence and mortal-
ity globally [5]. According to the Global Cancer Statistics 
2020, PCa ranked second in countries with higher Human 
Development Index (HDI) following lung cancer and first in 
countries with lower HDI countries among men [1]. In Ban-
gladesh, out of 1.3–1.5 million PCa patients, only 0.2 mil-
lion are diagnosed annually due to a lack of symptoms, 
awareness, and screening techniques [6]. Additionally, most 
deaths occur due to late diagnosis. While PCa is screened 
on prostate-specific antigen (PSA) and digital examination, 
there remains an unmet need for an effective PCa screening 
method to reduce cancer-related mortality in Bangladesh.

Genetic variations are increasingly implicated in prostate 
carcinogenesis and its use in PCa prediction and prognosis 
[7–9]. Abnormalities in DNA repair genes, either germline 
or somatic, are detected in 19% of primary PCa cases and 
nearly 23% in advanced castration-resistant PCa cases [10]. 
For instance, pathogenic variants of BRCA1 have been 
linked to high Gleason score (aggressive tumor grades), 
distant metastases, and high chances of recurrence [10]. 
Polymorphisms of genes involved in DNA repair may alter 
protein function and an individual’s capacity to repair dam-
aged DNA, thus modulating susceptibility to cancer [11]. 
Base excision repair (BER) is a DNA repair pathway that 
precisely repairs non-bulky adducts, strand breaks, and 
endogenous base damage [12]. The X-ray Cross Comple-
menting 1 (XRCC1) protein is an essential enzyme in the 
BER pathway encoded by the XRCC1 gene on chromo-
some 19q13.2-13.3 [13, 14]. The protein recognizes and 

binds to single-strand breaks (SSBs) by complexing with 
DNA ligase III at its COOH terminus, DNA polymerase β at 
its NH2 terminus domain, human AP endonuclease (APE1), 
polynucleotide kinase, and poly(ADP-ribose) polymerase at 
the repair site [13]. One polymorphism in codon 194 in exon 
6 of the XRCC1 gene (at position 26,304 on exon 6, base 
C to T, amino acid Arg to Trp, rs1799782) resulting in an 
arginine-to-tryptophan transition has been linked to cancer 
susceptibility in case-control studies of numerous cancers 
such as breast cancer [15], lung cancer [16], thyroid [17] 
and bladder cancer [18]. Data in PCa are much more con-
flicting across different races [19–22].

Another DNA repair pathway, nucleotide excision repair 
(NER), corrects various DNA lesions, including chemically 
induced bulky adducts, cross-links, and pyrimidine dimers, 
by excising the short single-stranded DNA segment contain-
ing the lesion and then repairing it through DNA synthesis 
and ligation [23]. Xeroderma Pigmentosum Complementary 
group D (XPD) is an ATP-dependent 5′-3′ helicase involved 
in NER, which interestingly, like XRCC1, also maps to 
chromosome 19q13.3 [24]. The XPD protein, an essential 
subunit of the transcription factor IIH (TFIIH) complex, 
unwinds DNA in damaged regions [25]. An XPD variant 
at position 751 in exon 23 (at position 35,931 on exon 23, 
base A to C, rs13181) causing a lysine-to-glutamine tran-
sition has been associated with non-small cell lung cancer 
[26], breast cancer [27], bladder cancer [28], and colorectal 
cancer [29]. However, several studies failed to identify an 
increased PCa risk with XPD Lys751Gln polymorphism, 
namely in the Indian population [30], the Taiwanese popu-
lation [31], and the South Australian population [32]. The 
precise role of XRCC1 Arg194Trp and XPD Lys751Gln as 
genetic polymorphisms in PCa risk among men of Bangla-
desh remains largely unknown.

In this study, we evaluated the associations between these 
genetic polymorphisms and the risk of PCa in the Bangla-
deshi population. We also considered their smoking his-
tory and family history of cancer. In addition, studies on 
the Single Nucleotide Polymorphisms (SNPs) association 
with biochemical parameters and clinical features of PCa 
patients are relatively scarce. Therefore, we also explored 
the SNPs’ association with the patient’s clinical features, 
including PSA levels, serum creatinine levels, tumor stag-
ing, histopathological grading and digital rectal examina-
tion (DRE) findings.
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Materials and methods

Subject selection criteria

A total of 132 PCa patients with histologically diagnosed 
PCa were recruited from the Department of Urology of Ban-
gladesh Institute of Research and Rehabilitation in Diabetes, 
Endocrine, and Metabolic Disorders (BIRDEM) General 
Hospital, Bangabandhu Sheikh Mujib Medical University 
(BSMMU) and Dhaka Medical College Hospital (DMCH), 
Dhaka, Bangladesh. The control group comprised 135 
healthy subjects who were unrelated to the cases from the 
same geographic area. Participants with a history of other 
chronic diseases and cancer were excluded from the study.

Data collection by interview

With informed consent, participant details including age, 
smoking history, and family history of chronic diseases 
were obtained using a structured questionnaire. Clinical 
data were recorded in the presence of the attending physi-
cian. Present and former smokers were considered smokers, 
whereas individuals who had never smoked were classified 
as non-smokers. The tumor grade was classified as either 
low grade (Gleason’s score < 7) or moderate to the high-
grade tumor (Gleason’s score ≥ 7). The cancer stage was 
categorized into two groups: Localized or Organ-confined, 
which included T1a-c/T2a-b N0 M0, and Locally advanced 
or metastatic, which had T3a-b/T4/N1/M1, according to 
TNM classification. The study was conducted following the 
approval from the Ethical Review Committees of the Fac-
ulty of Biological Sciences, University of Dhaka (Ref no. 
206/Biol. Scs).

Sample Collection and DNA extraction

About three milliliters (3.0 mL) of venous blood was drawn 
from each participant by a phlebotomist. The drawn blood 
was immediately transferred to EDTA (1.20 mg/mL) tubes. 
Genomic DNA was extracted from the whole blood samples 

using FavorPrep™ Blood Genomic DNA Extraction Mini 
Kit according to the manufacturer’s protocol.

Genotyping

The XRCC1 codon 194 and XPD 751 genotypes were deter-
mined using the PCR-RFLP technique. Briefly, two sepa-
rate PCR assays were used to amplify the XRCC1 codon 
194 and XPD codon 751 polymorphisms using primer 
sequences (Table 1) and PCR conditions following previ-
ously published papers [33–35]. Restriction enzymes PvuII 
for XRCC1 codon 194 and PstI for XPD codon 751 poly-
morphisms (New England Biolabs, USA) were used for 
restriction fragment analyses (Supplementary Figure S1 
and S2).

Statistical analysis

Statistical analysis was performed using IBM SPSS Statis-
tics (v20.0; IBM Corp). Using logistic regression models, 
the relative associations were determined by calculating the 
odds ratio (OR) with 95% confidence intervals (CIs) and 
level of significance (p). Graph Pad Prism (v 8.4.2) was used 
to run the t-tests and Fisher’s exact tests. p-value < 0.05 was 
taken as the significance level.

Results

Study subjects

Table  2 lists the baseline characteristics and the clinical 
parameters of the study subjects. The patients age ranged 
from 49 to 85, with a mean age of 67 years. Controls were 
between the ages of 47 and 88 years, with a mean age of 
65 years. More than half (56.06%) of the cancer patients 
were between the ages of 60–70, while the least propor-
tion (15.91%) of patients was observed in the < 60-year 
group. Smoking was more common among the cases com-
pared to the controls (60.61% vs. 38.52%, p-value < 0.001). 

Table 1  Primer sequences for allele determination, with amplicon size and the resultant digested products size
Gene 
Name

Gene Acces-
sion Number

dbSNP ID Primer (5’-3’) Ampli-
con 
size

Restriction Digestion Products Reference

XRCC1 NM_006297.3 rs1799782 FP: ​G​T​T​C​C​G​T​G​T​G​A​A​G​G​A​G​G​A​G​G​A
RP: ​C​G​A​G​T​C​T​A​G​G​T​C​T​C​A​A​C​C​C​T​A​C​
T​C​A​C​T

138 bp Arg/Arg: 138 bp
Arg/Trp: 138 bp, 75 bp and 63 bp
Trp/Trp:75 bp and 63 bp

(Chacko, 
Rajan, Joseph, 
Mathew, & 
Pillai, 2005)

XPD NM_000400.4 rs13181 FP: ​C​C​C​C​C​T​C​T​C​C​C​T​T​T​C​C​T​C​T​G​T​T​C
RP: ​G​G​A​C​C​T​G​A​G​C​C​C​C​C​A​C​T​A​A​C​G

413 bp Lys/Lys: 413 bp
Lys/Gln: 413 bp, 322 bp and 
91 bp
Gln/Gln: 322 bp and 91 bp

(Mitra et al., 
2009; Nairuz, 
Bushra, & 
Kabir, 2021)
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(63.64%). Above 60% of patients had UTIs, while only 
27.27% had hematuria. Most patients had BMI in the nor-
mal range of 18.5–24.9 kg (83.33%) and average serum cre-
atinine levels (0.7–1.3 mg/dl) (68.94%). However, majority 
(82.58%) had elevated PSA values (> 10 ng/ml).

Frequency distribution of XRCC1 and XPD 
polymorphism and PCa risk

The XRCC1 homozygous mutant type (Trp/Trp) genotype 
increased PCa risk 5.51-fold (ORadj = 5.51; 95% CI = 1.13–
26.78; p-value = 0.03) compared to homozygous wild type 
(Arg/Arg) genotype (Table 3). Heterozygous mutant (Arg/
Trp) risk was not associated with PCa (ORadj = 1.21; 95% 
CI = 0.73–1.98; p-value = 0.46). The recessive model analy-
sis was used to assess the effect of the minor allele (Trp 
allele) on the association of PCa risk. The recessive model, 
i.e., carrying two copies of the XRCC1 194 codon Trp allele, 
was positively associated by 4.88 times with the risk of PCa 
(ORadj=4.88; 95% CI = 1.24–22.62.12; p-value = 0.03).

In the analysis of XPD genotypes, the homozygous 
mutant variants (Gln/Gln) of XPD had 2.25 times the risk of 
PCa compared to the wild type variant, however, the asso-
ciation was non-significant (ORadj=2.25; 95% CI = 0.81–
6.28; p-value = 0.12). Similarly, carrying two copies of 
the XPD codon 751 Gln allele was non-significantly asso-
ciated (2.5-folds) with the risk of PCa (ORadj=2.55; 95% 
CI = 1.01–6.67; p-value = 0.07) as observed in the recessive 
model analysis.

Combined genotypic effects of XRCC1 and XPD 
polymorphisms on PCa Risk

Pairwise joint associations of XRCC1 Arg194Trp and XPD 
Lys751Gln genotypes with PCa risk were all non-signifi-
cant (Table  4, Supplementary Table S1). The combined 
effect of XRCC1 Trp/Trp and XPD Lys/Lys has the high-
est risk of PCa (8.23 folds) but was statistically insignifi-
cant (OR = 8.23; 95% CI = 1.33–95.83; p-value = 0.06). No 
healthy control was homozygous mutant in both genes, so 
its combined effect could not be compared.

XRCC1 and XPD polymorphism on risk of PCa based 
on Smoking Status and Family History of Cancer

Smokers with XRCC1 Trp/Trp genotype had a non-
significant 5.45 times increased PCa risk (ORadj=5.45; 
95% CI = 0.63–47.39; p-value = 0.13) and XPD Gln/
Gln genotype had a non-significant 3-fold increased PCa 
risk (ORadj=3.04; 95% CI = 0.59–15.40; p-value = 0.18) 
(Table  5). Surprisingly, none of the variants of XRCC1 
or XPD were significantly associated with PCa risk in 

Additionally, the cases had a higher prevalence of fam-
ily history of cancer than the controls (16.67% vs. 3.7%, 
p-value < 0.05).

Most of the patients had low-grade (Gleason’s score < 7) 
tumors (59.09%) and localized organ-confined tumors 

Table 2  Baseline and clinical characteristics of the study subject
Baseline and Clinical 
Characteristics

Control 
(n = 135) n 
(%)

Case 
(n = 132) n 
(%)

p-value

Age (Year)a 65.13 ± 0.74 67.34 ± 0.73 0.03
  < 60 29 (21.48) 21 (15.91)
  60–70 79 (58.52) 74 (56.06) 0.23
  > 70 27 (20) 37 (28.03)
BMI (kg/m2)
  < 18.5 - 0 (0)
  18.5–24.9 - 110 (83.33) -
  25.0-29.9 - 22 (16.67)
  > 29.9 - 0 (0)
Smoking status
  Non-Smoker 83 (61.48) 52 (39.39)
  Smoker 52 (38.52) 80 (60.61) < 0.001
Family History of Cancer
  No 127 (94.07) 110 (83.33) -
  Yes 8 (5.93) 22 (16.67) < 0.01
Grading of Tumor
  Gleason score < 7 - 78 (59.09) -
  Gleason score ≥ 7 - 54 (40.91) -
Tumor Staging
  Localized or 
Organ-confined

- 84 (63.64) -

  Locally advanced or 
metastatic

- 48 (36.36) -

DRE
  Soft mass with smooth 
surface

- 49 (37.12) -

  Hard mass with irregular 
surface

- 83 (62.88) -

Hematuria
  Absent - 96 (72.73) -
  Present - 36 (27.27) -
UTI
  Absent - 51 (38.64) -
  Present - 81 (61.36) -
Creatinine (mg/dl)
  < 0.70 - 0 (0) -
  0.7–1.3 - 91 (68.94) -
  > 1.3 - 41 (31.06) -
PSA (ng/ml)
  ≤ 6.5 - 5 (3.79) -
  6.6–10 - 18 (13.64) -
  > 10 - 109 (82.57) -
aMean±SEM; bNumbers in parentheses show percentages. Body 
Mass Index (BMI); Digital rectal examination (DRE); Urinary Tract 
Infection (UTI); Prostate-specific Antigen (PSA); p < 0.05 was taken 
as the level of significance
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Lys/Gln and Gln/Gln genotypes increased the risk of having 
locally advanced or metastatic tumors by 3-fold but did not 
reach statistical significance. The XRCC1 Trp/Trp genotype 
increased hematuria risk by 12.57 times (p-value > 0.05). 
The homozygous mutant genotypes of XRCC1 and XPD 
increased the risk of higher serum creatine levels (Table 6). 
Having the mutant homozygous genotype of XRCC1 also 
increased the risk of having higher PSA levels in patients.

Mean serum creatinine levels (1.41 mg/dl vs. 1.19 mg/dl) 
and mean PSA levels (73.2 ng/ml vs. 44.2 ng/ml) were higher 
in patients with XRCC1 Trp/Trp genotype (p-value < 0.05) 
(Fig.  1). Accordingly, the homozygous mutant Gln/Gln 
genotype of the XPD gene was also significantly associated 
with higher creatinine levels in PCa patients (1.34 mg/dl vs. 
1.17 mg/dl) (p-value = 0.04) (Fig. 2).

individuals with a family history of cancer. In those with-
out a family history of cancer, the XRCC1 Trp/Trp geno-
type had a 4.64-fold higher risk of PCa (ORadj=4.64; 95% 
CI = 0.88–24.36; p-value = 0.07), while the XPD Gln/Gln 
had a 2.66-fold higher risk (ORadj=2.66; 95% CI = 0.88–
8.10; p-value = 0.09). Both were statistically insignificant 
(p-value > 0.05).

Association of XRCC1 and XPD polymorphism with 
clinical parameters of patients

XRCC1 Arg194Trp or XPD Lys751Gln polymorphism was 
not significantly associated with tumor grade, tumor stage, 
DRE results, or UTIs (p-value > 0.05) (Table 6). However, 
the XRRC1 Trp/Trp genotype doubled the likelihood of 
high-grade tumors (Gleason score ≥ 7). Conversely, the XPD 

Table 3  Genotype frequencies of XRCC1 codon 194 and XPD codon 751 using codominant, homozygous dominant, homozygous recessive, and 
over-dominant models
Genotype model Genotype Control (n = 135) n (%) Case (n = 132) n (%) ORadj (95% CI) p-valueadj

XRCC1
Co-dominant model Arg/Arg 69 (51.11) 58 (43.94) 1 (Ref) -

Arg/Trp 64 (47.41) 65 (49.24) 1.21 (0.73–1.98) 0.46
Trp/Trp 2 (1.48) 9 (6.82) 5.51 (1.13–26.78) 0.03

Dominant model Arg/Arg 69 (51.11) 58 (43.94) 1 (Ref) -
Arg/Trp + Trp/Trp 66 (48.89) 74 (56.06) 1.33 (0.82–2.18) 0.28

Recessive model Arg/Arg + Arg/Trp 133 (98.52) 123 (93.18) 1 (Ref) -
Trp/Trp 2 (1.48) 9 (6.18) 4.88 (1.24–22.62) 0.03

Over-dominant model Arg/Arg + Trp/Trp 71 (52.59) 67 (50.76) 1 (Ref) -
Arg/Trp 64 (47.41) 65 (49.24) 1.06 (0.67–1.74) 0.82

XPD
Co-dominant model Lys/Lys 68 (50.37) 64 (48.48) 1 (Ref) -

Lys/Gln 61 (45.19) 54 (40.91) 0.91 (0.55–1.51) 0.72
Gln/Gln 6 (4.44) 14 (10.61) 2.25 (0.81–6.28) 0.12

Dominant model Lys/Lys 68 (50.37) 64 (48.48) 1 (Ref) -
Lys/Gln + Gln/Gln 67 (49.63) 68 (51.52) 1.08 (0.67–1.75) 0.81

Recessive model Lys/Lys + Lys/Gln 129 (95.56) 118 (89.39) 1 (Ref) -
Gln/Gln 6 (4.44) 14 (10.61) 2.55 (1.01–6.67) 0.07

Over-dominant model Lys/Lys + Gln/Gln 74 (54.81) 78 (59.09) 1 (Ref) -
Lys/Gln 61 (45.19) 54 (40.91) 0.84 (0.51–1.37) 0.54

Adjusted for age in Logistic Regression. Odds ratios (OR) and 95% confidence interval (95%CI); p < 0.05 was considered as the level of sig-
nificance

Table 4  Combined genotypic effects of XRCC1 Arg194Trp and XPD Lys751Gln and PCa risk
XRCC1 XPD Control (n = 135) n (%) Case (n = 132) n (%) OR (95% CI) p-value
Arg/Arg Lys/Lys 38 (28.15) 32 (24.24) 1 (Ref) -
Arg/Arg Gln/Gln 2 (1.48) 5 (3.79) 2.88 (0.54–15.03) 0.26
Arg/Trp Gln/Gln 4 (2.96) 9 (6.82) 2.59 (0.69–8.08) 0.23
Trp/Trp Lys/Lys 1 (0.74) 7 (5.30) 8.23 (1.33–95.83) 0.06
Trp/Trp Lys/Gln 1 (0.74) 2 (1.52) 2.28 (0.16–36.20) 0.59
Trp/Trp Gln/Gln 0 (0) 0 (0) - -
Trp/Trp Any Gln 1 (0) 2 (1.52) 2.38 (0.26–35.2) 0.6
Any Trp Gln/Gln 4 (2.96) 9 (6.82) 2.59 (0.69–8.08) 0.23
Odds ratios (OR) and 95% confidence interval (95%CI); p < 0.05 was considered as the level of significance
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case-control study examining whether the XRCC1 codon 
194 and XPD 751 polymorphisms influence the risk of PCa 
in the Bangladeshi population.

The XRCC1 Arg194Trp polymorphism resides in the 
linker region separating the NH2-terminal domain and the 
BRCT1 (BRCA1 C-terminus) domain, directly impacting 
enzymatic function [39]. However, the polymorphism does 
not cause a complete loss of protein function, as evidenced 
by the lethal condition observed in mice during embryonic 
development when XRCC1 is inactivated [40]. In our study, 
we found that PCa patients with XRCC1 codon 194 Trp/Trp 
genotype were 5.51 times at higher risk of PCa compared 
with controls than those carrying the Arg/Arg genotype. 
Consistent with our result, the genotype 194Trp/Trp was 
found to be associated with an increased risk of PCa in the 
Chinese population [19]. In a Japanese population, however, 
the 194 Arg/Trp genotype instead of the Trp/Trp genotype 
was significantly more prevalent in PCa patients than in con-
trols [20]. The same study also discovered that having only 
one Trp allele (Arg/Trp and Trp/Trp genotypes) doubled the 
chance of developing prostate cancer. Their findings conflict 
with our dominant model analysis, which indicated that the 
genotypes Arg/Trp + Trp/Trp did not significantly increase 

Discussion

Predictive factors can assist clinicians in tailoring treat-
ments for individual patients. Recently, liquid biopsy has 
emerged as a promising alternative to invasive tissue biop-
sies, offering minimal invasiveness for prostate cancer diag-
noses. Liquid biopsy is used to evaluate several biomarkers 
in body fluids, including circulating tumor cells (CTCs), 
extracellular vesicles (EVs), circulating tumor DNA 
(ctDNA) and RNA (ctRNA), as well as serum biomarkers 
like miRNA, AR-Vs, bone metabolism, neuroendocrine, 
and metabolic markers [36, 37]. However, the high cost, the 
discrepancies in definition, isolation methods and standard-
ization pose challenges to validating these tests and being 
approved for clinical use. Given the ongoing difficulties in 
developing liquid biopsy biomarkers for clinical use, SNPs 
in DNA repair genes emerge as a promising area for devel-
oping noninvasive biomarkers with prognostic significance 
[36]. Identifying gene polymorphisms in PCa-associated 
pathways could improve early diagnosis, provide selective 
chemoprevention, and better understand the complexity of 
biological pathways involved in prostate carcinogenesis 
[38]. Our present study was a molecular population-based 

Table 5  XRCC1 and XPD genotype on risk of PCa according to smoking status and family history of cancer
Variables Genotype Control (n = 135) n (%) Case (n = 132) n (%) ORadj (95% CI) p-valueadj

XRCC1
  Non-smoker Arg/Arg 43 (31.85) 24 (18.18) 1 (Ref) -

Arg/Trp 39 (28.89) 26 (19.70) 1.18 (0.58–2.41) 0.65
Trp/Trp 1 (0.74) 2 (1.52) 3.72 (0.32–43.79) 0.29

  Smoker Arg/Arg 26 (19.26) 34 (25.76) 1 (Ref) -
Arg/Trp 25 (18.51) 39 (29.55) 1.19 (0.58–2.46) 0.62
Trp/Trp 1 (0.74) 7 (5.30) 5.45 (0.63–47.39) 0.13

  No Family History of Cancer Arg/Arg 65 (48.15) 45 (34.09) 1 (Ref) -
Arg/Trp 60 (44.44) 59 (44.70) 1.43 (0.84–2.42) 0.19
Trp/Trp 2 (1.48) 6 (4.55) 4.64 (0.88–24.36) 0.07

  Have Family History of Cancer Arg/Arg 4 (2.96) 13 (9.85) 1 (Ref) -
Arg/Trp 4 (2.96) 6 (4.55) 1.05 (0.30–3.65) 0.94
Trp/Trp 0 (0) 3 (2.27) - -

XPD
  Non-smoker Lys/Lys 40 (29.63) 26 (19.70) 1 (Ref) -

Lys/Gln 39 (28.89) 21 (15.91) 0.77 (0.37–1.62) 0.49
Gln/Gln 4 (2.96) 5 (3.79) 1.85 (0.44–7.68) 0.40

  Smoker Lys/Lys 28 (20.74) 38 (28.79) 1 (Ref) -
Lys/Gln 22 (16.30) 33 (25.00) 1.09 (0.53–2.27) 0.81
Gln/Gln 2 (1.48) 9 (6.82) 3.04 (0.59–15.40) 0.18

  No Family History of Cancer Lys/Lys 66 (48.89) 54 (40.91) 1 (Ref) -
Lys/Gln 56 (41.48) 44 (33.33) 0.93 (0.54–1.59) 0.78
Gln/Gln 5 (3.70) 12 (9.09) 2.66 (0.88–8.10) 0.09

  Have Family History of Cancer Lys/Lys 2 (1.48) 10 (7.58) 1 (Ref) -
Lys/Gln 5 (3.70) 10 (7.58) 0.38 (0.06–2.49) 0.31
Gln/Gln 1 (0.74) 2 (1.52) 0.34 (0.02–6.25) 0.47

Adjusted for age in Logistic regression using selection variable. Odds ratios (OR) and 95% confidence interval (95%CI); p < 0.05 was considered 
as the level of significance

1 3

  893   Page 6 of 11



Molecular Biology Reports          (2024) 51:893 

response to the genotoxic chemical than the Arg/Trp varian 
[41]. These data imply a possible genomic instability asso-
ciated with the wild-type variant and not with the mutant 
variants. Due to the lack of participants carrying the rare 
homozygous mutant Trp/Trp genotype, its effect on SCE 
could not be studied. Even so, the association between SCP 
and Arg/Arg genotype was observed in a small study popu-
lation in their study and did not reach statistical significance. 
Wang and colleagues also reported significantly more chro-
mosomal breaks in the wild-type Arg/Arg when compared 
to the homozygous/heterozygous variant group [42], sug-
gesting the wild-type Arg allele, rather than the mutant Trp 
allele, may be more likely to increase cancer risk in the 
presence of certain environmental exposures. Since nearly 
all studies use the wild-type variant as the reference when 
comparing genotype associations, more functional stud-
ies evaluating the DNA repair capacity of XRCC1 codon 
194 polymorphism are required to reach a consensus. The 
disparity in findings could be explained by the likelihood 
that other cancer SNPs of susceptibility genes in linkage 
disequilibrium with XRCC1 were present that contribute to 
higher cancer risk. Moreover, the influence of the polymor-
phism on DNA repair ability may differ based on the type 
and degree of DNA damaging insults. It is also possible that 
some of these outcomes are due to chance.

XPD, which maps close to XRCC1 on chromosome 
19, is a probable cancer susceptibility gene in linkage dis-
equilibrium with XRCC1. Therefore, the polymorphism in 
codon 751 affects the COOH-terminal domain of the XPD 
protein, an essential domain for TFIIH function. Mutations 
in the XPD gene may affect its interactions with other sub-
units, reducing XPD DNA helicase activity in TFIIH and 
defects in NER [43, 44]. However, it has been speculated 
that TFIIH transcriptional activity is relatively tolerant of 
amino acid alterations in the XPD protein. The 751 resi-
due lies near the C-terminal end of the polypeptide, well 
past the point where disease-associated mutations have been 
observed [45]. Accordingly, we observed no statistically 
significant association between the XPD codon 751 geno-
type and PCa risk. A positive association was observed for 
XPD codon 751 Gln/Gln with PCa risk compared to wild 
type variant, but the link did not reach statistical signifi-
cance (Table 3). Our findings align with some previous stud-
ies of XPD codon 751 polymorphism and PCa conducted in 
other countries [30, 31]. We also investigated the combined 
effect of the two SNPs that may have a collective impact 
on DNA repair outcomes (Table 4), but the results are not 
statistically significant. The lack of statistically significant 
association may be due to the selection of DNA repair genes 
of two different pathways. No healthy control was homozy-
gous mutant in both genes, so its combined effect could not 
be compared.

the risk of PCa. However, the risk of PCa was raised when 
both copies of the Trp allele were present in comparison to 
the presence of Arg/Arg and Arg/Trp genotype as suggested 
by the recessive model (Table 3). Their findings may not 
apply to us as only patients with a family history of PCa 
only were included in their study. Contradictory data also 
exist where codon 194 did not show significant results with 
PCa risk [21, 22]. The lack of association of the studies 
may be attributed to variances in ethnicity, geographic and 
environmental factors. While it is possible that the 194 Arg/
Trp or Trp/Trp genotype led to reduces DNA repair capacity 
and increased tumor progression, the extent to which this 
polymorphism impairs the DNA repair capacity is uncer-
tain. Alternatively, Rahman & Zein et al. discovered that 
the wild-type Arg/Arg variation had a larger rise in mean 
sister chromatid exchange (SCE), a sign of gene damage, in 

Table 6  Association of XRCC1 and XPD polymorphisms with clinical 
parameters of PCa patients
Genotype Clinical Parameters B Odds ratio (eβ) p-value
XRCC1
  Arg/Trp Gleason Score -0.15 0.86 0.81

Tumor Staging 0.04 1.04 0.96
DRE -0.4 0.67 0.51
Hematuria -1.03 0.36 0.08
UTI 0.35 1.42 0.49
High PSA levels 0.23 1.25 0.58
High serum creatinine 0.23 1.25 0.64

  Trp/Trp Gleason Score 1.09 2.96 0.33
Tumor Staging -0.81 0.44 0.46
DRE 0.59 1.81 0.71
Hematuria 2.53 12.57 0.06
UTI -1.42 0.24 0.21
High PSA levels 0.72 2.06 0.58
High serum creatinine 0.82 2.28 0.44

XPD
  Lys/Gln Gleason Score -0.42 0.66 0.52

Tumor Staging 1.29 3.64 0.06
DRE 0.32 1.38 0.6
Hematuria -0.89 0.41 0.14
UTI -0.63 0.53 0.23
High PSA levels -0.68 0.5 0.14
High serum creatinine 0.79 2.2 0.12

  Gln/Gln Gleason Score 0.34 1.4 0.75
Tumor Staging 1.13 3.09 0.29
DRE -0.68 0.51 0.52
Hematuria -0.56 0.57 0.58
UTI 0.29 1.34 0.73
High PSA levels 0.07 1.07 0.94
High serum creatinine 1.22 3.4 0.17

Multinomial Logistic regression using Arg/Arg as the reference cat-
egory for XRCC1 and Lys/Lys as the reference category for XPD; 
Digital rectal examination (DRE); Urinary Tract Infection (UTI); 
Prostate-specific antigen (PSA); p < 0.05 was considered as the level 
of significance
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previous studies have also shown similar findings about 
XPD as our study [30], another study showed an association 
of XRCC1 Arg/Trp and Trp/Trp genotype with PCa risk in 
smokers [19], suggesting a strong gene-environment inter-
action in PCa susceptibility. In the same study, the XRCC1 
Arg/Trp and Trp/Trp genotypes were found to raise PCa risk 
in individuals with no family history of cancer. Our study 
observed a statistically insignificant association between 
homozygous mutant genotypes of both genes with PCa 
in individuals without a family history of cancer. Incon-
sistencies in results across epidemiological studies could 
be explained by the varying distributions of genetic and 

Tobacco smoke is a rich source of various potent carcino-
gens and Reactive Oxygen Species (ROS), including Poly-
cyclic Aromatic Hydrocarbon (PAHs), aromatic amines, 
and N-nitroso compounds which can produce DNA bulky 
adducts, base damage, and SSBs and Double Strand Breaks 
(DSBs) [46, 47]. The formation of PAH-DNA adducts in 
the prostate caused by cigarette smoke exposure has been 
demonstrated to differ between races, implying that genetic 
differences in the DNA repair genes contribute to individual 
susceptibility to cancer risk [47, 48]. The mutant homo-
zygous Trp/Trp variant of XRCC1 and Gln/Gln variant of 
XPD was positively associated with PCa in smokers in this 
study, although not statistically significant (Table 5). While 

Fig. 2  Association of XPD codon 751 polymorphism with biochemical parameters in PCa patients

 

Fig. 1  Association of XRCC1 codon 194 polymorphism with biochemical parameters in PCa patients
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gene polymorphism did not show a statistically significant 
association with an increased risk of developing PCa in the 
Bangladeshi population. XRCC1 Trp/Trp variant appears to 
be linked to hematuria risk, higher mean serum creatinine, 
and mean serum PSA levels. At the same time, XPD Gln/
Gln is associated with only higher mean serum creatinine 
levels in PCa patients. Additional studies using a bigger 
sample size are required to explore the relationship of these 
polymorphisms with serum creatinine and PSA levels.
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environmental factors in the study cohort, which may influ-
ence the effects of any particular genetic variant.

Finally, we explored the association of the SNPs with 
clinical features and biochemical parameters with geno-
types of PCa patients. We found that these polymorphisms 
did not affect tumor grade, tumor aggressiveness, DRE 
results, or UTIs (p-value > 0.05) (Table 6). Only the XRCC1 
Trp/Trp genotype significantly increased hematuria risk by 
12.6 times (p-value < 0.05). The XRCC1 Trp/Trp genotype 
was also significantly associated with higher serum creati-
nine levels and PSA compared to patients having the wild 
type (Arg/Arg) genotype (Fig. 1). The effect on serum cre-
atine levels was also seen in patients with XPD Gln/Gln 
genotype (Fig. 2). Serum creatinine level is an independent 
predictor of high-risk PCa prognosis; low and high serum 
creatinine levels have a significantly higher prognostic risk 
of PCa [49]. Most patients (68.94%) included in our study 
had serum creatinine levels within the normal range of 0.7–
1.3 mg/dL. Survival rates were not evaluated in our study, 
and the prognostic risk was, therefore, outside the scope 
of our investigation. Although the association of XRCC1 
and XPD polymorphisms with PCa risk has been studied, 
it is unclear how SNPs affect clinical factors such as tumor 
stage, tumor grade, creatinine, and PSA levels. Hematuria 
and high creatinine levels are indicators of compromised 
kidney function. The association of XRCC1 homozygous 
wild-type Trp/Trp genotype with increased hematuria risk 
and serum creatinine levels suggests that patients with this 
genotype are particularly at risk of kidney function impair-
ment. Vacher and colleagues [50] found that renal insuf-
ficiency is highly prevalent in PCa patients even when 
serum creatinine levels are normal. Even though most of 
the patients in our study had normal serum creatinine levels, 
the renal function of patients with the Trp/Trp genotype and 
PCa should be evaluated.

One of the merits of our study is that our control group 
included both hospital-based and non-hospital-based par-
ticipants, eliminating the possibility of a selection bias. 
Moreover, by excluding tribal or other ethnic groups from 
the study groups, we achieved a homogeneous genetic back-
ground of the subject. We did, however, assess the reproduc-
ibility of results by repeating genotype assays on 10% of the 
samples chosen at random, and the replicates showed 100% 
concordance.

Conclusion

Our study suggested a prospective connection between 
genetic polymorphisms and increased PCa susceptibility. 
We found that the Trp/Trp variant at codon 194 of XRCC1 
is associated with the PCA risk; however, XPD Lys751Gln 
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