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Abstract
Background Bioscaffolds	and	cells	are	two	main	components	in	the	regeneration	of	damaged	tissues	via	cell	therapy.	Umbil-
ical cord stem cells are among the most well-known cell types for this purpose. The main objective of the present study was 
to	evaluate	the	effect	of	the	pretreatment	of	the	foreskin	acellular	matrix	(FAM)	by	monophosphoryl	lipid	A	(MPLA)	and	
Lactobacillus	casei	supernatant	(LCS)	on	the	attraction	of	human	umbilical	cord	mesenchymal	stem	cells	(hucMSC).
Methods and results The expression of certain cell migration genes was studied using qRT-PCR. In addition to cell migra-
tion,	transdifferentiation	of	these	cells	to	the	epidermal-like	cells	was	evaluated	via	immunohistochemistry	(IHC)	and	immu-
nocytochemistry	(ICC)	of	cytokeratin	19	(CK19).	The	hucMSC	showed	more	tissue	tropism	in	the	presence	of	MPLA	and	
LCS	pretreated	FAM	compared	to	the	untreated	control	group.	We	confirmed	this	result	by	scanning	electron	microscopy	
(SEM)	analysis,	glycosaminoglycan	(GAG),	collagen,	and	DNA	content.	Furthermore,	IHC	and	ICC	data	demonstrated	that	
both treatments increase the protein expression level of CK19.
Conclusion Pretreatment	of	acellular	bioscaffolds	by	MPLA	or	LCS	can	increase	the	migration	rate	of	cells	and	also	transdif-
ferentiation of hucMSC to epidermal-like cells without growth factors. This strategy suggests a new approach in regenerative 
medicine.
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IBD	 	Inflammatory	bowel	disease
SDS  Sodium dodecyl sulfate
HBSS  Hank’s Balanced Salt Solution
ITGß-1  Integrin ß-1
HAM  Human amniotic membrane

Introduction

Tissue	 engineering	 is	 an	 interdisciplinary	 field	 that	 com-
bines engineering and life sciences towards the develop-
ment of biological substitutes that restore, retain, or enhance 
tissue function [1].	 Bioscaffolds	 and	 cells	 are	 two	 main	
components in this area which are widely used for tissue 
regeneration [2].	Bioscaffolds	can	be	produced	through	the	
decellularization	 of	 different	 parts	 of	 animals	 or	 cadavers	
which some of them are commercially available [3]. This 
technique is used to remove cells from organs, with mini-
mal	 disruption	 of	 their	 three-dimensional	 (3D)	 structure	
and	 their	 extracellular	 matrix	 (ECM)	 composition.	 Such	
scaffolds	provide	an	adequate	biological	microenvironment	
for	 recellularization	 process	 [4, 5].	 Decellularized	 ECMs	
are complex networks of several compounds of collagens, 
laminin,	elastin,	fibronectin,	proteoglycans,	and	other	gly-
coproteins. These complex networks are essential for pro-
moting	cell	migration,	proliferation,	and	differentiation	[6, 
7].	 Biological	 scaffolds	 in	 combination	 with	 cells	 play	 a	
central	role	in	regeneration	medicine,	so	bioscaffolds	should	
be highly porous to allow cell attachment and to provide a 
suitable environment for cell growth, proliferation, and dif-
ferentiation [1, 8].

Because of their unique properties, Mesenchymal Stem 
Cells	(MSCs)	are	used	extensively	in	conjunction	with	scaf-
folds.	Among	 different	 cellular	 sources	 of	 stem	 cells,	 the	
umbilical cord is considered an important source providing 
a large pool of material using non-invasive techniques. This 
source has several properties, including high cell number, 
low	rate	of	Graft-Versus-Host-Disease	(GVHD), the ability 
to	differentiate	into	adipocytes,	osteoblasts	hepatocytes,	and	
neuronal-like cells [9].	Since	Effective	recellularization	of	
scaffolds	is	a	key	step	for	successful	regeneration	[10], the 
efficacy	of	stem	cell	migration	toward	a	scaffold	is	necessary.	
Several	genes	have	the	main	role	 in	different	steps	of	cell	
homing and migration. Genes such as Stromal Cell-Derived 
Factor-1	(SDF-1),	C-X-C	chemokine	receptor	type	4	(CXCR-
4),	Vascular	Cell	Adhesion	Molecule-1(VCAM-1),	Tissue	
inhibitor	of	metalloproteinases	(TIMP),	and	Matrix	metallo-
proteinase	(MMP)	[11]. Many research groups have focused 
on	enhancing	the	rate	of	cell	migration	and	recellularization	
using a variety of techniques [12]. For instance, genetically 
modified	(MSCs)	overexpressing	chemokine	receptors	[13], 
local injection of chemoattractants [14], and incubation of 

stem cells in conditions similar to the initial niches [15]. 
All of them improve cell migration. Furthermore, there has 
been	a	great	deal	of	effort	by	using	a	variety	of	soluble	fac-
tors, including chemokines and growth factors. Among the 
studied	factors,	 tumor	necrosis	factor-alpha	(TNF-α)	leads	
to a substantial increase in bone marrow MSC migration. 
Other growth factors such as insulin-like growth factor-
1(IGF-1)	 and	 platelet-derived	 growth	 factor-AB	 (PDGF-
AB)	 have	 been	 also	 suggested	 as	 the	most	 effective	 ones	
[16]. On the other hand, one of the factors that can induce 
proinflammatory	 cytokines,	 including	TNF-α,	 interleukin-
1β(IL-1β),	and	gamma	interferon(IFN-γ),	is	Monophospho-
ryl	lipid	A	(MPLA)	[17]. MPLA is a low-toxicity derivative 
of	lipopolysaccharide	(LPS)	(100-fold	less	toxicity)	which	
is commercially available as a ligand for toll-like receptor-4 
(TLR-4)	[18]. This derivate has useful immunostimulatory 
properties, which is used as a human vaccine adjuvant and 
prophylactic drug for a septic shock. Therefore, this sub-
stance may indirectly enhance cell migration by inducing 
proinflammatory	cytokines,	however,	the	impact	of	MPLA	
on the hucMSC function is yet to be understood.

Probiotics	are	a	single	strain	or	a	combination	of	different	
organisms that are believed to improve the immune system, 
reduce	inflammation,	and	accelerate	the	wound	healing	pro-
cess following the accumulation of macrophages, lympho-
cytes, and polymorphonuclear in the injury site [19]. Such 
bacteria have recently received clinical attention for the pre-
vention	or	treatment	of	Inflammatory	bowel	disease	(IBD)	
[20]. However, further investigation is required to under-
stand the molecular mechanism of this procedure.

Lactobacillus	casei	(L.	casei)	is	one	of	the	most	popular	
probiotics, previous studies have indicated that the cocul-
ture	 of	 inflamed	 tissue	 withL.casei	 significantly	 reduces	
TNF-α	release	[21]. Furthermore, an in vivo study showed 
that it improves liver function, anticholesterolaemic proper-
ties, and protection of the gastrointestinal tract of rat models 
[22]. Previous research has also shown that L. casei super-
natant can impact the characteristics of chemotactic and 
angiogenic cells in vitro. In addition, it can stimulate che-
motaxis	 and	 proliferation	 of	 fibroblasts,	 endothelial	 cells,	
and	inflammatory	cells	in	vivo	[23].

In	 our	 previous	 study	 we	 succeeded	 to	 optimize	 the	
human	 foreskin	 decellularization	 [24]. It proved that the 
obtained	human	foreskin	acellular	matrix	(FAM),	is	a	suit-
able	scaffold	with	the	potential	of	recellularization	to	deliver	
hucMSC	to	the	injured	site.	In	this	study,	we	hypothesized	
that	 pretreatment	 of	 foreskin	 bioscaffold	with	MPLA	 and	
L.	 casei	 supernatant	 (LCS)	 have	 a	 positive	 impact	 on	 the	
migration of hucMSC towards them Is the pretreated scaf-
fold more attractive for the cells? Furthermore, we evalu-
ated	the	effect	of	these	treatments	on	the	transdifferentiation	
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of MSCs into epidermal-like cells through cytokeratin 19 
assay.

Materials and methods

Decellularization and FAM preparation

In the beginning, samples were taken from the foreskin of 
boys aged one month to four years who had been referred to 
the Imam-Ali Clinic, Shahre-Kord for circumcision. Under 
sterile conditions, foreskin samples were transferred to the 
laboratory.	Briefly,	samples	were	rinsed	several	times	with	
distilled water and the outer fat layer was separated physi-
cally,	then	transferred	in	5%	sodium	dodecyl	sulfate	(SDS).	
After	6	h,	trypsin	(0.05%)	and	EDTA	(0.01%)	(Life	Tech-
nologies,	USA)	were	used	to	digest	the	residual	cells	(6	h.	
4	°	C).	Hank’s	Balanced	Salt	Solution	(HBSS)	(BIO-IDEA,	
Iran)	was	used	to	wash	the	samples.	Finally,	the	specimens	
were	digested	by	Triton	x-100	(Bio	Basic	Inc.	cas	#	9002-
93-1)	for	1	h,	 then	washed	with	HBSS	and	stored	in	75%	
alcohol	 at	 -20˚C	 until	 use.	 Finally,	 Decellularization	 was	
confirmed	by	H&E,	Hoechst	Staining,	and,	SEM	analysis.

Cell culture

After obtaining informed consent, the umbilical cord was 
taken	and	(hucMSCs)	were	isolated	by	the	MEEM	method	
as previously described [25]. Surface antigens including 
CD29, CD90, CD105, CD34, and CD45 were examined by 
flowcytometry.	Furthermore,	hucMSCs	have	been	tested	for	
multipotent	differentiation	capacity	into	adipogenic,	osteo-
genic, and chondrogenic lineages as previously described 
[25].	 Finally,	 isolated	 and	 characterized	 cells	 were	 cul-
tured	in	Dulbecco’s	modified	Eagle’s	medium-low	glucose	
(DMEM,	Gibco,	Thermo	Fisher	Science,	US)	supplemented	
with	13%	fetal	bovine	serum	(FBS)	(Gibco)	and	1%	of	peni-
cillin-streptomycin	(Pen/Strep)	(Gibco).	Flasks	were	placed	
in	a	humidified	 incubator	with	5%	CO2	at	37˚C.	Every	2	
days, the medium was changed until the cells reached 90% 
confluency.

Lactobacillus casei supernatant (LCS) and MPLA 
preparation

The	L.casei	(ATCC	39,392)	was	purchased	as	a	lyophilized	
powder	 from	 the	 Iranian	 Research	 Organization	 Science	
and	 Technology	 (IROST).	 Briefly,	 L.casei	 was	 cultured	
under microaerophilic conditions in the medium of MRS 
broth	 (Merck,	 Germany).	 The	 number	 of	 bacteria	 was	
approximately 2.5 × 108 colony-forming units after 5 days. 
The suspension was then centrifuged at 12,000 g at 4 ° C for 

15	min.	Finally,	the	supernatant	was	filtered	by	a	0.2	μm	fil-
ter, and stored for further testing at −	20	°	C.	The	final	con-
centration used was 3 µl of LCS per 1 ml medium. MPLA’s 
primary stock solution was prepared by solving 1 mg of 
MPLA	powder	(InvivoGen,	USA)	in	1000	µl	dimethyl	sulf-
oxide	(DMSO)	(Merck,	Germany).	Working	aliquots	were	
prepared	in	a	final	concentration	of	2	µg/	ml.

Pretreatment of FAMs with LCS / MPLA to 
recellularization

For the pretreatment process, initially, the FAMs were 
soaked separately in the MPLA and LCS solutions for 24 h. 
Approximately 2 × 105	 hucMSCs/	 well	 were	 cultured	 in	
6-well plates. When cells reached ∼	90%	 confluency,	 two	
pieces of the treated FAMs were placed adjacent to the huc-
MSCs in each well. For the control group, untreated FAMs 
were used. Furthermore, at the same time, in the LCS pre-
treated group, 2 µl of LCS per 1 ml of medium was used in 
the cell culture. and in the MPLA pre-treated group,2 µl of 
working solution of MPLA per 1 ml of the medium used 
in the cultured cells. Finally, the treated hucMSCs were 
carefully	monitored	for	4,	8,	and	12	days	(the	medium	was	
changed every 2 days and each time, the mentioned amount 
of	treatments	were	added).

Resazurin assay

2 × 105 hucMSCs were seeded into a 6 well plate. After 24 h, 
pre-treated	and	untreated	FAMs	(3mm2)	were	placed	next	to	
the cells. The toxicity test was performed at 48 and 72 h. 
Then,	scaffolds	and	medium	were	removed,	1	ml	FBS-free	
medium	 containing	 50	 µl	 Resazurin	 (Kiazist.	 In.	 Tehran,	
Iran)	was	added	and	incubated	for	4	h	at	37˚C,	and	finally,	
the absorbance was read at 520–570 nm using Microplate 
Reader	(Stat-Fax-2100,	USA).

Histology, immunohistochemistry (IHC), and 
immunocytochemistry (ICC)

To	assess	 the	efficiency	of	 the	recellularization	procedure,	
the	 recellularized	 FAMs	 were	 embedded	 in	 paraffin	 10%	
and	cut	into	5	μm	thickness	sections	to	be	prepared	for	his-
tology	 and	 immunofluorescence	 analysis.	 Samples	 were	
stained with Hematoxylin and Eosin dye as routine proto-
cols [26].	H&E	 staining	 results	were	 examined	 under	 the	
light	microscope	(Olympus).	The	Hoechst	33,258	(Sigma-
Aldrich	Corp.,	MI,	USA)	(1:5000	dilution)	was	applied	to	
the nucleic acid staining, this staining was also performed 
as usual protocol [27]. The results were assessed under a 
fluorescent	microscope	(Nikon-TS-100	F.	Tokyo.	Japan).
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(KHPA96,	 Kiazist,	 Iran).	 The	 results	 were	 assessed	 by	 a	
microplate reader at 540–560 nm as triplicate and plotting 
the standard curve.

DNA quantification in recellularized FAMs

DNA	from	recellularized	and	control	scaffolds	was	isolated	
by	the	Geno	PlusTM	Mini	extraction	kit	(GG2001,	Viogene,	
Taipei,	Taiwan)	at	each	interval.	The	quality	and	quantity	of	
total DNA were evaluated by spectroscopy at 260 nm using 
Nanodrop	2000	(Thermo	Scientific).	All	samples	were	nor-
malized	to	the	dry	weight	of	the	FAMs.

RNA isolation, cDNA synthesis, and qRT‑PCR

For RNA extraction, after 12 days, total RNA was isolated 
from	 the	 hucMSCs	 (tree	 groups:	MPLA/LCS	 treated	 and	
untreated-control),	all	experiments	were	done	in	triplicates	
and	by	using	RNeasy	Mini	Kit	(Qiagen,	Hilden,	Germany).	
On-column DNA digestion was included in this protocol to 
remove	 residual	 genomic	 DNA	 contaminants	 and	 finally	
measured	 by	 nanodrop	 2000(Thermo	 Fisher	 Scientific,	
MA).	 Then,	 equal	 amounts	 of	 total	 isolated	 RNA	 (1	 µg/	
sample)	 were	 reverse	 transcribed	 using	 cDNA	 Synthesis	
Kit	 (RevertAidTM	First	 Strand	 cDNA	Synthesis	Kit)	 and	
transferred into the qRT-PCR reaction. The mRNA level 
of	MMP-2,	VCAM-1,	Integrin	ß-1(ITGß-1),	and,	CXCR-4	
genes were evaluated using SYBR® Green PCR Master 
Mix	(Takara,	Kusatsu,	Japan)	 in	a	qRT-PCR	thermocycler	
(Rotor	 gene	 3000,	 Qiagen,	 Germany).	Also,	 the	 GAPDH	
gene was used as an internal control. Primers used for qRT-
PCR	are	as	follow:	forward	5’	C	G	A	A	C	C	C	A	A	A	C	A	A	A	G	G	
C A G A − 3’ and reverse 5’  A C A G G A T T T T C G G A G C A G G 
A − 3’ for VCAM-1 gene, forward 5’  A C C A C A G C C A A C 
T A C G A T G A-3’ and reverse 5’ G C T C C T G A A T G C C C T T G 
A T G-3’forMMP-2gene, forward '  T C C A A C C T G A T C C T G 
T G T C-3’ and reverse 5’ T C G T T G T T C C C A T T C A C T G-3’ 
for ITG-ß1gene, forward5’ A C C A T C T A C T C C A T C A T C T T 
C-3’ and reverse 5’  T G A T G A C A A A G A G G A G G T C-3’ for 
CXCR-4 gene, and forward 5’  G G C A A G T T C A A T G G C A C 
A G T-3’ and reverse 5’.  T T G T G A A G A C G C C A G T A G A C T 
C-3’ for GAPDH gene. The 2 −	ΔΔCt	method	was	applied	
as	a	comparative	method	of	quantification.	All	experiments	
were done in triplicate and expressed as means ± standard 
error of the mean.

Statistical analysis

Two separate experiments with triplicate samples were con-
ducted for each group. qRTPCR.

results	 were	 statistically	 analyzed	 by	 GraphPad	 Prism	
software	 (version	 5)	 (GraphPad	 Software,	 CA,	 USA).	

Furthermore, to assess the expression of cytokeratin-19 
(CK-19)	IHC	technique	was	performed	according	 to	stan-
dard procedures by using a monoclonal mouse anti-human 
cytokeratin-19	antibody	(ab220193)	and	secondary	peroxi-
dase-labeled	goat	anti-mouse	IgG	H&L	(HRP)	(ab205719).	
The chromogenic reaction was performed with a chromo-
genic	 solution	 of	 3,	 3′-diaminobenzidine	 (Dako,	 USA),	
resulting in the expected brown-colored signal. Finally, the 
positive percentage of CK-19 expression was determined by 
ImageJ	software.

To	 compare	 the	 expression	 of	 cytokeratin-19	 (CK-19)	
between	 recellularized	 tissue	 and	 treated	 cells,	 we	 also	
measured the variation of CK19 expression in cells. Cells 
were grown in 6 well plates and treated with MPLA and 
LCS as mentioned above. After 12 days, cells were rinsed 
with	PBS	and	fixed	in	10%	formaldehyde.	Immunostaining	
was	performed	using	DAPI	and	specific	fluorescent-labeled	
monoclonal mouse anti-human cytokeratin-19 antibody 
(ab220193).	 Photos	 were	 finally	 merged,	 and	 expression	
levels were evaluated in treated and control groups.

Scanning electron microscopy (SEM)

The	 pretreated	 and	 control	 recellularized	 scaffolds	 were	
evaluated using SEM at intervals of 4, 8, and 12 days. To 
prepare the samples, FAMs were incubated in glutaralde-
hyde 2.5% for 1 h at room temperature and then dehydrated 
by increasing concentrations of ethanol for 20 min, then 
froze	at	20	°C	for	40	min	and	finally	transferred	to	the	freeze	
dryer	device	for	3	h.	Fixed	samples	coated	with	gold	(Desk	
Sputter	Coater-DSR1)	and	a	scanning	electron	microscope	
(Philips	XL	30,	North	Billerica,	MA)	was	used	to	evaluate	
the	scaffolds.

Glycosaminoglycan (GAG) and collagen content in 
recellularized FAMs

Recellularized	 scaffolds	 and	 acellular	 foreskin	 (control)	
were appropriate for the analysis of collagen and GAG 
content. All of the FAMs were washed in PBS and, 20 mg 
of	 lyophilized	 scaffolds	 were	 digested	 in	 a	 papain	 buffer	
overnight at 65 °C. The assessment of GAG was performed 
according	 to	 the	 kit	 instruction	 (KGAG96,	Kiazist,	 Iran),	
and	then	assessed	by	Elisa	Reader	(Stat	fax-2100,	USA)	at	
510–560 nm. GAG content was evaluated with a standard 
curve using chondroitin6-sulfate in the kit.

The biochemical measurement of hydroxyproline is one 
of	 the	most	 reliable	 and	 cost-effective	methods	 for	 colla-
gen assay [28].	After	washing	with	PBS	and	lyophilization,	
20	mg	of	FAMs	were	homogenized	in	100	µL	H2O	plus	100	
µL	12	M	HCL	and	incubated	for	4	h	at	120˚C.	Then,	colla-
gen assessment was performed based on the kit instructions 
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mechanical	properties,	and	histological	staining	(data	have	
not	shown/submitted).

Cytotoxicity effects of pre‑treated FAMs with MPLA 
and LCS on hucMSCs

Resazurin	 assay	was	 used	 to	 evaluate	 the	 toxicity	 of	 pre-
treated FAMs for hucMSCs. Comparison of the viability 
percentage	of	hUMSCs	via	resazurin	assay	in	48	h	and	72	h	
indicated that both of our treated FAMs did not have a sig-
nificant	effect	on	cell	viability	after	48	h,	viability	percent-
age of hUMSCs remained by 82%, 101%, and 89.6% in 
untreated, MPLA and LCS treated groups respectively. In 
addition, compared to the untreated group, MPLA-treated 
FAMs	increased	the	cell	proliferation	after	72	h	significantly	
and	viability	percentage	was	71%	vs.	90%	(Fig.	3).

It is also noteworthy to mention that in the case of 
MPLA-treated	 scaffold,	 hucMSCs	 had	 better	 scaffold	 tro-
pism with slightly increased proliferation with no apoptotic 
phenotype.	Similar	effects	have	been	found	for	LCS	–treated	
FAMs, but they showed lower tropism also apoptosis hap-
pened for some of the hucMSCs on day 12 in the untreated 
control group. Taken together, both treatments had a better 
effect	than	the	untreated	control	group	(Fig.	3b).

Comparisons between experimental and control groups 
were	performed	by	one-way	analysis	of	variance	(ANOVA)	
and Tukey’s post hoc test.

Results

Characteristics of human‑derived umbilical cord 
MSCs

Isolated	 hucMSCs	were	 adherent	 cells	 that	 showed	fibro-
blast-like	morphology.	According	to	flow	cytometry	results,	
these cells were positive for CD105, CD90, and CD29 
(adhesion	and	integrin	markers),	and	negative	for	CD45	and	
CD34.	Also,	 these	cells	showed	the	ability	 to	differentiate	
into	the	adipogenic	and	osteogenic	lineages	(Fig.	1).

Acellular human foreskin

The	 H&E	 and	 Hoechst	 staining	 indicated	 that	 the	 fore-
skin	was	thoroughly	acellularized	without	residual	cells	or	
nucleic	acids.	This	result	was	also	confirmed	by	SEM	analy-
sis.	Three	types	of	evaluations	imply	that	decellularization	
is	effective	and	acceptable	(Fig.	2).	Furthermore,	the	results	
of	our	previous	study	confirmed	the	successful	decellular-
ization	process	by	DNA,	GAG	and	proline	quantification,	

Fig. 1	 Characterization	of	hucMSCs.	(a)	Osteogenesis	and	(b)	Adipo-
genesis	of	hucMSCs	were	detected	by	Alizarin	red	S	staining	and	Oil	
red	O	 staining	 respectively	 (200x).	 (c)	 hucMSCs	 are	 adherent	 cells	

with	fibroblast-like	morphology	(40x	magnification).	(d):	Flow	cytom-
etry results show that hucMSCs were uniformly negative for CD34, 
CD45, and positive for CD29, CD90, and CD105
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the primitive acellular foreskin, indicating the higher rate of 
recellularization	in	the	MPLA-treated	group.

Expression levels of the studied genes

Figure 7 shows the expression levels of the VCAM-1, MMP-
2, ITG-ß1, and CXCR-4 genes in the hucMSCs adjacent to 
the	 treated	 and	 untreated	 scaffold.	Our	 data	 demonstrated	
that the expression of the VCAM-1 gene increased in both 
treated groups compared to the untreated control group, but 
the highest expression was in the LCS-treated group on day 
2	 (fold	 changes	 13.60	±	1.3),	 then	 slowly	 decreased	 until	
day 8. Whereas the expression level of this gene increased 
gradually in the MPLA-treated group until day 12, which 
showed	 the	 highest	 expression	 (fold	 change	 6.4	±	1.7)	 on	
day	12	(Fig.	6a).	The	MMP-2	expression	rate	in	the	LCS-
treated group showed the highest level on day 2 by 4.9 
fold which decreased dramatically to 0.2 fold on day 8. In 
the MPLA-treated group, the expression rate of MMP-2 
increased	sharply	to	day	12	(fold	changes	4.99	±	0.2),	also	
this increasing pattern was seen for ITG-ß1 gene in the 
MPLA-treated group. The maximum upregulation of the 

Recellularization confirmation

After putting pre-treated FAMs on the isolated hucMSCs, 
recellularization	was	assessed	performing	H&E	and	Hoechst	
staining	 at	 intervals	 of	 4,	 8,	 and	 12	 days.	 Significant	 cell	
distribution was observed in MPLA pre-treated FAMs on 
day 12 in comparison to LCS pretreated and control FAMs. 
In addition, the adherence of hucMSCs to the FAM surface 
was observed using SEM. All of the images showed that 
MPLA	has	the	best	effect	and	after	that	in	the	second	place,	
LCS	treatment	leads	to	a	better	recellularization	in	compari-
son	to	the	untreated	control	group	(Fig.	4).	It	is	worth	noting	
that, we did not use seeding or any other technique in the 
recellularization	step	to	deliver	cells	to	the	scaffolds	and	we	
just	put	the	acellularized	scaffold	adjacent	to	the	hucMSCs.

GAG, collagen, and DNA content

As shown in Fig. 5, the collagen and GAG content is well 
conserved	in	the	recellularized	FAMs	after	12	days	and	even	
increased in MPLA-treated groups. Also, DNA content in 
recellularized	FAMs	has	 been	 increased	 in	 comparison	 to	

Fig. 2	 Comparison	 between	 native	 and	 acellular	 foreskin.	 (a)	 SEM	
evaluation	showed	a	high	density	of	cells	in	native	tissue,	(1500x	mag-
nification)	and	 (b)	Acellular	 foreskin	showed	complete	cell	 removal	
as well as regular maintenance of matrix and collagen structure with 

appropriate	porosity(1000x	magnification).	Confirmation	of	 foreskin	
decellularization	through	(c,	d)	Hoechst	staining	(100x	magnification),	
and	(e,	f)	H	&	E	staining	(200x	magnification)
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Discussion

MSCs have been used in regenerative medicine as innova-
tive cells that showed great enthusiasm for the treatment of 
diseases [30]. In cell therapy, increasing the MSCs immigra-
tion capacity by exogenous factors is of important subject 
[16]. There are major challenges in the process of recellular-
ization	of	bio-scaffolds,	such	as	the	growth	and	redistribu-
tion	of	cells	within	the	scaffolds,	and	the	establishment	of	
appropriate cell density with the appropriate cellular pheno-
type	in	the	scaffold	microenvironment	[31, 32]. Our study 
aimed to recruit MSCs to the extracellular matrix using an 
exogenous	agent	 for	migration.	 In	 this	study,	 the	effect	of	
pre-treated acellular foreskin with MPLA and Lactobacillus 
casei	supernatant	with	the	aim	of	improved	recellularization	
with	hucMSCs	was	 investigated.	 In	decellularized	 tissues,	
the	pore	characteristics	(shape,	size,	interconnection,	align-
ment,	collapse	resistance)	have	been	demonstrated	to	affect	
the	scaffold’s	reseeding	capacity	and	permeability	[33]. In 
our	 previous	 study,	 we	 reached	 an	 optimized	method	 for	
suitable	 decellularization	 of	 the	 foreskin.	 Our	 FAMs	 had	
all	the	characteristics	of	an	appropriate	scaffold	in	terms	of	
preserving ECM’s three-dimensional structure, pore charac-
teristics,	and,	cell	compatibility.	Additionally,	quantification	
results	 showed	 the	 significant	 removal	 of	DNA	 in	FAMs,	

ITG-ß1 gene was 5.8 ± 0.7 fold in LCS- treated group after 
8	days	post-treatment	(Fig.	6b	and	d).	Both	treated	groups	
showed increased CXCR-4 expression on day 2 with a 
sharp decline by day 8 and then a slight increase by day 12 
(Fig.	6c).

ICC and IHC results

The	 results	 of	 IHC	 analysis	 (Fig.	 7)	 on	 recellular	 FAMs	
showed	that	the	expression	of	cytokeratin	19	(CK19)	protein	
increased	in	both	treatments	(MPLA	and	SLC)	in	compari-
son to the untreated control group; however, the expression 
of the CK19 became slightly higher on day 12. It is worth 
noting	 that	mesenchymal	 stem	 cells	 can	 differentiate	 into	
epidermal cells and one of the early markers of epidermal 
cell	lineage	is	cytokeratin19	(CK19)	[29].

We	also	performed	ICC	analyses	on	treated	cells	(without	
scaffold)	to	determine	whether	the	scaffold	or	our	treatments	
are	more	effective	on	ck19	expression	Fig.	8.	The	findings	
suggested that after treatment with LCS and MPLA, huc-
MSCs	were	induced	to	express	cytokeratin	19	(CK19).

Fig. 3	 (a):	 Comparing	 the	 viability	 of	 hucMSCs	 in	 the	 vicinity	 of	
FAMs. MPLA-treated FAMs showed better cell compatibility than the 
LCS-treated	and	untreated	control.	(P ≤ 0.03*).	(b):	hucMSCs	tropism	
to the FAMs. In addition to increased proliferation, hucMSCs showed 

better tropism to MPLA-treated FAMs rather than LCS-treated and 
untreated control groups. Furthermore, the untreated control group 
showed less proliferation with some apoptotic phenotype on day 12. 
(40X	magnification)
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can probably be considered as an inducing factor in cell 
migration, by increasing both VLA-4 and VCAM-1 expres-
sion [37]. Based on our knowledge, the majority of studies 
have evaluated this factor as adjuvant in dendritic cells for 
vaccines. So there is a lot of uncertainty about the impact of 
this factor on migration of MSCs, which needs more exten-
sive studies.

Here	 the	 effects	 of	 MPLA	 as	 a	 synthetic	 reagent	 and	
LCS	 as	 a	 probiotic	were	 compared.	Our	 findings	 showed	
that	both	treatments	made	the	scaffold	more	attractive	to	the	
cells. According to our histology results, MPLA had more 
prominent	effects	on	the	rate	of	recellularization	rather	than	
LCS pre-treatment. As shown in Fig. 4,	we	used	H&E	stain-
ing	in	the	first	step,	then	Hoechst	staining	and	SEM	analysis	
to see the results more clearly. In a study by Barreto et al. 
on	the	mouse	placenta,	H&E	and	SEM	analysis	showed	that	
mouse	embryonic	fibroblasts	grew	on	the	placental	scaffold	

enhancement of collagen content, and reduction of GAG 
amount [24].

Preidis et al. indicated that probiotics improved the 
enterocyte migration rate in the neonatal mouse intestine 
[34]. Probiotics were also found to modulate dendritic 
cell surface features and cytokine release in bone marrow-
derived dendritic cells [35]. So in the present study we 
decided	 to	 evaluate	 the	 effect	 of	 the	 pretreatment	 of	 this	
scaffold	with	 these	chemoattractant,	because	 it	 seems	 that	
scaffold	can	release	these	factors	slowly	and	affect	the	recel-
lularization	potential.

On	 the	other	hand,	MPLA	 is	 a	detoxified	derivative	of	
LPS with immunostimulatory properties, which is a ligand 
for	 Toll-like	 receptors.	 The	 chemoattractive	 effects	 of	
MPLA have been demonstrated in recent studies, it appears 
that this reagent can be regarded as a stimulator of MSC 
migration [36]. Results of a research showed that MPLA 

Fig. 4	 Recellularization	of	FAMs	by	hucMSCs	on	days	4,	8,	and	12.	
(a)	H&E	staining	in	different	days	showed	that	MPLA-treated	FAMs	
resulted	in	the	most	effective	recellularization	on	the	12th	day	(200x	
magnification).	 (b)	Fluorescent	staining	with	Hoechst.	The	nuclei	of	

the	cells	are	bright	spots,	which	are	more	fluorescent	 in	 the	MPLA-
treated	 FAM,	 on	 day	 12	 (100x	 magnification).	 (c)	 SEM	 images	 of	
recellularized	MPLA	 treated-FAMs	 showed	a	 significant	 increase	 in	
the number of migrated cells on day 12 compared to other groups
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group.	The	most	 significant	 increase	was	 seen	 in	 the	 col-
lagen and DNA content of the MPLA-treated group after 
12	 days.	 It	 refers	 period	 observed	 for	 recellularization	 of	
the	scaffold.	Similar	to	our	results,	in	other	studies,	DNA-
isolation	 quantified	 cell	 density,	 as	well	 as	H&E	 staining	
and	SEM	analysis	 showed	 the	 rate	of	 recellularization	 [3, 
40].	This	observation	was	 further	confirmed	by	GAG	and	
collagen	 content	measurement	 in	 recellularized	 FAMs.	 In	
comparison to the untreated control group, the treatment 
groups’ increased GAG and collagen levels demonstrated 
better	recellularization,	as	seen	in	Fig.	5.

Inappropriate homing of MSCs and low-level expression 
of	migratory	genes	can	influence	the	scaffold’s	therapeutic	

and interacted with each other under 6 days [38]. In a sep-
arate study, the other members of our team compared the 
effect	of	MPLA	and	Lactobacillus	acidophilus	 [39]. Their 
results	were	consistent	with	our	findings	which	showed	that	
both treatments increased the MSC migration, especially in 
the	MPLA-treated	group.	They	only	followed	the	findings	
for 6 days, so we tried to extend the experiment to 12 days.

To	quantify	and	support	the	descriptive	histological	find-
ings, we also examined other parameters in the recellular-
ized	FAMs	such	as	GAG,	collagen,	and	DNA	quantification.	
Our	 findings	 demonstrated	 that,	 after	 decellularization,	
GAG, collagen, and DNA content increased in pre-treated 
recellularized	FAMs	in	comparison	to	the	untreated	control	

Fig. 5 Comparison of the GAG, collagen, and DNA contents of recel-
lularized	 FAMs	with	 primitive	 acellular	 foreskin.	 (a)	 GAG	 content	
increased in the MPLA-treated group after 12 days but it was not 
significantly	 increased	 in	 the	 LCS-treated	 group.	 (b)	 Collagen	 con-
tent increased in both treatments compared to the untreated control, 
particularly	on	 the	12th	day	of	MPLA	 treatment.	 (c)	After	 12	days,	

recellularized	FAMs	treated	with	MPLA	had	a	considerable	increase	in	
DNA content. For the LCS-treated FAMs, This increase was seen but 
to	a	lesser	extent.	Data	with	(P ≤ 0.03*,P ≤ 0.002**, and P ≤ 0.001***)	
were	statistically	different	according	to	one-way	ANOVA	and	post	hoc	
testing	(Tukey’s	procedure,	data	are	presented	as	Mean	±	SD)

 

1 3

Page 9 of 14   675 



Molecular Biology Reports

invasion [43].	(VCAM-1)	also	modulate	cell	adhesion	and	
motility functioning in cell homing [44]. In the LCS-treated 
group, the expression levels of VCAM-1 decreased over 
time	while	 it	 showed	a	significant	 increase	 in	 the	MPLA-
treated group.

In	another	study,	we	 investigated	 the	effect	of	pretreat-
ment	of	acellular	human	amniotic	membrane	(HAM)	with	
MPLA for fascia repair in rats. Our results showed that pre-
treatment of HAM with MPLA increased the tolerance of 
fascia rupture at higher pressures and attract more cells to 
the wound site, resulting in faster wound healing [45].

effects	[41]. Here we evaluated the expression level of genes 
involved	in	different	steps	of	migration	and	homing.	Based	
on our results, MPLA-treated FAMs increased the expres-
sion of MMP-2 and VCAM-1 genes in the last intervals, 
unlike	 bacteria	which	 had	 the	 earliest	 effects.	 Integrin	 β1	
is	 a	 subunit	 of	 very	 late	 antigen	 4	 (VLA-4)	 that	 interacts	
with VCAM-1, this interaction is functionally involved in 
MSC homing [41]. Results of the other study demonstrated 
that the capability of MSC migration was increased after 
MMP-2 up-regulation [42]. It has also been found that 
MMP-2	 knock-down	 significantly	 impaired	 the	 hMSC	

Fig. 6	 comparative	 analysis	 of	 differential	 expression	 of	 VCAM-1,	
MMP-2, ITG-ß1, and CXCR-4 genes in hucMSCs after being treated 
with MPLA and LCS for 12 days. After LCS treatment, VCAM-1 and 
CXCR-4 genes expression increased sharply on the second day and 
then gradually decreased, whereas treatment with MPLA led to a grad-

ual increase in the expression levels of VCAM-1, MMP-2, and ITG-ß1 
genes. GAPDH was used as the internal housekeeping gene to normal-
ize	data.	(P ≤ 0.03*, P ≤ 0.002**, P ≤ 0.0002*** and, P ≤ 0.0001**** data 
are presented as Mean ±	SD)
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Fig. 8 Immunocytochemistry images of cytokeratin 19, in hucMSCs 
treated by LSC and MPLA on day 12. K19 immunostaining of cells 
shown in green and negative control nuclei are stained blue with DAPI. 

Merged photos in each group showed that CK 19 expression increased 
significantly	in	both	treated	groups	compared	to	the	untreated	control	
group

 

Fig. 7 IHC analysis of recellular FAMs on day 8 and 12, treated by LCS 
and MPLA for CK19. As shown, the expression of CK19 increased 
in	 both	 treated	FAMs	at	 every	 two	 intervals.	Quantitative	 results	 of	

IHC	analysis	for	CK19	demonstrated	significant	differences	between	
treated	and	untreated	groups.	(***)	indicate	statistically	significant	dif-
ferences	(p <	0.0001)
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