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Abstract
Background  Thyroid hormones are primarily responsible for the brain development in perinatal mammals. However, this 
process can be inhibited by external factors such as environmental chemicals. Perinatal mammals are viviparous, which 
makes direct fetal examination difficult.
Methods  We used metamorphic amphibians, which exhibit many similarities to perinatal mammals, as an experimental 
system. Therefore, using metamorphic amphibians, we characterized the gene expression of matrix metalloproteinases, which 
play an important role in brain development.
Results  The expression of many matrix metalloproteinases (mmps) was characteristically induced during metamorphosis. 
We also found that the expression of many mmps was induced by T3 and markedly inhibited by hydroxylated polychlorin-
ated biphenyls (PCBs).
Conclusion  Overall, our findings suggest that hydroxylated PCBs disrupt normal brain development by disturbing the gene 
expression of mmps.
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ANOVA	� Analysis of variance
DMSO	� Dimethyl sulfoxide
EDCs	� Endocrine-disrupting chemicals
FETAX	� Frog embryo teratogenesis assay Xenopus
MMPs	� Matrix metalloproteinases
PCBs	� Polychlorinated biphenyls
PCR	� Polymerase chain reaction
T3	� 3,3′,5-Triiodo-L-thyronine
THs	� Thyroid hormones

Introduction

Maternal exposure to environmental chemicals during the 
perinatal period disrupts the thyroid system and inhibits 
normal brain development [1, 2]. Exposure to endocrine-
disrupting chemicals (EDCs) in the mother leads to devel-
opmental disorder-like symptoms, including abnormal 
behaviors, such as attention-deficit/hyperactivity disorder, in 
children [3, 4]. Although mammalian experimental models 
have the advantage of establishing several experimental sys-
tems to verify social behavior, molecular analyses of mam-
malian species are difficult because the uterus surrounds the 
fetus. Moreover, the direct effects of EDCs on the fetus are 
difficult to examine because chemical substances are altered 
by the maternal drug-metabolizing systems [5]. Therefore, 
the development of an effective experimental system is 
important to easily model the development of the perinatal 
mammalian brain.

Amphibian metamorphosis, induced by thyroid hormones 
(THs), causes drastic changes in larvae [6]. During meta-
morphosis, TH levels transiently increase, and signals are 
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transduced via the regulation of gene expression by hormone 
nuclear receptors. Metamorphosis has been suggested to cor-
respond with the perinatal period in mammals [7], making 
amphibians a suitable experimental model. Treatment of 
Xenopus laevis larvae with THs during pre-metamorphosis 
induces brain development, but it has been reported that 
brain development is inhibited by disrupting the expression 
of multiple TH-responsive genes by bisphenols [8, 9]. We 
have previously found that hydroxylated polychlorinated 
biphenyls (PCBs) inhibit metamorphosis and disrupt the 
expression of TH-responsive genes, including matrix met-
alloproteinases (MMPs) [10], which play important roles 
in extracellular matrix remodeling and tissue homeostasis. 
MMPs are involved in various physiological and pathologi-
cal processes, such as wound healing, angiogenesis, tissue 
repair, and cancer progression [11, 12]. MMPs play impor-
tant roles in amphibian metamorphosis [13]. These studies 
highlight the importance of examining the effects of hydrox-
ylated PCBs on TH-induced MMP expression in metamor-
phic amphibian brains. Thus, the present study aimed to 
examine the effect of hydroxylated PCBs on changes in mmp 
gene expression induced by TH during metamorphosis. We 
found that the expression of many mmps was induced by 
3,3′,5-triiodo-L-thyronine (T3) and that the induction was 
markedly inhibited by hydroxylated PCBs.

Materials and methods

Reagents and animals

For this study, T3 (approximately 98% purity) was purchased 
from Sigma-Aldrich (St. Louis, MO, USA). The hydrox-
ylated PCBs (4-OH-PCB106 and 4-OH-PCB159) were 
obtained from AccuStandard (New Haven, CT, USA). All 
other chemicals used in this study were of the highest grade 
available and purchased from Wako (Osaka, Japan). T3 and 
4-OH-PCBs were dissolved in dimethyl sulfoxide (DMSO) 
and diluted with frog embryo teratogenesis assay Xenopus 
(FETAX) buffer to create a < 1.0% (v/v) solvent.

Tadpoles of X. laevis obtained by injecting adult frogs 
with human chorionic gonadotropin (ASKA Pharmaceuti-
cals, Tokyo, Japan) were reared in dechlorinated tap water 
under natural lighting and fed Sera Micron (Heinsberg, Ger-
many) every other day. The animals were classified accord-
ing to the developmental stages outlined by Nieuwkoop 
and Faber [14]. Short-term exposure experiments were per-
formed as previously described to examine the effects of 
4-OH-PCBs on mmp gene expression levels [10]. Three pre-
metamorphic tadpoles (stages NF53–NF54) were randomly 
transferred into 1-L glass beakers for each treatment group 
containing 500 mL of FETAX buffer [16]. The tadpoles 
were exposed to the solvent alone or 500 nM 4-OH-PCBs 

in the absence or presence of 1 nM T3 for four days, anes-
thetized in 0.02% 3-aminobenzoic acid ethyl ester. The iso-
lated brains were immediately frozen in liquid nitrogen and 
stored at − 85 °C until RNA extraction. Each experiment 
was repeated at least thrice using tadpoles from different sets 
of adults. The figure presents the results of one representa-
tive experiment out of the three.

RNA isolation and reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR)

Total RNA was extracted from frozen tadpole brains using 
an SV Total RNA Isolation System (Promega, Madison, 
WI, USA). After treating the RNA samples with reverse 
transcriptase (TaqMan Reverse Transcription Reagents; 
Applied Biosystems, Foster City, CA, USA), the specific 
RNA transcript levels were estimated via RT-qPCR using 
the Thunderbird SYBR qPCR mix (Toyobo, Osaka, Japan) 
and the Thermal Cycler Dice Real Time System Single 
TP850 (TaKaRa Bio, Shiga, Japan) with a specific primer 
set (200 nM each), summarized in Table 1, using the fol-
lowing protocol: 1 cycle of 50 °C for 2 min and 95 °C for 
10 min, followed by 40 cycles of 95 °C for 15 s and 60 °C 
for 1 min as described [16]. The relative transcript levels 
were quantified using the comparative Cq method [17]. Each 
PCR was performed in triplicate to control for variations. To 
standardize each experiment, the amount of gene transcript 
was divided by the amount of glyceraldehyde 3-phosphate 
dehydrogenase RNA in each sample.

Statistical analyses

All data are presented as mean ± standard error of the mean. 
Differences among groups were analyzed using one-way 
analysis of variance with Fisher’s least significant difference 
test for multiple comparisons using Microsoft Excel 2003 
Data Analysis Software (SSRI, Tokyo, Japan). Statistical 
significance was set at p < 0.05.

Results and discussion

Several mmp genes have been identified in X. laevis, which 
are divided into five subfamilies based on their domain 
structure: collagenases, gelatinases, stromelysins, matri-
lysins, and membrane-type MMPs [18]. These mmp genes 
play important roles in various biological processes, includ-
ing embryonic development, tissue remodeling, and immune 
responses in X. laevis.
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Stage‑dependent expression of mmps 
in metamorphosing X. laevis brain

Here, the transcript levels of all mmp genes (mmp8.l, 
mmp7.l, and mmp9.1. s, mmp9.2.l, mmp11.l, mmp13l.s, 
mmp14.l, and mmp13.s) were significantly higher in the 
brains of NF62 tadpoles than in those of NF60 tadpoles, 
suggesting the important role of mmps in the brains of tad-
poles during metamorphosis (Fig. 1). In addition, the tran-
script levels of almost all mmps were higher at Stage 58 
than at Stage 56 (Fig. 1). The plasma concentration of T3 
was too low to be detected at NF56, increased at NF57–58, 
and peaked at NF60–62 [19]. Moreover, TH receptor beta 
(TRβ) transcript levels are higher at NF58 than at NF56, 
reaching a peak at NF60–62 [20]. These results indicate that 
the TRβ transcript levels in the brain change according to the 
T3 concentration, suggesting its potential role as a transcrip-
tion factor. Several mmps are early TH response genes with 
a functional TH response element (TRE) in their regulatory 
regions [21, 22]. In this study, all tested mmps had (putative) 
TRE(s) in their flanking upstream region (approximately 1 
kbp; data not shown), suggesting their direct regulation by 
TRβ.

MMPs are important in normal brain development. For 
example, myelination of the corpus callosum in MMP-
9 and/or MMP-12 null mice is defective at postnatal days 
7–14 compared to that in wild-type mice, suggesting that 
these MMPs participate in myelinogenesis [23]. MMP-2 is 
expressed in the developing cerebellum and regulates gran-
ule cell proliferation by affecting cell cycle dynamics in the 
cerebellum of postnatal day 3 mouse pups [24]. Metamor-
phosing amphibian tadpoles and perinatal mammals share 

several common features such as a transient increase in TH 
concentration during brain development. In addition, mmp 
expression was regulated by TH. These findings revealed 
similar changes in mmp expression in both species because 
of the important roles of MMPs in brain development and 
amphibian metamorphosis, suggesting that metamorphic 
amphibians are suitable model experimental systems for 
perinatal mammals.

Effects of 4‑OH‑PCBs on TH‑induced mmp 
expression in pre‑metamorphic X. laevis brain

The transcript levels of all mmps were significantly increased 
after T3 treatment (Fig. 2). Furthermore, co-treatment with 
4-OH-PCBs and T3 inhibited the increase in the expression 
of almost all mmps. Notably, 4-OH-PCB159 did not inhibit 
T3-induced increase in mmp14.l expression. These results 
suggested that T3 induces mmp expression, whereas 4-OH-
PCBs inhibit T3-induced mmp expression in metamorphic 
amphibian brains.

In mammals, the components and structure of the extra-
cellular matrix change dynamically during brain develop-
ment [25]. MMP plays an important role in determining 
brain plasticity by affecting the extracellular matrix during 
development [26]. In our previous study, Gene Ontology 
enrichment analysis of genes whose expression fluctuated 
in a TH-dependent manner in the brains of metamorphic 
amphibians and genes whose expression fluctuated by 
4-OH-PCBs revealed the enrichment of terms such as brain 
development, cell differentiation and migration [10]. Meta-
morphosis has been suggested to occur during the perinatal 
period of mammalian brain development. Therefore, our 

Table 1   Primers for RT-qPCR

Primer sets with similar sequences of transcripts transcribed from the S-subgenome- and L-subgenomes were used to detect both transcripts

Gene Synonym Accession Sense Antisense

RT-qPCR
mmp8.l mmp1 NM_001087049 5'-GGA​AAC​AAG​GTG​CAA​GCA​GTCT-3' 

(1338fw)
5'-TGC​CGA​TTG​CCA​TTG​AAG​A-3' 

(1402rv)
mmp7.l mmp7a NM_001086213 5'-CAG​CAC​CTG​CAA​GGG​TCA​T-3' 

(1203fw)
5'-GGC​CAG​CGG​CTT​CTA​CAC​TA-3' 

(1262rv)
mmp9.1.s mmp9 NM_001086503 5'-CAT​GGG​TAG​GGT​GGG​AGT​TTT-3' 

(44fw)
5'-GAA​CGG​AGT​GAC​CCT​TGG​AA-3' 

(105rv)
mmp9.2.l mmp9th NM_001097836 5'-ATG​CCC​AGC​CCA​TTA​AGC​TA-3' 

(2426fw)
5'-CTG​GAC​CAT​GAC​ATC​AGA​AGTGA-3' 

(2490rv)
mmp11.l mmp11 NM_001086342 5'-GGA​GGA​CGC​TGG​GAC​AAG​A-3' 

(480fw)
5'-TTA​GCT​GCC​ATG​GGA​AAC​G-3' (540rv)

mmp13l.s mmp13 NM_001100931 5'-GGA​TAG​GGC​CAT​CAA​AAA​AGC-3' 
(414fw)

5'-CGG​AGC​CTG​GTG​AAG​TTC​A-3' (482rv)

mmp14.l mmp14 NM_001091009 5'-GAG​TCT​GGC​TAC​CCG​AAA​TCC-3' 
(1723fw)

5'-TTC​CGG​CTG​TCG​GAC​AGT​-3' (1788rv)

mmp13.s mmp26 NM_001086405 5'-GGT​TGG​ACT​CAG​ATA​CCA​TGA​CAA​
-3' (233fw)

5'-CGC​AAC​ATC​GGG​CATTC-3' (294rv)
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finding that 4-OH-PCBs inhibited T3-induced mmp expres-
sion during metamorphosis suggests that environmental 
chemicals inhibit normal brain development by disturbing 
extracellular matrix reconstruction.

Conclusion

These results suggest that normal brain development may 
be inhibited by environmental chemicals that disrupt 
T3-dependent changes in mmp expression. However, in the 

Fig. 1   Transcript levels of 
matrix metalloproteinase 
(mmp) genes in the brains of 
metamorphosing Xenopus 
laevis tadpoles. Total RNA 
was extracted from the tadpole 
brains at NF54, 56, 58, 60, and 
62. Expression levels of several 
genes (mmp8.l: A; mmp7.l: 
B; mmp9.1.s: C; mmp9.2.l: 
D; mmp11.l: E; mmp13l.s: F; 
mmp14.l: G; mmp13.l: H) were 
analyzed using quantitative 
real-time PCR. The vertical axis 
represents the ratio of the mmp 
transcript levels in each sample 
to those in the NF54 sample 
as a magnitude of induction 
(fold) after normalization with 
the housekeeping gene levels, 
glyceraldehyde 3-phosphate 
dehydrogenase (gapdh). All 
values are represented as the 
mean ± standard error of the 
mean of triplicate experiments 
(three tadpoles per group). NF 
is used to indicate the devel-
opmental stages outlined by 
Nieuwkoop and Faber. Different 
letters indicate significantly 
different means (p < 0.05; one-
way ANOVA using Fisher’s 
least significant difference test 
for multiple comparisons). The 
figure shows the results of one 
representative experiment out 
of three
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present study, we did not examine the effects of hydroxy-
lated PCBs on morphological and histological changes 
in the brain. Furthermore, the TH agonistic effects (s) 
of hydroxylated PCB have not been verified. By includ-
ing these experiments in the future, it will be possible to 
examine the impact of hydroxylated PCBs on brain devel-
opment in detail.
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