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Abstract
Background Doxorubicin is an effective antineoplastic agent but has limited clinical application because of its cumulative 
toxicities, including cardiotoxicity. Cardiotoxicity causes lipid peroxidation, genetic impairment, oxidative stress, inhibition 
of autophagy, and disruption of calcium homeostasis. Doxorubicin-induced cardiotoxicity is frequently tried to be mitigated 
by phytochemicals, which are derived from plants and possess antioxidant, anti-inflammatory, and anti-apoptotic properties. 
Arbutin, a natural antioxidant found in the leaves of the bearberry plant, has numerous pharmacological benefits, including 
antioxidant, anti-bacterial, anti-hyperglycemic, anti-inflammatory, and anti-tumor activity.
Methods and results The study involved male Wistar rats divided into three groups: a control group, a group treated with 
doxorubicin (20 mg/kg) to induce cardiac toxicity, a group treated with arbutin (100 mg/kg) daily for two weeks before 
doxorubicin administration. After treatment, plasma and heart tissue samples were collected for analysis. The samples were 
evaluated for oxidative stress parameters, including superoxide dismutase, malondialdehyde, and catalase, as well as for 
cardiac biomarkers, including CK, CK-MB, and LDH. The heart tissues were also analyzed using molecular (TNF-α, IL-1β 
and Caspase 3), histopathological and immunohistochemical methods (8-OHDG, 4 Hydroxynonenal, and dityrosine). The 
results showed that arbutin treatment was protective against doxorubicin-induced oxidative damage by increasing SOD and 
CAT activity and decreasing MDA level. Arbutin treatment was similarly able to reverse the inflammatory response caused 
by doxorubicin by reducing TNF-α and IL-1β levels and also reverse the apoptosis by decreasing caspase-3 levels. It was 
able to prevent doxorubicin-induced cardiac damage by reducing cardiac biomarkers CK, CK-MB and LDH levels. In addi-
tion to all these results, histopathological analyzes also show that arbutin may be beneficial against the damage caused by 
doxorubicin on heart tissue.
Conclusion The study suggests that arbutin has the potential to be used to mitigate doxorubicin-induced cardiotoxicity in 
cancer patients.
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Introduction

Doxorubicin (DX) is a potent antitumor agent that has been 
effectively used to treat a variety of cancers, such as breast, 
ovarian, lung, and uterine cancers, as well as soft-tissue 
sarcomas [1–3]. Unfortunately, its clinical use is restricted 
because of its cumulative toxicities, especially its cardiotox-
icity, which has been extensively studied [4, 5]. The harmful 
effects of DX-induced cardiotoxicity comprise lipid peroxi-
dation, oxidative stress, genetic impairment, inhibition of 
autophagy, apoptosis, and disruption of calcium homeosta-
sis [6]. NADPH-cytochrome P-450 enzymes metabolize 
DX, producing superoxide anions and hydroxyl radicals that 
damage cellular membranes [7]. Additionally, excessive DX 
exposure has been linked to cardiac inflammation [8, 9].

DX is an effective chemotherapeutic drug, preventing 
and treating its associated cardiotoxicity remains a major 
research focus. Dexrazoxane, an efficacious agent utilized 
in combating the cardiotoxic effects induced by DX, stands 
as a cornerstone in oncological care [10]. However, its uti-
lization comes with inherent limitations and drawbacks. 
Notably, its administration is tethered to specific patient 
demographics, such as pediatric and geriatric populations, 
and necessitates judicious dosing regimens. Moreover, 
while dexrazoxane mitigates cardiotoxicity, its employ-
ment may introduce rare adverse effects and pose risks of 
drug interactions [11]. The common side effects that cul-
minate from dexrazoxane use include dose-limiting myelo-
toxicity (neutropenia, leukopenia, granulocytopenia, and 
thrombocytopenia). Thus, despite its therapeutic utility, the 
imperative for novel drug development persists. The quest 
for innovative pharmacotherapeutics arises from the ambi-
tion to devise agents that surpass the constraints of existing 
options, striving for enhanced efficacy, broader applicabil-
ity across patient cohorts, and minimized adverse effects. 
In essence, while dexrazoxane remains a stalwart in car-
dioprotection, the exigency for pioneering pharmaceutical 
endeavors remains paramount in elevating the standards of 
oncologic care [10, 12].

One promising approach is the use of phytochemicals, 
which are small molecules derived from plants that possess 
antioxidant, anti-inflammatory, and anti-apoptotic prop-
erties [13]. Natural compounds have demonstrated their 
potential in the treatment of cardiovascular diseases. As a 
result, many phytoconstituents have been studied and have 
been shown to effectively mitigate DX-induced cardiotoxic-
ity [14].

Arbutin (ARB) is a natural antioxidant that is primarily 
found in bearberry plant leaves [15]. It is well-known for 
its numerous pharmacological benefits, such as antioxidant, 
anti-bacterial, anti-hyperglycemic, anti-inflammatory, and 
anti-tumor activity [16, 17]. In addition to these benefits, 

ARB has also demonstrated its positive effects in treating 
isoproterenol-induced cardiac hypertrophy in animals [18]. 
In light of these findings, we conducted a study to investi-
gate the potential beneficial impact of ARB in mitigating 
DX-induced cardiotoxicity in animals.

Materials and methods

Chemicals

We obtained DX (CAS No.: 25316-40-9) and ARB (CAS 
No.: 497-76-7) from Sigma-Aldrich, Germany.

Animals

In compliance with the “Guide for the Care and Use of Labo-
ratory Animals” and the approval of the Ataturk University-
Ethical Committee, all tests were conducted (2200370605). 
The study subjects consisted of male Wistar rats that were 
pathogen-free and were seven weeks old. The rats were 
housed at the Animal Experimental Center of Ataturk Uni-
versity and had access to food and water ad libitum. The 
facility was maintained at a temperature of 25 °C, and the 
rats were exposed to a 12-hour light and 12-hour dark cycle.

Methodology for conducting experiments

After being fed a specific diet for one week, the rats were 
separated randomly into three groups, each containing six 
rats. Group I: The control group was given sterile saline 
solution in the same amount as the experimental groups. 
Group II: In accordance with previous studies, rats in 
Group II (DX) were treated with a single intraperitoneal 
dose of 20 mg/kg DX that was dissolved in 0.9% normal 
saline to induce acute cardiac toxicity [19, 20]. In Group III 
(DX + ARB), the rats were given 100 mg/kg ARB [18, 21, 
22] daily for two weeks and then administered a single dose 
of 20 mg/kg DX. Following two days of DX treatment, the 
rats were given sodium thiopental anesthesia, then eutha-
nized and subjected to various experimental procedures.

Collection of plasma and heart tissue samples for 
analysis

Once the serum was centrifuged at 3000 rpm for 15 min, it 
was collected for the evaluation of Creatine Kinase (CK), 
Creatine Kinase-Myocardial Band (CK-MB), and Lac-
tate Dehydrogenase (LDH) using ELISA kits based on the 
instructions provided by the manufacturer. Measurements of 
LDH, CK and CK-MB, were conducted using the standard 
protocol provided by the commercially available kits (Cat 
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No: E-EL-R2547, E-EL-R0274, and E-EL-R1327 respec-
tively, Elabscience, USA) The heart tissue was immedi-
ately dissected and was removed and washed in cold saline. 
Next, the heart was carefully dissected into two sections. 
The one half of the heart was mixed and homogenized in 
PBS solution and then immediately stored at a temperature 
of − 20 °C for later analysis of oxidative stress parameters 
including superoxide dismutase (SOD), malondialdehyde 
(MDA), and catalase (CAT) (Cat No: E-EL-R1424, E-EL-
0060, and E-BC- K031-M respectively, Elabscience, USA) 
and molecular analysis including TNF-α, IL-1β and caspase 
3. All absorbance measurements were conducted at 450 nm 
with a spectrophotometer (BIOTEK Instruments, USA) 
[23, 24]. The other half of the heart tissue were placed in a 
solution of 10% formal saline for future investigation using 
histopathological and immunohistochemical techniques as 
previously described [24, 25].

Real-time quantitative PCR analysis

RT-PCR analysis was conducted following the methods out-
lined in previous literature [26]. The relative mRNA expres-
sions of TNF-𝛼, IL-1β, and caspase-3 mRNA in heart tissue 
were assessed by real time polymerase chain reaction (RT-
PCR) system (QIAGEN-Rotor-Gene Q) (Hilden-Germany). 
Quadruplicate determinations were performed for each tis-
sue sample, utilizing a 96-well optical plate. Each reaction 
included 2.5 µl of cDNA (100 ng), 1 µl of TaqMan gene 
expression assay, 10 µl of TaqMan PCR MasterMix (sup-
plied by Applied Biosystems), and 6.5 µl of RNase-free 
water, totaling 20 µl per reaction. The plates were subjected 
to initial heating at 50 °C for 2 min followed by 10 min at 
95 °C. Subsequently, 40 cycles were run, consisting of 15 s 
at 95 °C and 60 s at 60 °C for each cycle [27]. The obtained 
target gene expression levels were normalized to the house-
keeping gene 𝛽-actin. The PCR primers utilized are listed in 
Table 1. The results were obtained with the 2−ΔΔCt method.

Tissue analysis of heart using histopathological 
methods

Samples of heart tissues were taken from all rats in each 
group, and then preserved in a solution called neutral 
buffered formalin. They were then processed according 
to a standard protocol. Thin sections of the tissues, about 
5 micrometers in thickness, were cut and stained with 

Hematoxylin and Eosin (H&E) dye. The stained sections 
were then examined under a light microscope. A pathologist 
who did not know which treatment the rats had received, 
looked at the samples to see if there were any abnormal 
changes in the tissues [23].

Immunohistochemical analysis

The heart sections were exposed to primary antibodies 
against 8-OHDG, 4 Hydroxynonenal (4-HNE), and dity-
rosine (DT), which were diluted 1:200. Diaminobenzidine 
tetrachloride (DAB) was used to visualize the immune reac-
tion. The staining was graded as negative, weak, moderate, 
or strong depending on the intensity of the staining [26]. 
The percentage of area expressing 8-OHDG, 4-HNE, and 
DT was estimated by measuring the stained areas of each 
section and calculating an average using imaging software 
called Image J. The person analyzing the images was not 
aware of the treatments given to the animals. The individual 
examining the images was blinded to the treatments admin-
istered to the animals.

Statistical analysis

The data collected from the experiments were analyzed 
using the SPSS STATISTIC software version 23, and 
the results were presented as mean ± standard deviation 
(mean ± SD). The ELISA and RT-PCR results were sub-
jected to a one-way ANOVA followed by post hoc Tukey’s 
test, while the histopathological and immunohistochemical 
evaluations were analyzed using the Kruskal-Walls test fol-
lowed by post hoc Mann-Whitney U test. A p-value of less 
than 0,001 was considered statistically significant.

Results

Cardiac biomarkers

The concentrations of serum cardiac biomarkers, includ-
ing CK-MB, CK, and LDH, were assessed to ascertain the 
occurrence of DX-induced cardiotoxicity and to evaluate 
any potential protective effects conferred by ARB. In the 
DX group, there was a significant increase in CK-MB, 
CK, and LDH (p < 0.001) compared to the normal con-
trol group. However, in the treatment group, there was a 

Table 1 Sequence list of the primers used for RT-PCR
Genes Forward Sequence (5′-3′) Reverse Sequence (3′-5′)
TNF-𝛼  C A C A C G A G A C G C T G A A G T A G  A A C A G T C T G G G A A G C T C T G A
IL-1β  T G C T G T G T G A T T G C A G A C A A  G T A C A G C G T T C C C A G T C A T C
Caspase-3  T G G A C A A C A A C G A A A C C T C C  C C A G G C A C A G T A T C T C T T G C
Tnf-𝛼, tumor necrosis factor alpha; IL-1β: interleukin 1β
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rats caused an elevation in the amount of MDA (Fig. 2C), 
a biomarker of oxidative stress, in their heart tissues, and a 
decrease in the activity of CAT and SOD enzymes in their 
hearts, compared to control rats. But when rats were given 
ARB before DX, there was a significant reduction in MDA 
levels and an increase in the activity of these enzymes in 
their heart tissues, compared to rats that were only given 
DX (Fig. 2).

DX treated rats showed marked increase in mRNA 
expressions of TNF-α (Fig. 3A) and IL-1β (Fig. 3B) in the 
cardiac tissues compared to the control group. Despite that, 
in the ARB group, the expression levels of TNF-α and IL-1β 
were reduced compared to the DX group (Fig. 3). Further-
more, caspase-3 levels in the cardiac tissues were markedly 
elevated in the DX group compared to the control group. 
ARB treatment resulted in a significant reduction in cas-
pase-3 levels (Fig. 3C).

significant decrease in CK-MB and CK compared to the DX 
group. Additionally, ARB significantly reduced CK-MB 
(p < 0.001) compared to the DX group. The increase in 
CK-MB, CK, and LDH levels indicate damage to the car-
diomyocytes. These findings showed that DX induced car-
diotoxicity in rats, while treatment with ARB protected 
against it by reducing CK-MB (Fig. 1A), CK (Fig. 1B) and 
LDH (Fig. 1C) levels.

Reduced oxidative damage, inflammation and 
apoptosis in cardiac tissues with ARB treatment 
against DX-induced injury

We found that giving DX to rats markedly decreased the 
activity of enzymes like SOD (Fig. 2A) and CAT (Fig. 2B) 
compared to control rats. However, when the rats were 
given ARB before DX, marked improvement was seen in 
the activity of these enzymes, compared to rats that were 
only given DX (shown in Fig. 2). In addition, giving DX to 

Fig. 1 Serum levels of cardiac markers in control and treatment groups. *** p < 0,001 vs. control group, ### p < 0,001 vs. DX group
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immunoreactivity score in comparison with the DX group 
(Fig. 5). The control group showed negative expression 
(Fig. 5).

Discussion

The detrimental effects of DX-induced cardiotoxicity are 
well established and associated with the initiation of inflam-
mation [8] and an overexpression of reactive oxygen spe-
cies with DX [28, 29]. The myocardium is particularly 
susceptible to DX related oxidative stress due to decreased 
activity of antioxidant enzymes in the myocardium [30]. 
Furthermore, the cardiac muscle contains cardiolipin-
rich mitochondria that have a high affinity for DX, lead-
ing to its accumulation in the cardiac mitochondria. This 
accumulation impairs the respiratory chain and triggers 
apoptotic death [31]. Our study’s biochemical, molecular, 

Histopathological analysis

The slides of heart muscle tissue from different groups of 
rats were examined. The control group had healthy muscle 
tissue with visible muscle striations and central nuclei. 
However, the groups treated with DX had damaged tissue 
with loss of striations and vascular congestion. The group 
treated with ARB showed a significant improvement in the 
tissue, with no notable damage or necrosis. These findings 
suggest that ARB may have a protective effect on the heart 
tissue (Fig. 4).

Immunohistochemical analysis

The analysis showed that 8-OHDG, 4-HNE, and DT expres-
sion was significantly higher in the DX group in compari-
son with the control group. However, the ARB pretreatment 
group had significantly lower 8-OHDG, 4-HNE, and DT 

Fig. 2 Tissue levels of oxidative stress markers in control and treatment groups. *** p < 0,001 vs. control group, ### p < 0,001 vs. DX group
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as a therapeutic agent for the prevention and management of 
DX-induced cardiotoxicity.

Results of the current study showed a significant decrease 
in cardiac SOD and CAT activities, important antioxidant 
enzymes that break down superoxide anions and hydrogen 
peroxide, respectively, following DX administration in rats. 
These results were consistent with other studies that also 
found DX caused a reduction in antioxidant mechanisms 
[33, 34]. We also found a significant increase in cardiac tis-
sue levels of MDA and 8-OHdG in the DX group, indicating 
DX caused an increase in lipid peroxidation and DNA dam-
age [35, 36]. 4-HNE is formed as a result of oxidative stress 
and is a product of lipid peroxidation. It has been shown to 
be highly reactive and can form adducts with proteins and 
DNA. Studies have suggested that 4-HNE plays a role in 
the pathogenesis of several diseases, including Alzheimer’s 
disease, Parkinson’s disease, and atherosclerosis [37]. The 

histopathological, and immunohistochemical analyses pro-
vided evidence of oxidative damage, apoptosis, and inflam-
mation in an animal model of DX-induced cardiotoxicity, in 
line with previous studies.

Our current study provides compelling evidence that DX 
administration in rats results in a notable increase in the lev-
els of serum cardiac injury markers such as CK, CK-MB, 
and LDH, thereby indicating significant cardiac damage. 
Interestingly, pretreatment with ARB was found to signifi-
cantly decrease the levels of these injury markers, pointing 
towards its potential as a cardioprotective agent. Impor-
tantly, our results are consistent with earlier findings, which 
demonstrated that ARB treatment led to a decrease in the 
levels of CK-MB and LDH in rodent models of septic car-
diomyopathy and isoproterenol-induced cardiac hypertro-
phy [18, 32]. These findings highlight the potential of ARB 

Fig. 3 Tissue mRNA fold changes of inflammation and apoptotic markers in control and treatment groups. *** p < 0,001 vs. control group, ### 
p < 0,001 vs. DX group
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Fig. 5 Immunohistochemical analysis of 8-OHdG, 4-HNE and DT in control and treatment groups. *** p < 0,001 vs. control group, ### p < 0,001 
vs. DX group

 

Fig. 4 Histopathological 
microphotograph of control and 
treatment groups stained with 
H&E. (A) Control group: Normal 
architecture of myocardium, (B) 
DX treated group: Severe mono-
nuclear cell infiltrates (arrow) and 
severe hemorrhage (arrowhead), 
(C) DX + ARB treated group: 
Mild mononuclear cell infiltrates 
(arrowhead) and mild hemor-
rhage (arrowhead)
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by the overproduction of caspase-3 enzyme. According to a 
previous study, DX has been shown to induce the release of 
cytochrome C into the cytoplasm and increase the expres-
sion of caspase-3 and caspase-9 in cardiomyocytes [44]. 
Furthermore, DX can disturb calcium homeostasis, result-
ing in cellular and mitochondrial calcium overload. This 
can disturb cellular metabolism, increase the production of 
free radicals, and initiate apoptosis. The opening likelihood 
of sarcoplasmic reticulum Ca channels increases with DX, 
while Na+–Ca2 + exchanger membrane proteins are inhib-
ited [45]. In line with previous studies that showed the anti-
apoptotic effects of ARB, our study also found that ARB 
reduces apoptosis by decreasing caspase-3 levels [46]. ARB 
can help protect the myocardium from DX-induced dam-
age by reducing the expression of caspase-3 and preventing 
the occurrence of apoptosis. Our results are consistent with 
other reports that demonstrated the anti-apoptotic effect of 
ARB in vitro and in vivo [16, 39].

Conclusion

In the present study, our investigation demonstrated that 
ARB exerted significant ameliorative effects against DX-
induced cardiotoxicity in animal subjects. The admin-
istration of ARB effectively attenuated DX-induced 
oxidative stress, inflammation, and apoptosis, thus indicat-
ing its potential as a protective agent against cardiac damage 
induced by DX. Furthermore, our histopathological analy-
ses revealed noteworthy improvements in the myocardial 
tissue profile, reinforcing the cardioprotective properties 
of ARB. The findings from this preclinical study provide 
valuable evidence supporting the therapeutic potential of 
ARB as a promising intervention to mitigate DX-induced 
cardiotoxicity in cancer patients. Despite the encouraging 
outcomes presented in this study, it is essential to acknowl-
edge the need for future clinical trials to validate the safety 
and efficacy of ARB in human subjects.
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measurement of 4-HNE levels has been used as a marker 
of oxidative stress in various biological systems, includ-
ing in animal models. Its accumulation has been associ-
ated with the activation of signaling pathways involved in 
apoptosis and inflammation. 3,3’-dityrosine has emerged as 
a key marker of protein oxidation due to its specific for-
mation from the reaction of tyrosine residues with reactive 
oxygen species. The tyrosine radical, which is generated by 
the attack of various reactive oxygen species such as per-
oxynitrite and hydroxyl radicals, undergoes cross-linking 
with neighboring tyrosine residues to produce 3,3’-dityro-
sine [7]. These findings and previous studies suggest that 
DX causes oxidative damage in cardiac tissue by inhibiting 
antioxidant mechanisms.

Previous studies have shown that pretreatment with 
ARB can mitigate the DX-induced lipid peroxidation [38], 
and significantly reduce the levels of antioxidant enzymes. 
Hence, it is hypothesized that ARB could efficiently scav-
enge the uncontrolled production of reactive oxygen spe-
cies caused by DX and safeguard the myocardium from 
DX-induced damage. The current results are supported by 
earlier findings that have highlighted the antioxidant proper-
ties of ARB both in vitro and in vivo [16, 39].

The observed association between DX-induced cardio-
toxicity and inflammation is well-documented, primar-
ily attributed to the release of pro-inflammatory cytokines 
[40]. Notably, two pivotal cytokines, TNF-α and IL-1β, 
have been consistently shown to exhibit elevated levels in 
response to cardiac injury induced by DX [41]. In this con-
text, ARB, characterized by its notable anti-inflammatory 
properties, emerges as a compelling candidate for interven-
tion. Studies across various experimental models have con-
sistently demonstrated ARB’s ability to mitigate the levels 
of TNF-α and IL-1β, as also evidenced by the results of the 
present investigation [42, 43]. These findings collectively 
suggest a promising role for ARB as a therapeutic avenue in 
both preventing and managing DX-induced cardiotoxicity 
through its potent anti-inflammatory effects. By modulating 
the inflammatory response, ARB holds potential not only 
in attenuating the adverse effects of DX on the heart but 
also in preserving cardiac function during chemotherapy. 
Furthermore, the extensive body of evidence supporting 
ARB’s anti-inflammatory properties underscores its broader 
utility beyond DX-induced cardiotoxicity. Its efficacy as 
an adjunctive therapy in chemotherapy-induced cardiotox-
icity is particularly noteworthy, suggesting a multifaceted 
approach to mitigating cardiac complications associated 
with cancer treatment [42, 43].

The harmful effects of DX on the heart are not limited to 
oxidative stress and inflammation; it can also induce apop-
tosis, which is the programmed cell death mechanism that 
occurs naturally in cells. DX-induced apoptosis is mediated 
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